基于芴的双极主体材料以及金属有机磷光材料的合成和光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双极分子主体材料由于自身结构特征已成为电致磷光器件最有潜力的主体材料之一。本论文采用氮杂芴作为骨架结构,设计合成了两系列具有优良双极传输性能的主体材料,并以这些主体材料为配体制备出了系列高效发光的一价铜配合物,考察了它们的光电性能。最后还合成了两个系列高效的红色锐带发光的3d-4f双金属异核配合物,在系统研究了它们的发光性能的基础上,制备出了性能优良的红色锐带OLED器件。
     1.合成了两个系列以4,5-二氮杂芴为骨架结构的新型双极主体材料,通过核磁质谱和元素分析对它们的结构进行了确认,对其中六个化合物进行了单晶结构分析。通过电化学分析和量子化学模拟计算,得到了化合物的HOMO、LUMO轨道能级和带隙。结果表明:该系列化合物表现出明显的双极传输性能,通过引入不同空穴传输基团来调控化合物的载流子传输能力和HOMO和LUMO轨道能级,使主体材料与磷光客体材料能级更匹配。与传统的主体材料CBP相比,这些化合物有较CBP更高的三线态能级,和更为合适的HOMO和LUMO轨道能级。以绿色磷光配合物Ir(ppy)3为主体材料,通过制备有机电致发光器件考察了此类双极主体材料性能,结果表明:这两个系列的化合物是性能优良的双极主体材料。其中,化合物DPAPAF、DCPAF和DCSBF作为主体材料的器件性能最为优秀,亮度分别达到了8246.2 cd/m2、1899.1 cd/m2和24123.0 cd/m2,电流效率分别为22.62 cd/A,14.93cd/A和40.83 cd/A。
     2.利用4,5’-二氮杂芴类化合物较强的配位能力,将这些双极性化合物作为配体与一价铜离子配位,结合含膦配体(PPh3,PEP)以及卤素配体(C1,Br,I),采用混配的方式制备了阳离子型和中性两个系列的一价铜配合物。通过元素分析,质谱对他们的结构进行了确认,并对其中七个配合物进行了单晶结构分析,结果表明:双齿氮杂配体和含膦配体与一价铜离子形成具有变形四面体构型的稳定的四配位阳离子;当有卤素离子参与配位时,卤素离子种类及反应条件对配合物的结构均有较大影响。对其光物理性能的系统研究表明:一价铜化合物发光属于的3MLCT的磷光发射,发光强度与发光谱带位置与化合物的聚集状态关系很大,配合物在固体状态和PMMA膜中发光较好,溶液中则发生严重的发光淬灭。分子的刚性增加可以减小配合物激发态的构型扭曲程度,增强了发光效率,一价铜离子形成类似“Y”形状时,激发态变形程度最小,发光效率较高。用PVK中掺杂旋涂的方法考察了五种离子型配合物的电致发光性能,发现掺杂Cu(DPAPAF)(PP)(BF4)和Cu(DPASBF)(PEP)(BF4)的器件电致发光性能较好。其中以Cu(DPASBF)(PEP)为客体材料的器件最大亮度达到了1614.80 cd/m2,其最大电流效率为6.11 cd/A,相应功率效率为1.37 lm/W。进一步说明DPAPAF和DPASBF配体都有很好的双极传输性能。
     3.利用席夫碱锌配合物作为第二配体,TTA, TFA作为第一配体,合成了两个系列的新型3d-4f异核双金属Zn(Ⅱ)-Eu(Ⅲ)配合物。通过元素分析对配合物结构进行了确认,并得到了化合物的Eu(TTA)2(TFA)(ZnS2)晶体结构。对系列化合物发光性能研究表明:这两个系列的化合物都显示了Eu3+离子的特征锐带发射,没有出现希席碱锌配体的发射峰,说明了席夫碱锌配体对Eu3+离子有较好的敏化作用。我们发现水杨醛系列配合物的发光量子效率明显比香草醛系列配合物的高,通过研究这些配合物的发光机理发现:配体到铕离子能量传递效率(Φη)的不同是造成这种差别的主要原因,香草醛席夫碱锌中性配体三线态能级较低以及可能存在的LMCT跃迁有可能造成能量回传,导致发光效率降低。以发光量子效率最高的配合物Eu(TTA)2(TFA)(ZnS2)为发光材料,制备了三层电致发光器件,该器件的最大亮度高达1982.5 cd/m2,最大电流效率为9.9 cd/A,相应的功率效率为5.2 lm/W,外量子效率为5.3%,是迄今报道的性能较好的红色锐带发光器件之一。
The bipolar host material is one of the most potential host materials for electro-phosphorescent devices. In this thesis, two series of excellent bipolar host materials are designed and synthesized by utilizing 4,5-diazafluorene segment as the backbone structure. These bipolar host materials are also used as ligand for the synthesis of highly luminescent Cu(I) complexes. Their photo-and electro-luminescent properties are systematically studied. We also synthesize two series of sharp red emitting 3d-4f heterodimetallic complexes. The EL device with excellent performance was fabricated based on a heterodimetallic complex.
     1. Two series of bipolar host materials are designed and synthesized by utilizing 4,5-diazafluorene segment as backbone structure. The compounds are characterized by 1H NMR, MS and elemental analysis. Six single crystals of the compounds were determined by X-ray diffraction. HOMO/LUMO energy levels of the compounds were obtained through electrochemistry analysis and modeling theory. The results indicated that:these kinds of compounds exhibit apparent bipolar properties. The HOMO/LUMO energy levels and carrier transporting ability can be modified by introducing electron-donating moieties into the molecule. Compared with traditional host material CBP, the above compounds have higher triplet energy levels (ET) and more suitable HOMO and LUMO energy levels. The above characteristics can be confirmed by doping Ir(ppy)3 into the host materials and investigating their EL performance. The results illustrated that these compounds are good bipolar host materials for electrophosphorescent devices. Among them, the devices base on DPAPAF, DCPAF and DCSBF as host material showed the excellent EL performance with the maximal luminance of 8246.2 cd/m2,1899.1 cd/m2 and 24123.0 cd/m2, and the current efficiencies of 22.62 cd/A,14.93cd/A and 40.83 cd/A, respectively.
     2. The bipolar host materials are used as ligand for synthesizing Cu(I) complexes owing to the strong coordination ability of 4,5-diazafluorene derivatives. By synergistic coordination of phosphine ligands, halide ion and host compounds with Cu(I), two kinds of Cu(I) complexes(one is neutral type, another is cationic type) have been synthesized. The complexes are characterized by 1H NMR, MS and elemental analysis. Seven single crystals of the complexes were determined by X-ray diffraction. In cationic type Cu(I) complexes, Cu(I) coordinates with two N atoms and two P atom, forming stable distorted tetrahedral geometry. However, halide ions and its reaction conditions influence the final structure markedly. Photophysical properties of the complexes are systematically studied. The results show that:the luminescence of the Cu(I) complexes are 3MLCT phosphorescent emission in nature. The luminescent properties depend profoundly on the state of Cu(I) complexes. In the solid state and PMMA film, Cu(I) complexes show much more efficient phosphorescence than in solution. Large rigid configurations of the complexes eliminate the possibility of flattening distortion in the excited states and finally enhance the luminescence efficiencies. The tri-coordinated Cu(I) complexes in the solid state exhibit intense photoluminescence because of the slightly distortion in the excited state. The EL properties of Cu(SBF)(PP)(BF4), Cu(DPAPAF)(PP)(BF4), CuI(SBF)(P), Cu(DPASBF)(PEP)(BF4) and Cu(DISBF)(PP)(BF4) are studied. Among the five complexes, Cu(DPASBF)(PEP)(BF4) and Cu(DPAPAF)(PP)(BF4) exhibited better EL properties. The EL device with Cu(DPASBF)(PEP)(BF4) as emitting dopant showed a maximum luminance of 1614.80 cd/m2, a maximum current efficiency of 6.11 cd/A, demonstrating excellent bipolar transporting properties of DPASBF and DPAPAF.
     3. Two series of d-f heterobimetallic complexes are synthesized by using Shiff base Zn(II) as second ligands and TTA and TFA as the first ligands. The single crystal of complex Eu(TTA)2(TFA)(ZnS2) is obtained and confirmed. The photophysical properties show that:the complex exhibits efficient red emissions typical of Eu3+ion and no emission bands from Shiff base Zn(II) are observed, suggesting that the energy transfer from the Shiff base Zn(II) to the Eu(III) centre is very efficient. We also found that the luminesce efficiency of the salicylaldehyde series complexes is higher than the vanallic series. The higher sensitization efficiency of the salicylaldehyde series complexes maybe the main resaon for this result. The lower triplet energy levels of the vanallic Shiff base Zn(II) ligand and the back energy transfer to the LMCT state may causing the lower luminesce efficiency of the vanallic series. The EL properties of complex Eu(TTA)2(TFA)(ZnS2), with the highest luminesce efficiency among the complexes, is studied. The triplet device base on Eu(TTA)2(TFA)(ZnS2) as emitting dopant showed a maximum luminance as high as 1982.5 cd/m2 and a maximum current efficiency of 9.9 cd/A, corresponding power efficiency of 5.2 lm/W and external quantum efficiency of 5.3%. This result ranks the complex Eu(TTA)2(TFA)(ZnS2) as one of the most efficient europium-based electroluminescent materials.
引文
[1]Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. The Journal of Chemical Physics,1963,38:2042~2043
    [2]Chiang C, Fincher C, Park Y, et al. Electrical conductivity in doped polyacetylene[J]. Physical Review Letters,1977,39:1098-1101
    [3]Vincett P S, Barlow W A, Hann R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Films,1982,94:171-183
    [4]Helfrich W, Schneider W G. Recombination radiation in anthracene crystals[J]. Phy Rev Lett,1965, 14:229-231
    [5]R.H P. Electroluminescence from polyvinylcarbazole films:4. Electroluminescence using higher work function cathodes[J]. Polymer,1983,24:755-762
    [6]Roberts G G, McGinnity M, Barlow W A, et al. Electroluminescence, photoluminescence and electroabsorption of a lightly substituted anthracene langmuir film[J]. Solid State Commun,1979, 32:683-686
    [7]Visco R E, Chandross E A. Electroluminescence in solutions of aromatic hydrocarbons[J]. J Am Chem Soc,1964,86:5350-5351
    [8]Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl Phy Lett,1987,51:913-915
    [9]Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phy,1989,65:3610-3616
    [10]J. H. Burroughes D D C B, A. R. Brown,. Light-emitting diodes based on conjugated polymers[J]. Nature,1990,347:539-541
    [11]Kido J, Hayase H, Hongawa K, et al. Bright red light-emitting organic electroluminescent devices having a europium complex as an emitter[J]. Appl Phy Lett,1994,65:2124-2126
    [12]Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature,1998,395:151-154
    [13]刘式墉,赵毅,李峰,et al.有机电致发光研究与应用进展[J].物理,2003,32:413-419
    [14]Adachi C, Tokito S, Tsutsui T, et al. Electroluminescence in organic films with three-layer structure[J]. Jpn J Appl Phys,27:L269
    [15]Adachi C, Tokito S, Tsutsui T, et al. Organic electroluminescent device with a three-layer structure[J]. Jpn J Appl Phys,27:L713
    [16]Murata H, Merritt C D, Inada H, et al. Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability [J]. Appl Phy Lett, 1999,75:3252-3254
    [17]Kim Y, Lee J G, Kim S. Blue light-emitting device based on a unidentate organometallic complex containing lithium as an emission layer[J]. Adv Mater,1999,11:1463~1466
    [18]Li Y, Liu Y, Bu W, et al. Hydroxyphenyl-pyridine beryllium complex (bepp2) as a blue electroluminescent material[J]. Chem Mater,2000,12:2672-2675
    [19]Gao X C, Cao H, Huang C, et al. Electroluminescence of a novel terbium complex[J]. Appl Phy Lett,1998,72:2217-2219
    [20]Gao F G, Bard A J. Solid-state organic light-emitting diodes based on tris(2,2‘-bipyridine)ruthenium(ii) complexes[J]. J Am Chem Soc,2000,122:7426-7427
    [21]Stolka M, Yanus J F, Pai D M. Hole transport in solid solutions of a diamine in polycarbonate [J]. J Phy Chem,1984,88:4707-4714
    [22]Slyke S A V, Chen C H, Tang C W. Organic electroluminescent devices with improved stability [J]. Appl Phy Lett,1996,69:2160-2162
    [23]Adachi C, Tsutsui T, Saito S. Organic electroluminescent device having a hole conductor as an emitting layer[J]. Appl Phy Lett,1989,55:1489-1491
    [24]So F, Krummacher B, Mathai M K, et al. Recent progress in solution processable organic light emitting devices[J]. J Appl Phy,2007,102:091101
    [25]Jabbour G E, Kippelen B, Armstrong N R, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices[J]. Appl Phy Lett,1998,73:1185-1187
    [26]Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes[J], J Appl Phy,1994,75:1656-1666
    [27]Burrows P E, Forrest S R. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices[J]. Appl Phy Lett,1994,64:2285-2287
    [28]Burrows P E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J]. J Appl Phy,1996,79:7991-8006
    [29]张小伟,杨楚罗,秦金贵.金属有机电致磷光材料研究进展[J].有机化学,2005,25:873-880
    [30]吴世康,张晓宏,李述汤.磷光电致发光器件研究中的若干问题[J].化学进展,2001,13:413-419
    [31]王传明,范曲立,霍岩丽,et al.有机电致磷光材料的分子设计:从主体材料到客体材料[J].化学进展,2006,18:519-525
    [32]Mi B X, Wang P F, Gao Z Q, et al. Strong luminescent iridium complexes with c"n=n structure in ligands and their potential in efficient and thermally stable phosphorescent oleds[J]. Adv Mater, 2009,21:339-343
    [33]Ho C L, Wong W Y, Gao Z Q, et al. Red-light-emitting iridium complexes with hole-transporting 9-arylcarbazole moieties for electrophosphorescence efficiency/color purity trade-off optimization[J]. Adv Func Mater,2008,18:319~331
    [34]Holmes R J, Forrest S R, Tung Y-J, et al. Blue organic electrophosphorescence using exothermic host--guest energy transfer[J]. Appl Phy Lett,2003,82:2422~2424
    [35]Shih P I, Chien C H, Wu F I, et al. A novel fluorene-triphenylamine hybrid that is a highly efficient host material for blue-, green-, and red-light-emitting electrophosphorescent devices[J]. Adv Func Mater,2007,17:3514~3520
    [36]Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J Appl Phy,2001,90:5048~5051
    [37]Lee J-H, Tsai H-H, Leung M-K, et al. Phosphorescent organic light-emitting device with an ambipolar oxadiazole host[J]. Appl Phy Lett,2007,90:243501
    [38]Burrows P E, Padmaperuma A B, Sapochak L S, et al. Ultraviolet electroluminescence and blue-green phosphorescence using an organic diphosphine oxide charge transporting layer[J]. Appl Phy Lett,2006,88:183503
    [39]Ren X, Li J, Holmes R J, et al. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices[J]. Chem Mater,2004,16:4743-4747
    [40]Kanno H, Ishikawa K, Nishio Y, et al. Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(ii) as host material[J]. Appl Phy Lett,2007,90:123509
    [41]Jeon W S, Park T J, Kim S Y, et al. Ideal host and guest system in phosphorescent oleds[J]. Org Electron,2009,10:240-246
    [42]Park T J, Jeon W S, Park J J, et al. Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host[J]. Appl Phy Lett,2008,92:113308
    [43]Tsuzuki T, Tokito S. Highly efficient and low-voltage phosphorescent organic light-emitting diodes using an iridium complex as the host material[J]. Adv Mater,2007,19:276~280
    [44]Tsuzuki T, Tokito S. Highly efficient phosphorescent organic light-emitting diodes using alkyl-substituted iridium complexes as a solution-processible host material[J]. Appl Phy Expr,2008, 1:021805~021808
    [45]Makinen A J, Hill I G, Kafafi Z H. Vacuum level alignment in organic guest-host systems[J]. J Appl Phy,2002,92:1598~1603
    [46]Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phy Lett,1999,75:4~6
    [47]Tao Y, Wang Q, Yang C, et al. A simple carbazole/oxadiazole hybrid molecule:An excellent bipolar host for green and red phosphorescent oleds[J]. Angew Chem Int Ed,2008,47:8104~8107
    [48]Gao Z Q, Luo M, Sun X H, et al. New host containing bipolar carrier transport moiety for high-efficiency electrophosphorescence at low voltages[J]. Adv Mater,2009,21:688~692
    [49]Ge Z, Hayakawa T, Ando S, et al. Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole derivatives[J]. Adv Func Mater,2008,18:584~590
    [50]Polikarpov E, Swensen J S, Chopra N, et al. An ambipolar phosphine oxide-based host for high power efficiency blue phosphorescent organic light emitting devices[J], Appl Phy Lett,2009,94: 223304
    [51]Gong S, Chen Y, Luo J, et al. Bipolar tetraarylsilanes as universal hosts for blue, green, orange, and white electrophosphorescence with high efficiency and low efficiency roll-off[J]. Adv Func Mater,2011,21:1168~1178
    [52]Gong S, Chen Y, Yang C, et al. De novo design of silicon-bridged molecule towards a bipolar host: All-phosphor white organic light-emitting devices exhibiting high efficiency and low efficiency roll-off[J]. Adv Mater,2010,22:5370~5373
    [53]Su S-J, Sasabe H, Takeda T, et al. Pyridine-containing bipolar host materials for highly efficient blue phosphorescent oleds[J]. Chem Mater,2008,20:1691~1693
    [54]Inomata H, Goushi K, Masuko T, et al. High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials[J]. Chem Mater,2004,16:1285~1291
    [55]Tao Y, Wang Q, Ao L, et al. Highly efficient phosphorescent organic light-emitting diodes hosted by 1,2,4-triazole-cored triphenylamine derivatives:Relationship between structure and optoelectronic properties[J]. J Phy Chem C,2009,114:601~609
    [56]Hung W-Y, Tsai T-C, Ku S-Y, et al. An ambipolar host material provides highly efficient saturated red pholeds possessing simple device structures [J]. Phys Chem Chem Phys,2008,10:5822~5825
    [57]Hung W-Y, Wang T-C, Chiu H-C, et al. A spiro-configured ambipolar host material for impressively efficient single-layer green electrophosphorescent devices[J]. Phys Chem Chem Phys, 2010,12:10685-10687
    [58]Lin C-J, Huang H-L, Tseng M-R, et al. High energy gap oled host materials for green and blue pholed materials[J]. J Display Technol,2009,5:236-240
    [59]Chi L-C, Hung W-Y, Chiu H-C, et al. A high-efficiency and low-operating-voltage green electrophosphorescent device employing a pure-hydrocarbon host material[J]. Chem Commu,2009, 3892-3894
    [60]Tsuji H, Mitsui C, Sato Y, et al. Bis(carbazolyl)benzodifuran:A high-mobility ambipolar material for homojunction organic light-emitting diode devices[J]. Adv Mater,2009,21:3776~3779
    [61]Wei W, Djurovich P I, Thompson M E. Properties of fluorenyl silanes in organic light emitting diodes[J]. Chem Mater,2010,22:1724-1731
    [62]Grushin V V, Herron N, LeCloux D D, et al. New, efficient electroluminescent materials based on organometallic ir complexes[J]. Chem Commu,2001,1494~1495
    [63]Tsuboyama A, Iwawaki H, Furugori M, et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. J Am Chem Soc,2003,125:12971-12979
    [64]Tamayo A B, Alleyne B D, Djurovich P I, et al. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(iii) complexes[J]. J Am Chem Soc,2003,125:7377-7387
    [65]Sajoto T, Djurovich P I, Tamayo A, et al. Blue and near-uv phosphorescence from iridium complexes with cyclometalated pyrazolyl or n-heterocyclic carbene ligands[J]. Inorg Chem,2005, 44:7992-8003
    [66]Makinen A J, Hill I G, Kafafi Z H. Vacuum level alignment in organic guest-host systems [J]. J Appl Phy,2002,92:1598-1603
    [67]Kawamura Y, Goushi K, Brooks J, et al.100%phosphorescence quantum efficiency of ir(iii) complexes in organic semiconductor films[J]. Appl Phy Lett,2005,86:071104
    [68]Tsuboi T, Aljaroudi N. Relaxation processes in the triplet state t1 of organic ir-compound btp2ir(acac) doped in pc and cbp fluorescent materials[J]. J Lumin,2006,119-120:127-131
    [69]Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phy Lett,1999,75:4-6
    [70]Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials[J]. Appl Phy Lett, 2000,77:904-906
    [71]Holmes R J, Forrest S R, Tung Y-J, et al. Blue organic electrophosphorescence using exothermic host--guest energy transfer[J]. Appl Phy Lett,2003,82:2422-2424
    [72]Brooks J, Babayan Y, Lamansky S, et al. Synthesis and characterization of phosphorescent cyclometalated platinum complexes[J]. Inorg Chem,2002,41:3055-3066
    [73]Carlson B, Phelan G D, Kaminsky W, et al. Divalent osmium complexes:□ Synthesis, characterization, strong red phosphorescence, and electrophosphorescence[J]. J Am Chem Soc, 2002,124:14162-14172
    [74]Jiang X, Jen A K-Y, Carlson B, et al. Red electrophosphorescence from osmium complexes[J]. Appl Phy Lett,2002,80:713-715
    [75]Handy E S, Pal A J, Rubner M F. Solid-state light-emitting devices based on the tris-chelated ruthenium(ii) complex.2. Tris(bipyridyl)ruthenium(ii) as a high-brightness emitter[J]. J Am Chem Soc,1999,121:3525-3528
    [76]Rudmann H, Shimada S, Rubner M F. Solid-state light-emitting devices based on the tris-chelated ruthenium(ii) complex.4. High-efficiency light-emitting devices based on derivatives of the tris(2,2'-bipyridyl) ruthenium(ii) complex[J]. J Am Chem Soc,2002,124:4918-4921
    [77]Correspondence[J]. Synth Met,1999,99:257-260
    [78]Stufkens D J, Vlcek Jr A. Ligand-dependent excited state behaviour of re(i) and ru(ii) carbonyl-diimine complexes [J]. Coor Chem Rev,1998,177:127-179
    [79]Mizoguchi S K, Santos G, Andrade A M, et al. Luminous efficiency enhancement of pvk based oleds with fac-[clre(co)3(bpy)][J]. Synth Met,2011,161:1972-1975
    [80]Mauro M, Procopio E Q, Sun Y, et al. Highly emitting neutral dinuclear rhenium complexes as phosphorescent dopants for electroluminescent devices[J], Adv Func Mater,2009,19:2607~2614
    [81]Au V K-M, Wong K M-C, Tsang D P-K, et al. High-efficiency green organic light-emitting devices utilizing phosphorescent bis-cyclometalated alkynylgold(iii) complexes[J]. J Am Chem Soc, 2010,132:14273-14278
    [82]Fave C, Cho T-Y, Hissler M, et al. First examples of organophosphorus-containing materials for light-emitting diodes[J]. J Am Chem Soc,2003,125:9254-9255
    [83]Evans R C, Douglas P, Winscom C J. Coordination complexes exhibiting room-temperature phosphorescence:Evaluation of their suitability as triplet emitters in organic light emitting diodes[J]. Coor Chem Rev,2006,250:2093-2126
    [84]Su H-C, Fadhel O, Yang C-J, et al. Toward functional π-conjugated organophosphorus materials: Design of phosphole-based oligomers for electroluminescent devices[J]. J Am Chem Soc,2005, 128:983-995
    [85]Ma Y, Chao H-Y, Wu Y, et al. A blue electroluminescent molecular device from a tetranucluear zinc(ii) compound [zn4o(aid)6] (aid=7-azaindolate)[J]. Chem Commu,1998,2491~2492
    [86]Young D M, Geiser U, Schultz A J, et al. Hydrothermal synthesis of a dense metal-organic layered framework that contains cu(i)-olefinic bonds, cu2(o2cchchco2)[J]. J Am Chem Soc,1998, 120:1331-1332
    [87]Wing-Wah Yam V, Chung-Chin Cheng E, Zhu N. The first luminescent tetranuclear copper(i)μ4-phosphinidene complex[J]. Chem Commu,2001,1028~1029
    [88]Anderson Q T, Erkizia E, Conry R R. Synthesis and characterization of the first pentaphenylcyclopentadienyl copper(i) complex, (ph5cp)cu(pph3)[J]. Organometallics,1998,17: 4917-4920
    [89]Chan W-H, Peng S-M, Che C-M. Synthesis, structure and spectroscopic properties of [cu3(μ-dpnapy)3(ch3cn)][clo4]3-ch3cn (dpnapy=7-diphenylphosphino-2,4-dimethyl-1,8-naphthyridine) with a linear copper atom array[J]. J Chem Soc, Dalton Trans,1998,2867~2872
    [90]Matsumoto K, Matsumoto N, Ishii A, et al. Structural and spectroscopic properties of a copper(i)-bis(n-heterocyclic)carbene complex[J]. Dalton Trans,2009,6795~6801
    [91]Krylova V A, Djurovich P I, Whited M T, et al. Synthesis and characterization of phosphorescent three-coordinate cu(i)-nhc complexes[J]. Chem Commu,2010,46:6696~6698
    [92]Lotito K J, Peters J C. Efficient luminescence from easily prepared three-coordinate copper(i) arylamidophosphines[J]. Chem Commu,2010,46:3690~3692
    [93]Czerwieniec R, Yu J, Yersin H. Blue-light emission of cu(i) complexes and singlet harvesting[J]. Inorg Chem,2011,50:8293-8301
    [94]McMillin D R, McNett K M. Photoprocesses of copper complexes that bind to DNA[J]. Chem Rev,1998,98:1201~1220
    [95]Ford P C, Cariati E, Bourassa J. Photoluminescence properties of multinuclear copper(i) compounds[J]. Chem Rev,1999,99:3625~3648
    [96]Wing-Wah Yam V, Kam-Wing Lo K. Luminescent polynuclear d10 metal complexes[J]. Chem Soc Rev,1999,28:323~334
    [97]Scaltrito D V, Thompson D W, O'Callaghan J A, et al. Mlct excited states of cuprous bis-phenanthroline coordination compounds[J]. Coor Chem Rev,2000,208:243-266
    [98]Armaroli N. Photoactive mono-and polynuclear cu(i)-phenanthrolines. A viable alternative to ru(ii)-polypyridines?[J]. Chem Soc Rev,2001,30:113~124
    [99]Ma Y, Che C-M, Chao H-Y, et al. High luminescence gold(i) and copper(i) complexes with a triplet excited state for use in light-emitting diodes [J]. Adv Mater,1999,11:852~857
    [100]Zhang Q, Zhou Q, Cheng Y, et al. Highly efficient green phosphorescent organic light-emitting diodes based on cui complexes [J]. Adv Mater,2004,16:432~436
    [101]Min J, Zhang Q, Sun W, et al. Neutral copper(i) phosphorescent complexes from their ionic counterparts with 2-(2'-quinolyl)benzimidazole and phosphine mixed ligands[J]. Dalton Trans, 2011,40:686-693
    [102]Zhang Q, Ding J, Cheng Y, et al. Novel heteroleptic cui complexes with tunable emission color for efficient phosphorescent light-emitting diodes[J]. Adv Func Mater,2007,17:2983~2990
    [103]Si Z, Li J, Li B, et al. High light electroluminescence of novel cu(i) complexes[J]. J Lumin,2009, 129:181-186
    [104]Xu J, Yun D, Lin B. Diamine ligands with multiple coplanar conjugation rings and their phosphorescent copper complexes:Synthesis, characterization, crystal structures, and photophysical property [J]. Synth Met,2011,161:1276-1283
    [105]Deaton J C, Switalski S C, Kondakov D Y, et al. E-type delayed fluorescence of a phosphine-supported cu2(μ-nar2)2 diamond core:Harvesting singlet and triplet excitons in oleds[J]. J Am Chem Soc,2010,132:9499-9508
    [106]Hsu C-W, Lin C-C, Chung M-W, et al. Systematic investigation of the metal-structure-photophysics relationship of emissive d10-complexes of group 11 elements:The prospect of application in organic light emitting devices[J]. J Am Chem Soc,2011,133: 12085-12099
    [107]Hashimoto M, Igawa S, Yashima M, et al. Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(i) complexes [J]. J Am Chem Soc,2011,133: 10348-10351
    [108]Wang J, Wang R, Yang J, et al. First oxadiazole-functionalized terbium(iii) β-diketonate for organic electroluminescence[J]. J Am Chem Soc,2001,123:6179-6180
    [109]Sun M, Xin H, Wang K-Z, et al. Bright and monochromic red light-emitting electroluminescence devices based on a new multifunctional europium ternary complex[J]. Chem Commu,2003, 702-703
    [110]Liang F, Zhou Q, Cheng Y, et al. Oxadiazole-functionalized europium(iii) β-diketonate complex for efficient red electroluminescence[J]. Chem Mater,2003,15:1935-1937
    [111]Sun P-P, Duan J-P, Shih H-T, et al. Europium complex as a highly efficient red emitter in electroluminescent devices[J]. Appl Phy Lett,2002,81:792-794
    [112]Xu H, Yin K, Huang W. Highly improved electroluminescence from a series of novel euiii complexes with functional single-coordinate phosphine oxide ligands:Tuning the intramolecular energy transfer, morphology, and carrier injection ability of the complexes[J]. Chem Eur J,2007, 13:10281-10293
    [1]Chaskar A, Chen H-F, Wong K-T. Bipolar host materials:A chemical approach for highly efficient electrophosphorescent devices[J]. Adv Mater,2011,23:3876-3895
    [2]Xia H, Li M, Lu D, et al. Host selection and configuration design of electrophosphorescent devices[J]. Adv Func Mater,2007,17:1757-1764
    [3]Kim J H, Liu M S, Jen A K-Y, et al. Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter[J]. Appl Phy Lett,2003,83:776-778
    [4]Lamansky S, Kwong R C, Nugent M, et al. Molecularly doped polymer light emitting diodes utilizing phosphorescent pt(ii) and ir(iii) dopants[J]. Org Electron,2001,2:53-62
    [5]Zhao Z, Li J H, Lu P, et al. Fluorescent, carrier-trapping dopants for highly efficient single-layer polyfluorene leds[J]. Adv Func Mater,2007,17:2203-2210
    [6]Ono K, Yanase T, Ohkita M, et al. Synthesis and properties of 9,9′-diaryl-4,5-diazafluorenes. A new type of electron-transporting and hole-blocking material in el device [J]. Chemistry Letters,2004,33:276-277
    [7]Plater M J, Kemp S, Lattmann E. Heterocyclic free radicals. Part 1.4,5-diazafluorene derivatives of koelsch's free radical:An epr and metal-ion complexation study (?)(?)[J]. Journal of the Chemical Society, Perkin Transactions 1,2000,971-979
    [8]Krasnokutskaya E, Semenischeva N, Filimonov V, et al. A new, one-step, effective protocol for the iodination of aromatic and heterocyclic compounds via aprotic diazotization of amines[J]. Synthesis,2007,2007:81-84
    [9]Abashev Q Lebedev K, Osorgina I, et al. New 2,7-diiodo-9,9-disubstituted fluorene containing tetrathiafulvalene fragments[J]. Russian Journal of Organic Chemistry,2006,42:1873-1876
    [10]Krasnokutskaya E A, Semenischeva N I, Filimonov V D, et al. A new, one-step, effective protocol for the iodination of aromatic and heterocyclic compounds via aprotic diazotization of amines [J]. Synthesis,2007,2007:81~84
    [11]Wong K-T, Wang Z-J, Chien Y-Y, et al. Synthesis and properties of 9,9-diarylfluorene-based triaryldiamines[J]. Organic Letters,2001,3:2285-2288
    [12]Wong K-T, Chen H-F, Fang F-C. Novel spiro-configured pet chromophores incorporating 4,5-diazafluorene moiety as an electron acceptor[J]. Organic Letters,2006,8:3501-3504
    [13]Zheng C-J, Ye J, Lo M-F, et al. New ambipolar hosts based on carbazole and 4,5-diazafluorene units for highly efficient blue phosphorescent oleds with low efficiency roll-off[J]. Chem Mater, 2012,24:643-650
    [14]Hung W-Y, Wang T-C, Chiu H-C, et al. A spiro-configured ambipolar host material for impressively efficient single-layer green electrophosphorescent devices[J]. Phys Chem Chem Phys, 2010,12:10685-10687
    [15]Hung W-Y, Chi L-C, Chen W-J, et al. A carbazole-phenylbenzimidazole hybrid bipolar universal host for high efficiency rgb and white pholeds with high chromatic stability[J]. J Mater Chem,2011, 21:19249-19256
    [16]Luo Y, Aziz H. Correlation between triplet-triplet annihilation and electroluminescence efficiency in doped fluorescent organic light-emitting devices[J]. Adv Func Mater,2010,20:1285-1293
    [17]Gao Z Q, Mi B X, Tam H L, et al. High efficiency and small roll-off electrophosphorescence from a new iridium complex with well-matched energy levels[J]. Adv Mater,2008,20:774-778
    [18]Zhou G-J, Wong W-Y, Yao B, et al. Multifunctional metallophosphors with anti-triplet-triplet annihilation properties for solution-processable electroluminescent devices[J]. J Mater Chem,2008, 18:1799-1809
    [19]Wang S, Zhang J, Hou Y, et al.4,5-diaza-9,9[prime or minute]-spirobifluorene functionalized europium complex with efficient photo-and electro-luminescent properties [J]. J Mater Chem,2011, 21:7559-7561
    [20]Tang S, Li W, Shen F, et al. Highly efficient deep-blue electroluminescence based on the triphenylamine-cored and peripheral blue emitters with segregative homo-lumo characteristics [J]. J Mater Chem,2012,22:4401-4408
    [21]Ahmed E, Earmme T, Jenekhe S A. New solution-processable electron transport materials for highly efficient blue phosphorescent oleds[J]. Adv Func Mater,2011,21:3889-3899
    [1]Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature,1998,395:151-154
    [2]Adachi C, Baldo M A, Thompson M E, et al. Nearly 100%internal phosphorescence efficiency in an organic light-emitting device[J]. J Appl Phy,2001,90:5048-5051
    [3]Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phy Lett,1999,75:4-6
    [4]D'Andrade B W, Brooks J, Adamovich V, et al. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices[J]. Adv Mater,2002,14:1032-1036
    [5]D'Andrade B W, Thompson M E, Forrest S R. Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices[J]. Adv Mater,2002,14:147-151
    [6]Chang S-C, He G, Chen F-C, et al. Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes[J]. Appl Phy Lett,2001,79:2088-2090
    [7]Kwong R C, Sibley S, Dubovoy T, et al. Efficient, saturated red organic light emitting devices based on phosphorescent platinum(ⅱ) porphyrins[J]. Chem Mater,1999,11:3709-3713
    [8]Lu W, Mi B-X, Chan M C W, et al. [(c[caret]n[caret]n)pt(c[triple bond, length as m-dash]c)r] (hc[caret]n[caret]n= 6-aryl-2,2[prime or minute]-bipyridine, n= 1-4, r= aryl, sime3) as a new class of light-emitting materials and their applications in electrophosphorescent devices[J]. Chem Commu,2002,206-207
    [9]Gong X, Robinson M R, Ostrowski J C, et al. High-efficiency polymer-based electrophosphorescent devices[J]. Adv Mater,2002,14:581-585
    [10]Zhu W, Mo Y, Yuan M, et al. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes[J]. Appl Phy Lett,2002,80:2045-2047
    [11]Jiang X, Jen A K.-Y, Carlson B, et al. Red electrophosphorescence from osmium complexes[J]. Appl Phy Lett,2002,80:713-715
    [12]Carlson B, Phelan G D, Kaminsky W, et al. Divalent osmium complexes:(?) Synthesis, characterization, strong red phosphorescence, and electrophosphorescence[J]. J Am Chem Soc, 2002,124:14162-14172
    [13]Kim J H, Liu M S, Jen A K-Y, et al. Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter[J]. Appl Phy Lett,2003,83:776-778
    [14]Chan W K, Ng P K, Gong X, et al. Light-emitting multifunctional rhenium (ⅰ) and ruthenium (ⅱ) 2,2[sup [prime]]-bipyridyl complexes with bipolar character[J]. Appl Phy Lett,1999,75: 3920-3922
    [15]Gong X, Ng P K, Chan W K. Trifunctional light-emitting molecules based on rhenium and ruthenium bipyridine complexes[J]. Adv Mater,1998,10:1337-1340
    [16]Scaltrito D V, Thompson D W, O'Callaghan J A, et al. Mlct excited states of cuprous bis-phenanthroline coordination compounds[J]. Coor Chem Rev,2000,208:243-266
    [17]Armaroli N. Photoactive mono-and polynuclear cu()-phenanthrolines. A viable alternative to ru()-polypyridines?[J]. Chem Soc Rev,2001,30:113-124
    [18]McMillin D R, McNett K M. Photoprocesses of copper complexes that bind to DNA[J]. Chem Rev,1998,98:1201-1220
    [19]Buckner M T, McMillin D R. Photo luminescence from copper(ⅰ) complexes with low-lying metal-to-ligand charge transfer excited states[J]. Journal of the Chemical Society, Chemical Communications,1978,759-761
    [20]Rader R A, McMillin D R, Buckner M T, et al. Photostudies of 2,2'-bipyridine bis(triphenylphosphine)copper(1+),1,10-phenanthroline bis(triphenylphosphine)copper(1+), and 2,9-dimethyl-1,10-phenanthroline bis(triphenylphosphine)copper(1+) in solution and in rigid, low-temperature glasses. Simultaneous multiple emissions from intraligand and charge-transfer states[J]. J Am Chem Soc,1981,103:5906-5912
    [21]Kirchhoff J R, McMillin D R, Robinson W R, et al. Steric effects and the behavior of cu(nn)(pph3)2+systems in fluid solution. Crystal and molecular structures of [cu(dmp)(pph3)2]no3 and [cu(phen)(pph3)2]no3.1.5etoh[J]. Inorg Chem,1985,24:3928-3933
    [22]Palmer C E A, McMillin D R. Singlets, triplets, and exciplexes:Complex, temperature-dependent emissions from (2,9-dimethyl-1,10-phenanthroline)bis(triphenylphosphine)copper(1+) and (1,10-phenanthroline)(triphenylphosphine)copper(1+)[J]. Inorg Chem,1987,26:3837-3840
    [23]Cuttell D G, Kuang S-M, Fanwick P E, et al. Simple cu(i) complexes with unprecedented excited-state lifetimes [J]. J Am Chem Soc,2001,124:6-7
    [24]Kuang S-M, Cuttell D G, McMillin D R, et al. Synthesis and structural characterization of cu(i) and ni(ii) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand. Novel emission properties for the cu(i) species[J]. Inorg Chem,2002,41:3313-3322
    [25]Hashimoto M, Igawa S, Yashima M, et al. Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(i) complexes [J]. J Am Chem Soc,2011,133: 10348-10351
    [26]Zhang Q, Ding J, Cheng Y, et al. Novel heteroleptic cui complexes with tunable emission color for efficient phosphorescent light-emitting diodes[J]. Adv Func Mater,2007,17:2983-2990
    [27]Lotito K J, Peters J C. Efficient luminescence from easily prepared three-coordinate copper(i) arylamidophosphines[J]. Chem Commu,2010,46:3690-3692
    [28]McCormick T, Jia W-L, Wang S. Phosphorescent cu(i) complexes of 2-(2'-pyridylbenzimidazo]yl)benzene:Impact of phosphine ancillary ligands on electronic and photophysical properties of the cu(i) complexes[J]. Inorg Chem,2005,45:147-155
    [29]Zhang L, Li B, Su Z. Phosphorescence enhancement triggered by π stacking in solid-state [cu(n-n)(p-p)]bf4 complexes[J]. Langmuir,2009,25:2068-2074
    [30]Zhang Q, Zhou Q, Cheng Y, et al. Highly efficient green phosphorescent organic light-emitting diodes based on cui complexes[J]. Adv Mater,2004,16:432-436
    [1]Aziz H. Degradation mechanism of small molecule-based organic light-emitting devices[J]. Science, 1999,283:1900-1902
    [2]Zhang F, Hou Y, Du C, et al. Synthesis, structures, photo-and electro-luminescent properties of novel oxadiazole-functionlized europium(iii) benzamide complexes[J]. Dalton Trans,2009,7359
    [3]Sano T, Nishio Y, Hamada Y, et al. Design of conjugated molecular materials for optoelectronics[J]. J Mater Chem,2000,10:157-161
    [4]Wang P, Hong Z, Xie Z, et al. A bis-salicylaldiminato schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminescence devices[J]. Chem Commu,2003,1664-1665
    [5]Akine S, Taniguchi T, Nabeshima T. Novel synthetic approach to trinuclear 3d-4f complexes: Specific exchange of the central metal of a trinuclear zinc(ii) complex of a tetraoxime ligand with a lanthanide(iii) ion[J]. Angew Chem Int Ed,2002,41:4670-4673
    [6]Wang H, Zhang D, Ni Z-H, et al. Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller-and sandwich-like schiff-base complexes[J]. Inorg Chem,2009,48:5946-5956
    [7]Pasatoiu T D, Tiseanu C, Madalan A M, et al. Study of the luminescent and magnetic properties of a series of heterodinuclear [zniilniii] complexes[J]. Inorg Chem,2011,50:5879-5889
    [8]Wang S, Zhang J, Hou Y, et al.4,5-diaza-9,9[prime or minute]-spirobifluorene functionalized europium complex with efficient photo-and electro-luminescent properties [J]. J Mater Chem, 2011,21:7559-7561
    [9]Andreiadis E S, Demadrille R, Imbert D, et al. Remarkable tuning of the coordination and photophysical properties of lanthanide ions in a series of tetrazole-based complexes[J]. Chem Eur J,2009,15:9458-9476
    [10]Archer R D, Chen H, Thompson L C. Synthesis, characterization, and luminescence of europium(iii) schiff base complexes la[J]. Inorg Chem,1998,37:2089-2095
    [11]Shavaleev N M, Eliseeva S V, Scopelliti R, et al. Designing simple tridentate ligands for highly luminescent europium complexes[J]. Chem Eur J,2009,15:10790-10802
    [12]Ramya A R, Reddy M L P, Cowley A H, et al. Synthesis, crystal structure, and photoluminescence of homodinuclear lanthanide 4-(dibenzylamino)benzoate complexes[J]. Inorg Chem,2010,49: 2407-2415
    [13]Biju S, Raj D B A, Reddy M L P, et al. Synthesis, crystal structure, and luminescent properties of novel eu3+heterocyclic β-diketonate complexes with bidentate nitrogen donors[J]. Inorg Chem, 2006,45:10651-10660
    [14]Zhang F, Hou Y, Du C, et al. Synthesis, structures, photo-and electro-luminescent properties of novel oxadiazole-functionlized europium(iii) benzamide complexes [J]. Dalton Trans,2009, 7359-7367
    [15]Werts M H V, Jukes R T F, Verhoeven J W. The emission spectrum and the radiative lifetime of eu3+in luminescent lanthanide complexes[J]. Phys Chem Chem Phys,2002,4:1542-1548
    [16]Nie D, Chen Z, Bian Z, et al. Energy transfer pathways in the carbazole functionalized P-diketonate europium complexes[J]. New Journal of Chemistry,2007,31:1639
    [17]Pettinari C, Marchetti F, Pettinari R, et al. Synthesis, structure and luminescence properties of new rare earth metal complexes with 1-phenyl-3-methyl-4-acylpyrazol-5-ones[J].J Chem Soc, Dalton Trans,2002,1409
    [18]Latva M, Takalo H, Mukkala V-M, et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(iii) luminescence quantum yield[J]. J Lumin,1997,75:149-169
    [19]Pasatoiu T D, Madalan A M, Kumke M U, et al. Temperature switch of lmct role:From quenching to sensitization of europium emission in a znii-euiii binuclear complex[J]. Inorg Chem,2010,49: 2310-2315
    [20]Steemers F J, Verboom W, Reinhoudt D N, et al. New sensitizer-modified calix[4]arenes enabling near-uv excitation of complexed luminescent lanthanide ions[J]. J Am Chem Soc,1995,117: 9408-9414
    [21]Yang C, Fu L-M, Wang Y, et al. A highly luminescent europium complex showing visible-light-sensitized red emission:Direct observation of the singlet pathway [J]. Angew Chem Int Ed,2004,43:5010-5013
    [22]Xu H, Yin K, Huang W. Highly improved electroluminescence from a series of novel euiii complexes with functional single-coordinate phosphine oxide ligands:Tuning the intramolecular energy transfer, morphology, and carrier injection ability of the complexes[J]. Chem Eur J,2007, 13:10281-10293
    [23]Zhu X-H, Wang L-H, Ru J, et al. An efficient electroluminescent (2,2[prime or minute]-bipyridine mono n-oxide) europium(iii) [small beta]-diketonate complex[J]. J Mater Chem,2004,14: 2732-2734
    [24]Fang J, Ma D. Efficient red organic light-emitting devices based on a europium complex[J]. Appl Phy Lett,2003,83:4041
    [25]Xin Q, Li W L, Che G B, et al. Improved electroluminescent performances of europium-complex based devices by doping into electron-transporting/hole-blocking host[J], Appl Phy Lett,2006,89: 223524
    [26]Sun P-P, Duan J-P, Shih H-T, et al. Europium complex as a highly efficient red emitter in electroluminescent devices[J]. Appl Phy Lett,2002,81:792
    [27]Sun M, Xin H, Wang K-Z, et al. Bright and monochromic red light-emitting electroluminescence devices based on a new multifunctional europium ternary complex[J]. Chem Commu,2003, 702-703
    [28]Xu H, Yin K, Huang W. Comparison of the electrochemical and luminescence properties of two carbazole-based phosphine oxide euiiicomplexes:Effect of different bipolar ligand structures[J]. ChemPhysChem,2008,9:1752-1760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700