新型含N、S、O配体的超分子金属配合物的合成及晶体结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属配位聚合物及超分子研究不仅是沟通有机和无机超分子研究的桥梁,而且集理论基础与应用基础研究于一体。近年来,这一领域成为材料科学和化学学科中最活跃的研究领域之一,并处于高速发展的关键时刻。利用共价键所构筑的配位聚合物已经受到人们的广泛研究,该体系具有稳定、刚性、较易预测和操控等特点。近期研究也表明,高度一致或有序的非共价键弱作用力(如氢键)的结合所产生的超分子体系也可以具有相当的稳定性,而且,非共价体系具有柔软、可调控、可逆等特点。对这些新型体系结构和性能的研究不仅可以丰富合成化学的理论与实验研究,而且还将进一步拓展其在电子、光学、磁化学、催化以及生物模拟等诸多领域的广阔应用前景。
     近年来,由于水簇与生物体系及化学过程存在着重要的关联,因此在实验和理论研究上均倍受关注。各种水簇的结构参数对于处在分子阶段的体积水的性质能够得到精确的描述有着可观的预期。这些聚合物的水形态在结构上处于水簇和体积水之间,与体积水有相近的性质。因此对于水簇的研究,不论对水结构的进一步理解,还是提供更新的水表结构有着重大的意义,而且也为水与生物体系之间存在的重要关系有着更新的、进一步的研究暗示。
     本文首先合成新的含氮、含氧配体4,5-二氮杂芴-9-[3,5-二羧基]苯亚胺(dafdc)和含硫配体4,4’-二硝基二苯乙烯-2,2’-二磺酸(DNS),然后利用常规方法成功地合成了如下配合物:
     含有螺旋金属-水簇链的超分子配合物[Mn(dafdc) (H_2O)_4]·7H_2O;
     新型DNS配体与金属镍的超分子配合物[Ni(H_2O)_6](DNS)·2H_2O;
     二苯胺磺酸钠(dpas)、乙二胺与金属镍的二维网状超分子配合物[Ni(en)_2](dpas)_2。
     配合物结构和组成通过X-射线衍射、FT-IR和元素分析等测试手段进行了表征。
With the rapid growth in supramolecular chemistry in recent years, a great deal of effort has been devoted to the design and assembly of supramolecular compounds, for these compounds have potential applications in the ionophore chemistry, ion pair extraction chemistry, phase transfer catalysis chemistry and so on. Moreover, the syntheses of various supramolecular compounds help to obtain new information of intermolecular interactions, which is apparently important for rational design and construction of new framework structures. Currently, a lot of researchers are focusing their attention on the crystal engineering of supramolecular architectures organized by coordinate covalent bonds or hydrogen bonds andπ-πstacking interactions. In particular, the hydrogen bonding has attracted most interest due to its relative strength and directionality in generating a great variety of one-(1-D), two-(2-D), and three-dimensional(3-D)either non-interpenerating open networks with variable cavities or channels of desire size, or well entangled structures through interpeneration.
     Water clusters have been intensively investigated both experimentally and theoretically due to their important relevance to biological systems and chemical processes. Their structural information holds considerable promise for achieving a more accurate description of the properties of bulk water at a molecular level. These polymeric water morphologies, which structurally lie in between water clusters and bulk water, have physical properties very closely associated with those of bulk water. Without doubt, the above studies have significantly advanced the understanding of water structures and provided novel structural aspects of water and new insights into water with implications for biological environments.
     In this paper, the new ligands of 3,5-(4,5-Diazafluoren-9-ylideneamino)benzoic acid(dafdc) and 4, 4′-Dini-trostilbene-2, 2′-Disulfonic Acid(DNS) with nitrogen sulfur and oxygen Atoms were synthesized. Then the follows new supramolecular metal complexes were synthesized by conventional method.
     The supramolecular complexes with infinite metal-water clusters chain of [Mn(dafdc) (H_2O)_4]·7H_2O;
     The supramolecular complexes with new DNS of [Ni(H_2O)_6](DNS)·2H_2O; The metal complexes with sodium diphenylamine sulphonic acid salt(dpas) of [Ni(en)_2](dpas)_2;
     The crystal structure and composition of the complexes were confirmed by X-ray single crystal diffraction and infrared spectrum and elemental analysis.
引文
[1] Prasad P N, Williams D J. Introduction to Nonlinear Optical Effects in Molecules and Polymer [M]. New York: Willey, 1992.
    [2] Williams A F, Floriani C, MeMerbach A E. Eds, Perspectives a Cordination Chemistry [M]. VCH,Weinheirn, 1992.
    [3] Kahn O, Molecular Magnetism [M].New York: VCH Publishers, 1993.
    [4] 徐志固. 现代配位化学 [M]. 北京, 科学工业出版社, 1987.
    [5] Claessens C G, Stoddart J F. π-πInteractions in self-assembly [J]. J Phys Org Chem, 1997, 10(5): 254-272.
    [6] Inoue Y, Hakushi T, Liu Y, et al. Molecular design of crown ethers. 12. Complexation thermodynamics of l2-to l6-crown-4: thermodynamic origin of high lithium selectivity of 14-crown-4 [J]. J Org Chem, 1993, 59(20): 5411-5413.
    [7] Inoue Y, Liu Y, Tong L H, et al. Molecular design of crowm ethers. part 11. complexation thermo-dynarnics of crown ethers. 3,12-Crown-4 to 36-crown-12: from rigid to flexible ligand [J]. J Chem Soc Perkin Trans, 1993, 2(l0): 1947-1950.
    [8] Szejtli J. Cyclodextrin Technology [M]. Dordrechi: Kluwer-Academic, 1988.
    [9] Bresjow R. Biomjmetic Chemistry and Artificial Enzymes: Catalysis by Design [J]. Acc Chem, 1995, 28(3): 146-153.
    [10] Gray G M. Metallacrown ethers: unique organometallic ligands [J]. Comments Inorg Chem, 1995, 17(2): 95-114.
    [11]Orama M, Saarinen H, Korvenranta J. Equilibrium and structural studies on metal complexes of oxime ligands. Polynuclear complex formation of copper(II) with3-aminopropanamidoxime and its N-alkyl derivatives [J]. Acta Chem scand, 1994, 48(2): 127-133.
    [12] 卢嘉锡. 过渡金属原子簇化学的新进展 [M]. 福州, 福建科技出版社, 1997.
    [13] Lehn J M. Supramolecular Chemistry-Scope and Perspectives-Molecules, Supramolecules, and Molecular Devices(Nobe1 Lecture) [J]. Angew Chem Int Ed Engl, 1988, 27(1): 89-112.
    [14] William A F, Floriani C, Methach A E. Perspectives in Coordination Chemistry [M]. Basel: Velag Helvetica Chemica Acta, 1992, 156.
    [15] Sun W Y, Kusukawa T, Fujita M. Electrochemically Driven Clathration/Decathration of Ferrocene and Its Derivatives by a Nanometer-Siza Coordination Cage [J]. J Am Chem Soc, 2002, 124(39): 11570-11571.
    [16] Van H R, Kamer P C J, Van Leeuwen P W N M V, et al. Dendrimers as support for recoverable catalysts and reagents [J]. Chemical Reviews, 2002, 102(10): 3717-3756.
    [17] Chae H K, Siberio D Y, Kim J, et al. A route to high surface area, porosity and inclusion large molecules in crystals [J]. Natrue (London, United Kingdom), 2004, 427(6974): 523-527.
    [18] Atwod J L, Dsvies J E D, Macnicol D D. Comprehensive Supra-moIecu1ar Chemistry [M]. 1996, 6: 1.
    [19] MacDonald J C, Witesides G M. Solid-State Structures of Hydrosen-Bonded Tapes Based on Cyclic Secondary Diamides [J]. Chemical Reviews, 1994, 94(8): 2383-2420.
    [20] Kim Y, Lee E, Jung D Y. Mn2(H20)[O2C(CH2)nCO2)2 (n=3-12): Replication of an Inorganic Monolayer in Three-Dimensional(Dicarboxylato)manganese(II) [J]. Chem Mater, 2001, 13(5): 2684-2690.
    [21] Yang S Y, Long L S, Jiang Y B, et al. An Exceptionally Stable Metal-Organic Frame work Constructed from the Zn8(SiO4)Core [J]. Chem Mater, 2002, 14(8): 3229-3231.
    [22] An H Y, Xiao D R, Wang E B, et al. Open-Framework Polar Compounds: Synthesis and Characterization of Rare-Earth Polyoxometalates (C6N02H5)2[Ln(H20)5(CrMo6H6O24) 0.5H20 (Ln=Ce and La) [J]. Eur J Inorg Chem, 2005, 2005(5): 854-859.
    [23] Vaidhyanathan R, Natarajan S, Rao C N R. Aliphatic dicarboxytates with three-dimensional metal-organic frame works possessing hydrophobic chanels [J]. Dalton Trans, 2003, (8): 1459-1464.
    [24] Lu K L, Chen Y F, Liu Y H, et al. Bottom-Up Crystal Engineering toward Nanoporosity Exemplified by a Zinc Carboxylate Coordination Polymer Adopting a Tenorite Analogue Network Topology [J]. Crystal Growth & Design, 2005, 5(2): 403-405.
    [25] Chui S S Y, Lo S M F, Charmant J P H, et al. Achemically functionalizable nanoporous material[Cu3(tma)2(H2O)3]n [J]. Science, 1999, 283(5405): 1148-1150.
    [26] Wang R h, Zhou Y f, Sun Y q, Yuan D q, et al. Syntheses and Crystal Structures of Copper(II) Coordination Polymers Comprising Discrete Helical Chains [J]. Crystal Growth & Design, 2005, 5(1): 251-256.
    [27] Ma J F, Yang J, Zheng G L, et al. A Porous Supramolecular Architecture from a Copper(II) Coordination Polymer with a 3D Four-Connected 86 Net [J]. Crystal Growth & Design, 2003, 42(23): 7531-754.
    [28] Augustin M. M, Carmen P, Jean P S, et al. Construction of Tube- and Ladderlike Copper(II) Coordination Polymers Based on the Nicotinato Tecton [J]. Crystal Growth & Design, 2005, 5(2): 707-711.
    [29] Li X, Yan R C, Sun Q, et al. Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid [J]. Crystal Growth & Design, 2004, 4(2): 255-261.
    [30] Baten S R, Robson R. Interpenetrating nets: Ordered, periodic entanglement [J]. Angew Chem Int Ed, 1998, 37(11): 1461-1494.
    [31] Leiningers S, olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals [J]. Chem Rev, 2000, l00(3): 853-907.
    [32] Yaghi O M, Li H L, Davis C, et al. Synthetic Strategies, Structure patterns, and Emerging Properties in the Chemistry of ModuIar Porous Solids [J]. Acc Chem Res, 1998, 31(8): 474-484.
    [33] Huo Q S, D Margolese, U .Ciesla, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J]. Chem Mater, 1994, 6(8): 1176- 1191.
    [34] S Marder, J Perry, C Yakymyshyn. Organic Salts with Large Second-Order Optical Nonlinearities [J]. Chem Mater, 1994, 6(8):1137-1147.
    [35] Holman, K T, Martin, S M, Parker, D P, et al. The Generality of Architectural Isomerism in Designer Inclusion Frameworks [J]. J. Am Chem Soc, 2001, 123(19): 4421-4431.
    [36] Kobayashi K, Sato A, Sakamoto S, et al. Solvent-Induced Polymorphism of Three-Dimensional Hydrogen- Bonded Networks of Hexakis(4-carbamoylphenyl) benzene [J]. J Am Chem Soc, 2003, 125 (10): 3035- 3045.
    [37] Naji T K, Konar S, NostafaG, et al. Self-assembly of new three-dimensional molecular architectures of Cd(II) and Ag(I)–Na(I) using croconate as a building block [J]. Dalton Trans, 2003, 2, 171-175.
    [38] Jin K, Huang X Y, Pang L, et al. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent [J]. Chem Commun, 2002, 23, 2872-2873
    [39] Yilmaz V T, Guney S, Andac O, et al. Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol: synthesis, spectroscopic, thermal and structural characterization [J]. Polyhedron, 2002, 21(23): 2393-2402.
    [40] Wen M, Munakata M, suenaga Y, et al. Silver(I) complexes of dibenzo-18-crown-6-ether having cation–π and π–π interactions[J]. Inorg Chim Acta, 2002, 332(1): 18-24.
    [41] Lee E, Kin Y, Jung Y. A Coordination Polymer of Cobalt(II)-Glutarate: Two-Dimensional Interlocking Structure by Dicarboxylate Ligands with Two Different Conformations[J]. Inorg Chem, 2002, 41(3): 501-506.
    [42] Suenaga Y, Sowa T K, Munakata M, et al. Synthesis and structure of a two-dimensional copper(II) coordination polymer with 3,4,9,10-perylenetetracarboxylic acid and ethylenediamine [J]. Polyhedron, 1998, 17(13-14): 2207-2211.
    [43] Wei P R, Wu D D, Zhou Z Y, et al. Lanthanide coordination polymers with dicarboxylate- like ligands : crystal structures of polymeric neodymium(III) and erbium(III) complexes with flexible double betaines [J]. Polyhedron, 1997, 16(5): 749-763.
    [44] Goodman D C, Farmer P J, Darensbourg M Y, et al. A Coordination Polymer of Nickel(II) Based on a Pentadentate N, S, and O Donor Ligand [J]. Inorg Chem, 1996, 35(17): 4989- 4994.
    [45] Clearfield A. Organically Pillared Micro- and Mesoporous Materials [J]. Chem Mater, 1998, 10(10): 2801- 2810.
    [46] Holman K T, Pivovar A M, Swift J A, et al. Metric Engineering of Soft Molecular Host Frameworks [J]. Acc Chem Res, 2001, 34(2): 107-118.
    [47] Zhao Y J, Hong M C, Sun D F, et al. A novel coordination polymer containing puckered rhombus grids [J]. Dalton Trans, 2002, 7, 1354-1357.
    [48] Murugavel R, Baheti K, Anantharaman G. Reactions of 2-Mercaptobenzoic Acid with Divalent Alkaline Earth Metal Ions: Synthesis, Spectral Studies, and Single-Crystal X-ray Structures ofCalcium, Strontium, and Barium Complexes of 2,2'-Dithiobis(benzoic acid) [J]. Inorg Chem, 2001, 40 (27): 6870-6878.
    [49] Platers M T, Howie R A, Robert A J. Hydrothermal synthesis and X-ray structural characterisation of calcium benzene-1,3,5-tricarboxylate [J]. Chem Commun, 1997, 9, 893-894.
    [50] Swarnabala Q, Rajasekharan M V. [Ca(dipicH2)(OH2)3][Ce(dipic)3]·5H2O: A One- Dimensional Coordination Polymer with Alternating CeN3O6 and CaNO7 Polyhedra (dipicH2 = Pyridine-2,6-dicarboxylic Acid) [J]. Inorg Chem, 1998, 37 (7): 1483-1485.
    [51] Millange F, Serre C, Ferey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic–organic microporous solids: CrIII(OH)·{O2C– C6H4–CO2}·{HO2C–C6H4– CO2H}x [J]. Chem Commun, 2002, 8 , 822-823.
    [52] Serre C, Millange F, Nogues M, et al. Very Large Breathing Effect in the First Nanoporous Chromium(III)- Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4 -CO2}·{HO2C-C6H4- CO2H}x·H2Oy [J]. J Am Chem Soc, 2002, 124(45): 13519-13526.
    [53] Pan L, Frydel T, Sander M B, et al. The Effect of pH on the Dimensionality of Coordination Polymers[J]. Inorg Chem, 2001, 40 (6): 1271-1283.
    [54] Pan L, Adams K M, Hernandez H E, et al. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties [J]. J Am Chem Soc, 2003, 125(10): 3062-3067.
    [55] Pan L, Zheng N W, Wu Y G, et al. Synthesis, Characterization and Structural Transformation of A Condensed Rare Earth Metal Coordination Polymer [J]. Inorg Chem, 2001, 40(5): 828-830.
    [56] Pan L, Finkel B S, Huang X Y, et al. The first pillared three-dimensional structure constructed by carboxylate ligands bridging heterometallic trilayers [J]. Chem Commun, 2001, 1, 105-106.
    [57] Pan L, Huang X Y, Li J. Assembly of New Coordination Frameworks in a pH-Controlled Medium: Syntheses, Structures, and Properties [J]. J solid State Chem, 2000, 152(1): 236-246.
    [58] Pan L, Woodlock E B, Wang X T, et al. A New Porous Three-Dimensional Lanthanide Coordination Polymer [J]. Inorg Chem, 2000, 39(18): 4174-4178.
    [59] Rujiwatra A, Kepert C J, Claridge J B. Layered Cobalt Hydroxysulfates with Both Rigid and Flexible Organic Pillars: Synthesis, Structure, Porosity, and Cooperative Magnetism [J]. J Am Chem Soc, 2001, 123(43): 10584-10594.
    [60] Wang Z M, Zhang B, Fujiwara H. Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature [J]. Chem Commun, 2004, 4, 416-419.
    [61] Kitagawa S, Uemura K, Dynamic porous properties of coordination polymers inspired by hydrogen bonds [J]. Chem Soc Rev, 2005, 34(2): 109-119.
    [62] Kosnic E J, McClymont E L, Hodder R A, et al. Binuclear complexes of a new hexadentate macrocyclic ligand. The crystal and molecular structure of [LCu2 ( CH 3C O2 )2 ] (ClO4 )2 · 5H2 O [J]. Inorg Chim Acta, 1992, 210(2): 143-151.
    [63] Shubnell A J, Kosnic E J, Squattrito P J. Structures of layered metal sulfonate salts: trends in coordination behavior of alkali, alkaline earth and transition metals [J]. Inorg Chim Acta, 1994, 216(1): 101-112.
    [64] Gunderman B J, Squattrito P J. Synthesis and Structures of Potassium and Rubidium Arene- sulfonates [J]. Inorg Chem, 1994, 33(13): 2924-2931.
    [65] Cite A P, Shimizu G K H. The supramolecular chemistry of the sulfonate group in extended solids [J]. Coord Chem Rev, 2003, 245(1-2): 49-64.
    [66] Cai J W. Structural chemistry and properties of metal arenesulfonates [J]. Coord. Chem.Rev, 2004, 248(11-12): 1061-1083.
    [67] Russell V, Eter M, Ward M. Guanidinium Para-Substituted Benzenesulfonates: Competitive Hydrogen Bonding in Layered Structures and the Design of Nonlinear Optical Materials [J]. Chem Mater, 1994, 6(8): 1206-1217.
    [68] Shimizu G K H, Enright G D, Ratclife C I, et al. A layered silver sulfonate incorporating nine-coordinate AgI in a hexagonal grid [J]. Chem Commun, 1999, 16, 1485-1486.
    [69] Shimizu G K H, Enright C D, Ratclife C I, et al. Silver Sulfonates: An Unexplored Class of Layered Solids [J]. Chem Mater, 1998, 10 (11): 3282-3283.
    [70] Smith G, Cloutt B A, Lynch D E, et al. Nitrogen Base Adducts with Silver(I) p-Toluenesul- fonate: Syntheses and Single Crystal X-ray Characterizations of the Adducts with Pyridine (1:1), 2-Aminopyridine (1:2), 2-Aminopyrimidine (1:1), 4,6-Dimethyl-2- aminopyrimidine (2:3), and 3-Aminobenzoic Acid (1:2) and the Crystal Structure of the Parent Silver(I) p-Toluenesulfonate [J]. Inorg Chem, 1998, 37(13): 3236-3242.
    [71] Makinen S K, Melcer N J, Parvez M, et al. Highly Selective Guest Uptake in a Silver Sulfonate Network Imparted by a Tetragonal to Triclinic Shift in the Solid State [J]. Chem Eur J, 2001, 7(23): 5176-5182.
    [72] Orr G W, Barbour L J. Controlling Molecular Self-Organization: Formation of Nanometer- Scale Spheres and Tubules [J]. Science, 1999, 285, 1049-1052.
    [73] Johnson C P, Atwood J L, Steed J W, et al. Transition Metal Complexes of p-Sulfonato- calix[5]arene [J]. Inorg Chem, 1996, 35(9): 2602 -2610.
    [74] Atwood J L, Orr G W, Means N C, et al. Metal ion complexes of water-soluble calyx [4]arenas [J]. Inorg Chem, 1992, 31(4): 603-606.
    [75] Hardie M J, Johnson J A, Raston C L, et al. Cooperative hydrogen bonding and yttrium(III) complexation in the assembly of molecular capsules [J]. Chem. Commun, 2000, 10, 849-850.
    [76] K. Liu, M. G. Brown, C. Carter, et al. Characterization of a cage form of the water hexamer [J]. Nature, 1996, 381(6): 501-503.
    [77] K. Nauta and R. E. Miller. Formation of Cyclic Water Hexamer in Liquid Helium: The Smallest Piece of Ice [J]. Science, 2000, 287(14): 293-295.
    [78] J. M. Ugalde, I. Alkorta and J. Elguero. Water Clusters: Towards an Understanding Based on FirstPrinciples of Their Static and Dynamic Properties [J]. Angew Chem Int Ed, 2000, 39(4): 717-721.
    [79] R. Ludwig. Water: From Clusters to the Bulk [J]. Angew Chem Int Ed, 2001, 40(10): 1808-1827.
    [80] Sabbani S, Sathi M, Pallepogu R, et al. A cyclic supramolecular (H2O)4 cluster in an unusual Fe3 complex that aggregates to {Fe3}n with a zig-zag chainlike structure [J]. New J Chem, 2003, 27(2): 218-220
    [81] Ma B Q, Sun H L, Gao S. Cyclic water pentamer in a tape-like structure [J]. Chem Comm, 2004, 19, 2220-2221.
    [82] R J Doedens, E Yohannes, M I Khan. Novel water clusters in the crystalline state: structures of a symmetrical, cyclic hexamer and an opened-cubeoctamer [J] .Chem comm, 2002, 1, 62-63.
    [83] Moorthy J N, Natarajan R, Venugopalan P. Characterization of a Planar Cyclic Form of Water Hexamer in an Organic Supramolecular Complex: An Unusual Self-Assembly of Bimesityl-3,3-Dicarboxylic Acid [J]. Angew Chem Int Ed, 2002, 41(18): 3417-3420.
    [84] Atwood J L, Barbour L J, Ness T J, et al. A Well-Resolved Ice-like (H2O)8 Cluster in an Organic Supramolecular Complex [J]. J Am Chem Soc, 2001, 123(29): 7192-7193.
    [85] Blanton W B, Gordon-Wylie S W. G. R. Clark. et al. Synthesis and Crystallographic Characterization of an Octameric Water Complex, (H2O)8 [J]. J Am Chem Soc, 1999, 121(14): 3551-3552.
    [86] Barbour L J, Orr G W, Atwood J L. Characterization of a well resolved supramolecular ice-like (H2O)10 cluster in the solid state [J]. Chem Commun, 2000, 10, 859-860.
    [87] Liu Q Y, Xu L.. (H2O)12-containing infinite chain encapsulated in supramolecular open framework built of cadmium(II), 1,3-di(4-pyridyl)propane and 5-sulfoisophthalic acid monosodium salt [J]. Cryst Eng Comm, 2005, 7(12): 87–89.
    [88] Ma B Q, Sun H L, Gao S. Formation of Two-Dimensional Supramolecular Icelike Layer Containing (H2O)12 Rings [J]. Angew Chem Int Ed, 2004, 43(11): 1374-1376.
    [89] Raghuraman K, Kavita K K, L J. Barbour, et al. Characterization of Supramolecular (H2O)18 Water Morphology and Water-Methanol (H2O)15(CH3OH)3 Clusters in a Novel Phosphorus Functionalized Trimeric Amino Acid Host [J]. J Am Chem Soc, 2003, 125(23): 6955-6961.
    [90] Henderson L J, Fronczek F R, Cherry W R. Selective perturbation of ligand field excited states in polypyridine ruthenium(II)complexes [J]. J Am Chem Soc, 1984, 106(20): 5876-5879.
    [91] Wang Y X, Rillema D P. Altering the reaction pathways of aminopyridine with 4,5-diazafluorenone:metal ion control [J]. Tetrahedron Letters, 1997, 38(38): 6627-6630.
    [92] Rajasekharan M V, Menon S. A channel-forming ployiodide network in [Cu(dafone)3]I12. A trischelate of dafone and a new planer structure for the I122- ion (dafone= 4,5-diazafluoren-9-one) [J]. Inorg Chem, 1997, 36(22): 4983-4987.
    [93] Wang Y X, Perez W, Zheng G Y, et al. Syntheses and electrochemical, photophysical, and photochemical properties of ruthenium(II)4,5- diazafluorenone complexes and their ketalderivatives [J]. Inorg Chem, 1998, 37(8): 2051-2059.
    [94] Wang Y X, Perez W, Zheng G Y, et al. Preparation, purification, and characterization of binuclearruthenium(II) complexes: bridging ligands based on diazafluorenes [J]. Inorg Chem, 1998, 37(9):2227-2234.
    [95] 钟文添, 吴建中. 双(4,5-二氮杂芴-9-酮)缩对-二氨基二苯甲烷桥联的二(邻菲罗啉)合铜(II)的合成及其与 DNA 作用的光谱研究 [J]. 无机化学学报, 2003, 19(2): 196-200.
    [96] Kraft B J, Eppley H J, Huffman J C, et al. Cu(II)-mediated intramolecular carbene cation radical formation: relevance to unimolecular metal-ligand radical intermediates [J]. J Am Chem Soc, 2002, 124(2): 272-280.
    [97] Zhou G C, Harruna I I. Synthesis of ligand monomers derived from 4,5- diazafluoren-9-one [J]. Tetrahedron Letters, 2003, 44(24): 4617–4619.
    [98] G.M sheldrick. SHELXTL-97 Progran1forRefiningCrystal Structrure Refinement University of Gōttingen, Germany, 1997.
    [99] Infantes L, Motherwell S. Water clusters in organic molecular crystals [J]. Cryst Eng Comm, 2002, 4(75): 454-461
    [100] Sujit K G, Parimal, Bharadwaj K. Coexistence of Water Dimer and Hexamer Clusters in 3D Metal-Organic Framework Structures of Ce(III) and Pr(III) with Pyridine- 2,6-dicarboxylic Acid [J]. Inorganic Chemistry, 2003, 42(25): 8050-8254.
    [101] Ye B H, Ding B B, Weng Y Q, et al. Formation of One-Dimensional Metal-Water Chain Containing Cyclic Water Hexamers [J]. Inorganic Chemistry, 2004, 43(22): 6866-6868.
    [102] Gunderman B J, Kabell I D, Philip J, et al. Structural chemistry of naphthalenedisulfonate salts [J]. Inorg Chim Acta. 1997, 258(2): 237-246.
    [103] Chen C H, Cai J W, Feng X L. et al. Synthesis and crystal structures of four nickel (II) 1,5-naphthalenedisulfonate compounds [J]. Journal of Chemical Crystallography, 2001, 31(5), 271-280.
    [104] Cai J W. Structural chemistry and properties of metal arenesulfonates [J]. Coord Chem Rev, 2004, 248(11-12), 1061-1083.
    [105] Cai J w, Chen C H, Liao C Z, et al. Variation in the coordination mode of arenedisulfonates to copper(II): synthesis and structural characterization of six copper(II) arenedisulfonate complexes [J]. Dalton Trans, 2002, 7, 1137-1142.
    [106] Chen P G, Gu C S, Gao S, et al. Synthesis and Crystal Structure of Sulfonate Nickel Complex [Ni(H2O)6] (1,5-DNS )[J]. Journal Harbin Univ Sci&Tech. 2004, (9)3, 76-69.
    [107] Liu G R. Synthesis and Crysta l Structures of Organic Coordination Compounds of Cobalt Disulfonate [Co(H2O)6] (1,5-NDS) [J]. Henan Chemical Industry, 2006, 23(1): 12-14.
    [108] Gao W T, Zhang S F, Yang J Z, et al. Metal phthalocyanine catalyzed oxidation of 4-nitrotoluene-2-sulfonic acid to 4,4’-dinitrostilbene-2,2’-disulfonic acid. Dyes and Pigments[J], 2000, 44(1): 155-159.
    [109] Cotton F A, Daniels L, Murillo C, et al. Hexaaqua dipositive ions of the first transition series: new and accurate structures; expected and unexpected trends [J]. Inorg Chem, 1993, 32(22): 4861-4867.
    [110] Song Y M, Pang J. Organic-Disulfonate Ligand Manganese(II) Coordination Compound [J]. Chinese Journal of Inorganic Chemistry, 2005, 25(9): 1433-1434.
    [111] Cai J W, Chen C H, Zhou J S. Coordination Chemistry of Arenedisulfonate [J]. Chinese Journal of Inorganic Chemistry, 2005, 19(1), 81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700