协同提高冬小麦籽粒产量和氮素利用率的群体构建途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2010–2011和2011–2012生育季在山东省泰安市大汶口镇东武村试验田进行,试验采用大穗型冬小麦品种泰农18(T18)和多穗型品种山农15(S15)为供试材料,设置早播(10月1日)、传统播期(10月8日)和适当晚播(10月15日)三个播期处理,每播期分别设置四个种植密度(T18为135、270、405和540株m–2,S15为90、172.5、345和517.5株m–2),研究了种植密度和播期对冬小麦籽粒产量、氮素吸收和利用、茎秆抗倒性能的影响以及冬小麦籽粒产量和氮素利用率协同提高的群体构建途径。研究结果如下:
     种植密度显著影响冬小麦籽粒产量、氮素利用率、氮素吸收效率和氮素利用效率,播期对籽粒产量和氮素利用率无显著影响,但显著影响氮素吸收效率和氮素利用效率,种植密度和播期互作效应对籽粒产量、氮素利用率、氮素吸收效率和氮素利用效率的影响均未达显著水平。种植密度和播期显著影响冬小麦茎秆抗倒指数,且两者存在显著的互作效应。
     1种植密度对冬小麦籽粒产量和氮素利用率的影响
     提高种植密度显著降低了单株分蘖数和单株成穗数,但提高了群体分蘖数和叶面积指数。将T18和S15的种植密度分别由135提高至405株m–2和由90提高至172.5或345株m–2时均可显著提高单位面积穗数,虽然穗粒数和粒重略有降低,但其降低幅度远小于单位面积穗数增加幅度,从而提高冬小麦籽粒产量。提高种植密度显著提高了冬小麦成熟期干物质积累量,但收获指数略有降低,表明高密度处理干物质向籽粒的分配比例降低,提高种植密度主要是通过提高干物质生产能力提高了籽粒产量。
     提高种植密度虽然降低了单株次生根数和单株总根数,但群体次生根数和群体根总根数仍呈上升趋势。提高种植密度显著提高了冬小麦各土层中的根长密度,有利于植株养分吸收。利用稳定性同位素15N的标记试验表明,将T18和S15的种植密度分别由135提高至405株m–2和由90提高至172.5或345株m–2时可显著提高冬小麦对不同土层中氮素的吸收,且下层15N吸收增加量显著高于上层土壤,表明下层土壤中增加根长密度对氮素吸收的促进作用优于上层土壤。提高种植密度通过促进冬小麦对肥料氮和土壤氮的吸收,提高成熟期地上部氮素积累量,从而提高氮素吸收效率。
     高密度处理的单位面积籽粒氮素积累量相对于最低种植密度增加的比例显著低于地上部氮素积累量增加的比例,从而降低了氮素收获指数,表明高密度处理降低了氮素向籽粒的分配比例。增加种植密度显著提高了平均到单个籽粒的根条数和根长,提高了向单个籽粒的氮素供应能力,并且降低了籽粒粒重,从而提高了籽粒氮素含量。降低的氮素收获指数和提高的籽粒氮素含量共同降低了氮素利用效率,表明高密度处理利用所吸收的氮素进行籽粒生产的能力有所下降,提高种植密度提高了生产百公斤籽粒所需氮素。
     在本试验条件下,将T18和S15的种植密度分别由135提高至405株m–2和由90提高至172.5或345株m–2时氮素吸收效率提高的幅度显著高于氮素利用效率降低的幅度,从而提高了氮素利用率。氮素利用率与氮素吸收效率以及籽粒产量、氮素利用率、氮素吸收效率与地上部氮素积累量间均呈显著正相关关系,表明提高种植密度通过提高根长密度,促进冬小麦对肥料氮和土壤氮吸收,提高地上部氮素积累量实现了籽粒产量和氮素利用率的协同提高。
     2播期对冬小麦籽粒产量和氮素利用率的影响
     播期对冬小麦生长状况的影响在越冬期和拔节期较为显著,随着生育进程的推进,各播期间差异逐渐减小。虽然早播处理的单株分蘖数、群体大小、叶面积指数和干物质积累量在生育前期(越冬期和/或拔节期)与传统播期差异显著,但在孕穗期之后两播期的群体再无明显差异;晚播条件下积温较低,其单株分蘖数、群体大小、叶面积指数和干物质积累量在生育前期与传统播期差异较大,但随着生育期的推进,两播期之间的差异逐渐减小,并且从开花至成熟晚播处理的干物质积累量可维持与传统播期相当的水平。
     在本试验条件下,冬小麦的单位面积穗数、穗粒数和粒重在早播和传统播期间均无显著差异,所以两播期获得了相当水平的籽粒产量。适当晚播条件下,虽然单位面积穗数显著低于传统播期处理,但其穗粒数显著高于传统播期,两者可相互弥补从而维持冬小麦单位面积粒数,并且晚播条件下籽粒粒重与传统播期均无显著差异,所以晚播处理的籽粒产量仍可维持与传统播期相当的水平。收获指数在早播、传统播期和晚播处理间均无显著差异,表明播期并未影响冬小麦向籽粒分配干物质的能力。
     虽然早播在越冬期和拔节期的群体根条数、根长和地上部氮素积累量显著高于传统播期,但各指标从孕穗至成熟再无显著差异,所以氮素吸收效率在早播和传统播期间水平相当。晚播减少了全生育期单株次生根数、单株总根数和群体次生根数、群体总根数,降低了冬小麦各土层根长密度,降低了植株对土壤氮的吸收量,虽然肥料氮的吸收量并未受到显著影响(2010–2011),甚至略高于传统播期处理(2011–2012),但成熟期地上部氮素积累量显著低于传统播期处理,从而降低了冬小麦氮素吸收效率。
     氮素收获指数在早播、传统播期和晚播间无显著差异,表明播期并未影响氮素向籽粒分配的比例。籽粒氮素含量在早播和传统播期间亦无显著差异,所以氮素利用效率在早播和传统播期间水平相当,但晚播降低了籽粒氮素含量从而提高了氮素利用效率。表明晚播处理利用吸收的氮素进行籽粒生产的能力高于早播和传统播期处理,晚播条件下生产百公斤籽粒所需氮素显著下降。
     在本试验条件下,晚播与传统播期间氮素吸收效率降低的幅度和氮素利用效率提高的幅度可相互弥补,从而在晚播条件下维持与传统播期相当水平的氮素利用率。
     3种植密度和播期对冬小麦抗倒性能的影响
     在本试验条件下,冬小麦重心高度与植株株高、基部节间长呈显著正相关关系,茎秆基部节间机械强度与基部节间直径、壁厚、干重和充实度呈显著正相关关系,茎秆抗倒指数与茎秆株高、基部节间长、重心高度呈显著负相关关系,与基部节间直径、壁厚、干重、充实度和机械强度呈显著正相关关系。
     提高种植密度显著提高了冬小麦株高和基部节间长,从而导致灌浆中后期(T18)或灌浆后期(S15)茎秆重心高度上移;提高种植密度亦降低了基部节间直径、壁厚、干重和充实度,从而降低了茎秆机械强度;因此提高种植密度降低了冬小麦茎秆抗倒指数,增加了花后群体倒伏的风险。
     在早播和传统播期间冬小麦茎秆抗倒指数、重心高度和机械强度及各相关指标均无显著差异,但其抗倒能力均低于晚播处理。晚播可降低冬小麦株高、基部节间长,从而降低灌浆中后期茎秆重心高度,并可提高基部节间直径、壁厚、干重和充实度,提高茎秆机械强度,因此晚播可提高冬小麦茎秆抗倒指数,降低花后群体倒伏的风险。
     种植密度与播期对冬小麦茎秆抗倒性能影响的互作效应主要体现在早播高密度处理组合抗倒能力最低,而晚播低密度处理组合抗倒能力最高。而更重要的是,对于T18和S15获得最高籽粒产量和氮素利用率的405株m–2和172.5、345株m–2种植密度而言,其植株株高、基部节间长和重心高度可以达到甚至低于较低种植密度在早播或传统播期条件下的指标数值,基部节间直径、壁厚、干重、充实度和机械强度可以达到甚至高于较低种植密度在早播或传统播期条件下的指标数值,因此,获得最高籽粒产量和氮素利用率的种植密度在晚播条件下的抗倒能力可达到甚至高于较低的种植密度在早播和传统播期条件下的抗倒能力,即提高种植密度后降低的抗倒能力可通过晚播进行弥补,从而获得较高的抗倒能力,确保高产、稳产。
     综合分析种植密度和播期对冬小麦籽粒产量、氮素吸收和利用及群体抗倒能力的影响,表明晚播增密栽培技术可实现协同提高冬小麦籽粒产量和氮素利用率的群体构建。在本试验地区,T18以405株m–2、S15以172.5或345株m–2的种植密度结合10月15日的适当晚播是冬小麦高产、高效、稳产栽培的群体构建模式。
The field experiments were carried out in2010–2011and2011–2012at the experimentalstation of Dongwu Village, in Dawenkou Town, Daiyue District, Tai’an, Shandong, P.R.China. Two widely planted cultivars, Tainong18(a cultivar with bigger ears and lowertillering capacity) and Shannong15(a cultivar with middle–sized ears and higher tilleringcapacity), were selected as the experimental materials (henceforth referred to as “T18” and“S15”, respectively). The winter wheat were sown on three dates (early sowing on1October,conventional sowing on8October and delayed sowing on15October) and plant densities of135,270,405and540plants m–2were designed for T18, and90,172.5,345and517.5plantsm–2were used for S15. The responses of grain yield, nitrogen (N) use efficiency (NUE), Nuptake efficiency (UPE), N utilization efficiency (UTE) and lodging resistance to plantdensity and sowing date were investigated. The main results are shown as follows:
     The effect of plant density was significant on the grain yield, NUE, UPE and UTE. Sowingdate had no effect on the grain yield and NUE but significantly affected UPE and UTE. Theinteraction of plant density and sowing date was not significant on the grain yield, NUE, UPEand UTE. The effects of plant density, sowing date and their interaction were significant onthe culm lodging resistance index.
     1. The grain yield and nitrogen use efficiency as affected by plan density
     Increasing plant density significantly decreased tillers per plant and spikes per plant butincreased total tillers per unit area and the leaf area index (LAI). Wheat yield componentsshowed compensatory relation in response to plant density changes. Increasing plant densityfrom135to405plants m–2for the cultivar T18or from90to172.5or345plants m–2for thecultivar S15significantly increased spikes per unit area but also decreased kernels per spikeand kernel weight. The increases of spikes per unit area for each cultivar were much higherthan the decreases of kernels per spike and kernel weight. Therefore, the grain yield was improved. The dry matter accumulation at maturity was significantly increased as the plantdensity was increased, while the harvest index was decreased. That indicated that higher plantdensity had a lower efficiency in dry matter partitioning to grain and increasing plant densityincreased grain yield mainly through increasing dry matter production.
     Although the nodal roots number and total roots number per plant significantly decreased,the total nodal roots number and total roots number per unit area trended to increase withplant density increasing. Significant synchronous increases in absorbed N from fertilizer (Nf)and soil (Ns) and significant root length density (RLD) and15N uptake increases at each soildepth were observed as the plant density increased from135to405plants m–2for the cultivarT18or from90to172.5or345plants m–2for the cultivar S15. Furthermore, the increasedRLD in deep soil had greater effects on N uptake than RLD increase in top soil. Increasingplant density enhanced N uptake of winter wheat and therefore increased above–ground Nuptake (AGN) and UPE.
     A relatively lower percentage of increase in N accumulation in grain than that in AGN withhigher plant density accounted for reduced N harvest index (NHI), indicating a lowerefficiency in N partitioning to grain with higher plant density and if higher N accumulation ingrain is required, much higher AGN is needed to ensure the N partitioning to grain. Increasingplant density significantly increased grain N concentration (GNC) mainly due to the increasein roots number per grain and root length per grain and reduction in kernel weight. Thereduced NHI and increased GNC together caused decreases in UTE with increased plantdensity. This indicated that higher plant density decreased the capacity of grain production perunit AGN and the required N for production of per unit yield was significantly increased withplant density increasing.
     The increase in UPE could compensate and exceed the reduction in UTE and a higher NUEwas achieved as the plant density increased from135to405plants m–2for the cultivar T18orfrom90to172.5or345plants m–2for the cultivar S15. Significantly positive correlationbetween NUE and UPE, and between grain yield, NUE, UPE and AGN indicated thatincreasing the plant density of winter wheat synchronously improved grain yield and NUEmainly through raising UPE due to the increased AGN as a result of increased RLD and asynchronous increase in Nfand Ns.
     2. The grain yield and nitrogen use efficiency as affected by sowing date
     Significant effect of sowing date on the winter wheat growth status was observed atwintering and jointing. With the advance of growing stages, the differences between sowingdates trended to decrease. Early sowing grew higher tillers per plant and per unit area, LAI and dry matter accumulation than conventional sowing at wintering and/or jointing, but nodifferences were observed after booting. Late sowing had lower accumulated temperature andtherefore significant lower tiller per plant and per unit area, LAI and dry matter accumulationwere observed compared to the conventional sowing. However, with the advance of growingstages, these differences were gradually reduced. Equivalent dry matter accumulation wasobserved between conventional and late sowing after anthsis.
     In present study, the grain yield at different sowing dates was equivalent for each cultivar.Early and conventional sowing showed equivalent grain yield mainly because of equivalentyield components. Compared with the early and conventional sowing, the maintenance ofgrain yield with late sowing was essential due to the maintenance of kernel weight andkernels per unit area owing to the trade–off relationship between the decrease in the spikes perunit area and the increase in the kernels per spike. Equal harvest indices were obtained duringthree sowing dates, indicating that sowing date did not affect the efficiency in dry matterpartitioning to grain.
     Equal NUE was observed among early, conventional and late sowing. Early sowingresulted in higher roots number and root length per unit area and AGN at wintering andjointing than that in conventional sowing. However, no significant differences in these indiceswere observed after booting. Therefore UPE was equivalent between early and conventionalsowing. The nodal roots number per plant and per unit area and the total roots number perplant and per unit area were significantly decreased with late sowing in the whole growingseason, and so was the RLD at each soil depth. Late sowing reduced the uptake of Nsbutshowed no significant effect on the uptake of Nf(2010–2011) or even increased it(2011–2012), although the AGN was significantly reduced. Late sowing decreased UPEowing to the reduced AGN.
     Equal NHIs were obtained among early, conventional and late sowing, suggesting thatsowing date did not affect efficiency of winter wheat in N partitioning to grain. EquivalentGNC between early and conventional sowing resulted in equivalent UTE, whereassignificantly lower GNC was observed with late sowing, and consequently resulted in higherUTE compared that with conventional sowing. These demonstrated that late sowing increasedthe capacity of grain production per unit AGN and the required N for production of per unityield was significantly decreased.
     In present study, the increment in the UTE offset the reduction in the UPE with late sowing,and consequently, and equivalent NUE was observed among early, conventional and latesowing.
     3. The lodging resistance as affected by plant density and sowing date
     In present study, the culm height at the center of gravity (CHCG) was positively related tothe plant height and the length of base internode. The culm mechanical strength (CMS) ofbase internode was positively related to its diameter, wall thickness, dry weight and fillingdegree. The culm lodging resistance index (CLRI) was negatively related to the plant height,the length of base internode and CHCG, and positively related to the diameter, wall thickness,dry weight, filling degree and CMS of the base internode.
     Increasing plant density increased CHCG at mid and late filling (T18) or late filling (S15)through increasing plant height and the length of base internode, and also reduced the CMS ofthe base internode through decreasing its diameter, wall thickness, dry weight and fillingdegree. Consequently, increasing plant density significantly decreased the CLRI of winterwheat and increased the risk of lodging.
     Early and conventional sowing resulted in no significant differences in the CLRI, CHCGand CMS of winter wheat and relative indices associated with lodging resistance. Late sowingsignificantly increased lodging resistance and optimized the relative indices associated withlodging resistance. Compared with early and conventional sowing, late sowing significantlydecreased the CHCG through decreasing plant height and the length of base internode, andalso improved the CMS of the base internode through improving its diameter, wall thickness,dry weight and filling degree. Consequently, late sowing significantly improved the CLRI ofwinter wheat and reduced the risk of lodging.
     The effect of the interaction between plant density and sowing date existed in the highestlodging resistance under a combination of late sowing with the lowest plant density and thelowest lodging resistance under a combination of early or conventional sowing with thehighest plant density. Furthermore, the values of plant height, the length of base internode andthe CHCG of the highest yielding and NUE plant densities of405plants m–2for the cultivarT18and172.5or345plants m–2for the cultivar S15with late sowing could be optimized tothe equivalent or even lower levels which were observed with relatively lower plant density atearly or conventional sowing. The values of the diameter, wall thickness, dry weight, fillingdegree and CMS of the base internode and the CLRI of the highest yielding and NUE plantdensities could be optimized to the equivalent or even higher levels which were observed withrelatively lower plant density at early or conventional sowing. Namely, the reduction inlodging resistance through increasing plant density could be compensated through sowing latewhile maintaining equivalent grain yield and NUE.
     The comprehensive analysis about the effects of plant density and sowing date on the grain yield, N uptake and utilization and lodging resistance indicated that sowing late withhigh plant density could be used to regulate the community structure for synchronouslyimproving grain yield and NUE. In the target region, sowing on15October with relativelyhigh plant density (e.g. plant densities of405plants m–2for the cultivar T18and172.5or345plants m–2for the cultivar S15) represents a compromise for achieving high grain yield, highNUE and high lodging resistance in winter wheat production.
引文
白洪立,孟淑华,王立功,王西芝,李继海,徐炜.积温变迁对冬小麦夏玉米一年两熟播期的影响[J].作物杂志,2009,3:55–58
    蔡祖聪,颜晓元,朱兆良.立足于解决高投入条件下的氮污染问题[J].植物营养与肥料学报,2014,20(1):1–6
    曹倩,贺明荣,代兴龙,门洪文,王成雨.密度、氮肥互作对小麦产量及氮素利用效率的影响[J].植物营养与肥料学报,2011,17(4):815–822
    陈晓光,王振林,彭佃亮,李勇,蔡铁,王平,陈二影.种植密度和喷施多效唑对冬小麦抗倒伏能力和产量的影响[J].应用生态学报,2011,22(6):1465–1470
    陈晓光,石玉华,王成雨,尹燕枰,宁堂原,史春余,李勇,王振林.氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J].中国农业科学,2011,44(17):3529–3526
    陈英慧.气候变化对河南南部冬小麦播种期的影响[J].气象,2005,31(10):83–85
    冯波,孔令安,张宾,司纪升,李升东,王法宏.施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响[J].作物学报,2012,38(6):1107–1114
    付雪丽,张惠,贾继增,杜立丰,付金东,赵明.冬小麦–夏玉米“双晚”种植模式的产量形成及资源效率研究[J].作物学报,2009,35(9):1708–1714
    高海涛,王育红,孟战赢,席玲玲,段国辉,温红霞.小麦–玉米双晚种植对周年产量和资源利用的影响[J].麦类作物学报,2012,32(6):1102–1106
    高亚军,李云,李生秀,强秦,曹卫贤,刘文国,张建昌,党占平,刘金海.旱地小麦不同栽培条件对土壤硝态氮残留的影响[J].生态学报,2005,25(11):2901–2910
    谷冬艳,尹钧,刘建国,杨宗渠,李金才,屈会娟.播期对不同穗型小麦品种群体动态及部分光合性能的影响[J].安徽农学通报,2007,13(7):123–127
    郭翠花,高志强,苗果园.不同产量水平下小麦倒伏与茎秆力学特性的关系[J].农业工程学报,2010,26(3):151–155
    韩金玲,杨晴,王文颇,李彦生,周印富.播期对冬小麦茎蘖幼穗分化及产量的影响[J].麦类作物学报,2011,31(2):303–307
    胡敏,贺德先,蒋向,杨习文.不同研究方式和方法对小麦根系活力及根质量测量准确度的影响[J].华北农学报,2012,27(增刊):127–130
    姜佰文,戴建军.土壤肥料学实验[M].北京大学出版社.北京,2013.1
    孔丽红,赵玉路,周福平.简述小麦干物质积累运转与高产的关系[J].山西农业科学,2007,35(8):6–8
    李德全,孟庆伟,高辉远.植物生理学[M].北京:中国农业科学技术出版社,1999.12
    李金才,尹钧,魏凤珍.播种密度对冬小麦茎秆形态特征和抗倒指数的影响[J].2005,31(5):662–666
    李筠,王龙,任立凯,刘耀鸿,曹卫星,戴廷波.播期、密度和氮肥运筹对冬小麦连麦2号产量与品质的调控[J].麦类作物学报,2010,30(2):303–308
    李宁,段留生,李建民,翟志席,李召虎.播期和密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响[J].麦类作物学报,2010,30(2):296–302
    李强,王朝辉,戴健,李富翠,李孟华,赵护兵,曹群虎.氮肥调控与地表覆盖对旱地冬小麦氮素吸收及残留淋失的影响[J].中国农业科学,2013,46(7):1380–1389
    李强,王朝辉,李富翠,戴健,李孟华,何刚,曹群虎,段长林,鱼昌为.氮肥管理与地表覆盖对旱地冬小麦产量和氮素利用效率的影响[J].作物学报,2014,40(1):93–100
    李巧云,年力,刘万代,李磊,周苏玫,尹钧.冬前积温对河南省小麦冬前生长发育的影响[J].中国农业气象,2010,31(4):563–569
    凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    刘殿英.种植密度对冬小麦根系的影响[J].山东农业大学学报,1987,18(3):29–35
    刘殿英,董庆裕,赵秉强.播种期对冬小麦根系、根活力及其根苗关系的影响[J].山东农业大学学报,1992,23(4):358–362
    刘殿英,石立岩,黄炳茹,董庆裕.栽培措施对冬小麦根系及其活力和植株性状的影响[J].中国农业科学,1993,25(6):51–56
    刘丽平,欧阳竹,武兰芳,孙振中.灌溉模式对不同密度小麦群体质量和产量的影响[J].麦类作物学报,2011,31(6):1116–1122
    刘月娥,谢瑞芝,张厚宝,李少昆,高世菊.不同生态区玉米适时晚收增产效果[J].中国农业科学,2010,43(13):2820–2828
    马冬云,郭天财,查飞娜,王晨阳,朱云集,王永华.种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响[J].作物学报,2007,33(3):514–517
    马青荣,成林,杨光仙.基于分期播种试验的小麦越冬前适宜指标探讨[J].气象与环境学报,2011,34(4):63–67
    马元喜.小麦的根[M].北京:中国农业出版社,1999.10
    马元喜,王晨阳,周继泽.小麦根系主要生态效应的研究[J].河南农业大学学报,1994,28(1):12–18
    门洪文,张秋,代兴龙,曹倩,王成雨,周晓虎,贺明荣.不同灌水模式对冬小麦籽粒产量和水、氮利用效率的影响[J].应用生态学报,2011,22(10):2517–2523
    苗果园,张云亭,尹钧,侯跃生.黄土高原旱地冬小麦根系生长规律的研究[J].作物学报,1989,15(2):104–115
    沈学善,李金才,屈会娟,魏凤珍,王成雨.种植密度对晚播冬小麦氮素同化积累分配及利用效率的影响[J].中国农业大学学报,2009,14(4):41–46
    师学珍,郭君丽,杨相甫.播种期和种植密度对豫麦49分蘖动态及产量的影响[J].贵州农业科学,2012,40(12):55–57
    田文仲,温红霞,高海涛,杨洪强,余四平,段国辉,张少澜.不同播期、播种密度及其互作对小麦产量的影响[J].河南农业科学,2011,40(2):45–49
    王成雨,代兴龙,石玉华,曹倩,门洪文,贺明荣.花后小麦叶面积指数与光合和产量关系的研究[J].植物营养与肥料学报,2012a,18(1):27–34
    王成雨,代兴龙,石玉华,王振林,陈晓光,贺明荣.氮肥水平和种植密度对冬小麦茎秆抗倒性能的影响[J].作物学报,2012b,38(1):121–128
    王东,桑晓光,周杰,满建国,谷淑波,王杰,相昌芬,鹿莹.不同类型冬小麦氮、硫积累分配及利用效率的差异[J].中国农业科学,2010,43(22):4587–4597
    王树丽,贺明荣,代兴龙,周晓虎.种植密度对冬小麦氮素吸收利用和分配的影响[J].中国生态农业学报,2012,20(10):1276–1281
    王夏,胡新,孙忠富,杜克明,宋广树,任德超.不同播期和播量对小麦群体形状和产量的影响[J].中国农学通报,2011,27(21):170–176
    王小燕,于振文.大穗型和中穗型小麦品种光合特性的差异及其与粒重和产量的关系[J].西北植物学报,2005,36(10):1976–1982
    魏凤珍,李金才,王成雨,屈会娟,沈学善.氮肥运筹模式对小麦茎秆抗倒性能的影响[J].作物学报,2008,34(6):1080–1085
    温红霞,吴少辉,段国辉,张学品,余四平,王艳芳,杨洪强.播期对不同习性小麦品种分蘖成穗规律的影响[J].河南农业科学,2007,3:37–38
    武金铭.不同播期对冬小麦主要性状的影响[J].河北农业科学,1995,(3):12–14.
    许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511–516
    薛香,郜庆炉,高平.播期和密度对百农矮抗58产量及产量构成因素的影响[J].农业科技通讯,2010,(3):45–47
    闫翠萍,张永清,张定一,党建友.播期和种植密度对强、中筋小麦蛋白质组分及品质性状的影响[J].应用生态学报,2008,19(8):1733–1740
    闫小珍,张随贤,苗国柱,黄克磊.小麦发育期对冬季积温变化的相应分析[J].气象与环境科学,2009,32(4):37–39
    杨桂霞,赵广才,许轲,常旭虹,杨玉双,马少康,丰明,徐凤娇.播期和密度对冬小麦籽粒产量和营养品质及生理指标的影响[J].麦类作物学报,2010,30(4):687–692
    杨剑虹,王成林,代亨林.土壤农化分析与环境监测[M].北京,中国大地出版社,2008.3
    杨勇,郭文善,朱新开,封超年,彭永欣.晚播冬小麦高产吸肥特性的研究[J].扬州大学学报(农业与生命科学版),2002,23(3):56–60
    余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006.11
    于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2007
    于振文.作物栽培学各论:北方本[M].北京:中国农业出版社,2003
    张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915–924
    张金宝,秦霞,孙佩贤,胡根海,曹银萍.黄淮麦区种植密度对晚播冬小麦花后氮素代谢利用率的影响[J].西北农林科技大学(自然科学版),2012,38(12):112–122
    张丽娟,巨晓棠,文宏达,夏晓平,刘慧.土壤剖面不同土层硝态氮植物利用及运移规律研究[J].植物营养与肥料学报,2010,16(1):82–91
    张丽娟,巨晓棠,张福锁,毕淑芹,高强.小麦各生育期对土壤不同深度标记硝态氮的利用[J].中国农业科学,2005,38(11):2261–2267
    张丽娟,巨晓棠,张福锁,彭正萍.土壤剖面不同层次标记硝态氮的运移及其后效[J].中国农业科学,2007,40(9):1964–1972
    张敏,王岩岩,蔡瑞国,李婧实,王文颇,周印富,李彦生,杨树宗.播期推迟对冬小麦产量形成和籽粒品质的调控效应[J].麦类作物学报,2013,33(2):325–330
    张向前,杜世州,曹承富,乔玉强,赵竹,赵耀兰.播期对冬小麦群体形状、产量和叶绿素荧光特性的影响[J].麦类作物学报,2013,34(1):71–77
    赵广才,常旭虹,杨玉双,李振华,于广军,李辉利.冬小麦高产高效应变栽培技术研究[J].麦类作物学报,2009,29(4):690–695
    赵永萍,张保军,张正茂,朱翠林,王玉玲,韩思明.种植密度对冬小麦产量及产量构成因素的影响[J].西北农业学报,2009,18(6):107–111
    朱新开,郭文善,封超年,彭永欣,凌启鸿.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报,2005,11(2):148–154
    Ainsworth, E.A., Ort, D.R. How do we improve crop production in a warming world?[J]Plant Physiol.,2010,154:526–530
    Alignan, M., Roche, J., Bouniols, A., Cerny, M., Mouloungui, Z., Merah, O. Effects ofgenotype and sowing date on phytostanol–phytosterol content and agronomic traits inwheat under organic agriculture [J]. Food Chem.,2009,117:219–225
    Anderson, W.K., Smith, W.R. Yield advantage of two semi–dwarf compared with two tallwheats depends on sowing time [J]. Aust. J. Agric. Res.,1990,41:811–826
    Andrews, C.J., Pomeroy, M.K., Seaman, W.L., Hoekstra, G. Planting dates and seeding ratesfor soft white winter wheat in eastern Ontario [J]. Can. J. Plant Sci.,1992,72:391–402
    Araki, H., Iijima M. Deep rooting in winter wheat: rooting nodes of deep roots in twocultivars with deep and shallow root systems [J]. Plant Prod. Sci.,4(3):215–219
    Arduini, I., Masoni, A., Ercoli, L., Mariotti, M. Grain yield, and dry matter and nitrogenaccumulation and remobilization in durum wheat as affected by variety and seeding rate[J]. Eur. J. Agron.,2006,25:309–318
    Asseng, S., Richter, C., Wessolek, G. Modeling root growth of wheat as the linkage betweencrop and soil [J]. Plant Soil,1997,190:267–277
    Austin, R.B., Bingham, J., Blackwell, R.D., Evans, L.T., Ford, M.A., Morgan, C.L., Taylor, M.Genetic improvements in winter wheat yield since1900and associated physiologicalchanges [J]. J. Agric. Sci. Camb.,1980,94:675–689
    Austin, R.B., Jones, H.G. The physiology of wheat. Annu. Report. Plant Breed. Inst.,Cambridge, pp.327–355
    Baker C.J., Berry P.M., Spink J.H., Sylvester–Bradley R., Griffin J.M., Scott R.K., Clare R.W.A method for the assessment of the risk of wheat lodging [J]. J. Theor. Biol.,1998,194:587–603
    Barraclough, P.B. The growth and activity of winter wheat roots in the field: nutrient uptakesof high–yielding crops [J]. J. Agric. Sci. Camb.,1986,106:45–52
    Barraclough, P.B., Howarth, J.R., Jones, J., Lopez–Bellido, R., Parmar, S., Shepherd, C.E.,Hawkesford, M.J. Nitrogen efficiency of wheat: genotypic and environmental variationand prospects for improvement [J]. Eur. J. Agron.,2010,33:1–11
    Barraclough, P.B., Leigh, R.A. The growth and activity of winter wheat roots in the field: theeffect of sowing date and soil type on root growth of high–yielding crops [J]. J. Agri. Sci.Camb.,1984,103:59–74
    Benesch, R., Mangelsdorf, P. A method for the colorimetric determination of ammonia inseawater [J]. Helgol nder Wiss Meeresunters.,1972,23:365–375
    Berry. P.M., Griffin J.M., Sylvester–Bradley, R., Scott R.K., Spink J.H., Baker C.J., ClareR.W. Controlling plant form through husbandry to minimize lodging in wheat [J]. FieldCrops Res.,2000,67:59–81
    Berry P.M., Sterling M., Baker C.J., Spink J., Sparkes D.L. A calibrated model of wheatlodging compared with field measurements [J]. Agri. Forest Meteorol.,2003,119:167–180
    Berry P.M., Sterling M., Spink J.H., Baker C.J., Sylvester–Bradley R., Mooney S.J., TamsA.R., Ennos A.R. Understanding and reducing lodging in cereals [J]. Adv. Agron.,2004,84:217–271
    Blankenau, K., Olfs, H.W. Effect of different crop densities of winter wheat on recovery ofnitrogen in crop and soil with in the growth period [J]. J. Agron. Crop Sci.,2001,186:151–156
    Brancourt–Hulmel, M., Doussinault, G., Lecomte, C., Bérard, P., Le Buanec, B., Trottet, M.Genetic improvement of agronomic traits of winter wheat cultivars released in Francefrom1946to1992[J]. Crop Sci.,2003,43:37–45
    Campbell, C.A., Selles, F., Zentner, R.P., De Jong, R., Lemke, R., Hamel, C. Nitrate leachingin the semiarid prairie: Effect of cropping frequency, crop type and fertilizer after37years [J]. Can. J. Soil. Sci.,2006,86:701–710
    Cao, W., Moss, D.N. Sensitivity of winter wheat phyllochron to environmental changes [J].Agron. J.,1994,86:63–66
    Carr, P.M., Horsley, R.D., Poland, W.W. Tillage and seeding rate effects on wheat cultivars: I.grain production [J]. Crop Sci.,2003,43:202–209
    Chen, C., Neill, K., Wichman, D., Westcott, M. Hard red spring wheat response to rowspacing, seeding rate and nitrogen [J]. Agron. J.,2008,100:1296–1302
    Chen, X.P., Zhang, F., R mheld, V., Horlacher, D., Schulz, R., B ning–Zilkens, M., Wang, P.and Claupein, W. Synchronizing N supply from soil and fertilizer and N demand ofwinter wheat by an improved Nmin method [J]. Nutr. Cyc. Agroecosys.,2006,74:91–98
    Clarkson, D.T. Regulation of the absorption and release of nitrate by plant cells: A review ofcurrent ideas and methodology. In: Lambers, H., Neeteson, J.J., Stulen, I.(eds.)Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants.Developments in plant and soil sciences [M]. Martinus Nijhoff Publisher, Dordrecht,1986, Vol19, pp.3–27
    Crook, M.J., Ennos, A.R. The effect of nitrogen and growth regulators on stem and rootcharacteristics associated with lodging in two cultivars of winter wheat [J]. J. Exp. Bot.,1995,46,931–938
    Cui, Z., Dou, Z., Chen, X., Ju, X., Zhang, F. Managing agricultural nutrients for food securityin China: past, present and future [J]. Agron. J.,2014,106:191–198
    Cui, Z., Chen, X., Li, J., Xu, J., Shi, L., Zhang, F. Effect of N fertilization on grain yield ofwinter wehat and appaerent N losses [J]. Pdosphere,2006,16(6):806–812
    Cui, Z., Zhang, F., Chen, X., Miao, Y., Li, J., Shi, L., Xu, J., Ye, Y., Liu, C., Yang, Z., Zhang,Q., Huang, S. and Bao, D. On–farm evaluation of an in–season nitrogen managementstrategy based on soil Nmin test [J]. Field Crops Res.,2008,105:48–55
    Daigger, L.A., Sander, D.H. Nitrogen availability to wheat as affected by depth of nitrogenplacement [J]. Agron. J.,1976,68:524–526
    Darwinkel, A., Tanhag, B.A., Kuizenga, J. Effect of sowing date and seed rate on cropdevelopment and grain production of winter wheat [J]. Neth. J. Agric. Sci.,1977,25:83–93
    Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T., Stanca, A.M. Uptakeand agronomic efficiency of nitrogen in winter barley and winter wheat [J]. Eur. J.Agron.,1998,9:11–20
    Easson, D.L., Pickles, S.J., White, E.M. A study of lodging in cereals. Home–grown cerealsauthority research project No.52[M]. HGCA, London,1992, pp.73
    Easson, D.L., White, E.M., Pickles, S.J. The effects of weather, seeding rate and cultivar onlodging and yield in winter wheat [J]. J. Agric. Sci. Camb.,1993,121:145–156
    Easson, D.L., Pickles, S.J., White, E.M. A study of the tensile strength required to pull wheatroots from soil [J]. Ann. Appl. Biol.,1995,127:363–373
    Ehdaie, B., Waines, J.G. Sowing date and nitrogen rate effects on dry matter and nitrogenpartitioning in bread and durum wheat [J]. Field Crops Res.,2001,73:47–61
    Evans, J.R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J].Plant Physiol.,1983,72:297–302
    FAO, European Communities, International Soil Reference and Information Centre (FAO, EC,ISRIC),2003. WRB map of world soil resources,1:25000000[DB/OL]. FAO, Rome,Italy.
    FAO. World agriculture towards2030/2050: the2012revision
    Fageria, N.K., Baligar, V.C. Enhancing nitrogen use efficiency in crop plants [J]. Adv. Agron.,2005,88:97–185
    Fang, Y., Xu, B., Turner, N.C., Li, F. Grain yield, dry matter accumulation and remobilizationand root respiration in winter wheat as affected by seeding rate and root pruning [J]. Eur.J. Agron.,2010,33:257–266
    Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M., Martre, P. Sowing date and nitrogenfertilisation effects on dry matter and nitrogen dynamics for durum wheat: Anexperimental and simulation study [J]. Field Crops Res.,2010,117:245–257
    Fischer, R.A., Stapper, M. Lodging effects on high yielding crops of irrigated semi–dwarfwheat [J]. Field Crops Res.,1987,17:245–248
    Fielder, A.F. Interactions between variety and sowing date for winter wheat and winter barley[M]. Home–Grown Cereals Authority Research Review No.6. HGCA, London,1988, pp.58
    Foulkes, M.J., Hawkesford, M.J., Barraclough, P.B., Holdsworth, M.J., Kerr, S., Kightley, S.,Shewry, P.R. Identifying traits to improve the nitrogen economy of wheat: Recentadvances and future prospects [J]. Field Crops Res.,2009,114:329–342.
    Foulkes, M.J., Slafer, G.A., Davies, W.J., Berry, P.M., Sylvester–Bradley, R., Martre, P.,Calderini, D.F., Griffiths, S., Reynolds, M.P. Raising yield potential of wheat. III.Optimizing partitioning to grain while maintaining lodging resistance [J]. J. Exp. Bot.,2011,62:469–486
    Foulkes, M.J., Sylvester–Bradley, R., Scott, R.K. Evidence for differences between winterwheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization ofapplied fertilizer nitrogen [J]. J. Agric. Sci. Camb.,1998,130:20–44
    Frink, C.R., Waggoner, P.E, Ausubel, J.H. Nitrogen fertilizer: retrospect and prospect [J]. Proc.Natl. Acad. Sci. U.S.A.,1999,96:1175–1180
    Gaju, O., Allard, V., Martre, P., Snape, J.W., Heumez, E., Le Gouis, J., Moreau, D., Bogard,M., Griffiths, S., Orford, S., Hubbart, S., Foulkes, M.J. Identification of traits to improvethe nitrogen–use efficiency of wheat genotypes [J]. Field Crops Res.,2011,123:139–152
    Gastal, F., Lemaire, G. N uptake and distribution in crops: an agronomical andecophysiological perspective [J]. J. Exp. Bot.,2002,53:789–799.
    Geleta, B., Atak, M., Baenziger, P.S., Nelson, L.A., Baltenesperger, D.D., Eskridge, K.M.,Shipman, M.J., Shelton, D.R. Seeding rate and genotype effect on agronomicperformance and end–use quality of winter wheat [J]. Crop Sci.,2002,42:827–832
    Gent, M.P.N., Kiyomoto, R.K. Physiological and agronomic consequences of Rht gene inwheat [J]. J. Crop Prod.,1998,1:27–46
    Gomez–Macpherson, H., Richards, R.A. Effect of sowing time on yield and agronomiccharacteristics of wheat in South–eastern Australia [J]. Aust. J. Agric. Res.,1995,46:1381–1399
    Goodlass, G., Welch, W. The British Surver of Fertiliser Practice [M]. Defra, London, UK.,2007
    Grasshoff, K. Determination of nitrate in sea and drinking water [J]. Kieler Meeresforschung.,1964,20:5–11
    Greenwood, D.J., Neeteson, J.J., Draycott, A. Quantitative relationships for the dependence ofgrowth rate of arable crops on their nitrogen content, dry weight and aerical environment[J]. Plan Soil.,1986,91:281–301
    Greenwood, D.J., Gastal, F., Lemaire, G., Draycott, A., Millard, P., Neeteson, J.J. Growth rateand N%of field grown crops: theory and experiments [J]. Ann. Bot.,1991,67:181–190
    Gregory, P.J., McGowan, M., Biscoe, P.V., Hunter, B. Water relations of winter wheat1.Growth of the root system [J]. J. Agric. Sci. Camb.,1978,91:91–102
    Grindlay, D.J.C. Towards an explanation of crop nitrogen demand based on the optimizationof leaf nitrogen per unit leaf area.[J]. J. Agric. Sci. Camb.,1997,128:377–396
    Guarda, G., Padovan, S., Delogu, G. Grain yield, nitrogen–use efficiency and baking qualityof old and morden Italian bread–wheat cultivars grown at different nitrogen levels [J].Eur. J. Agron.,2004,21:181–192
    Haberle, J., Svoboda, P., Krej ová, J. Uptake of mineral nitrogen from subsoil by winterwheat [J]. Plant Soil Environ.,2006,52:377–384
    Haberle, J., Svoboda, P., Krej ová, J. How to enhance crop utilization of deep subsoil nitrogensupply. In: Hatch DJ, Chadwick DR, Jarvis SC, Roker JA (eds.) Controlling NitrogenFlows and Losses [M]. Wageningen Academic Publisher,2004, pp.173–175
    Hay, R.K.M. Harvest index: a review of its use in plant breeding and crop physiology [J].Ann. Appl. Biol.,1995,126:197–216
    Hemmat, A., Taki, O. Grain yield of irrigated winter wheat as affected by stubble–tillagemanagement and seeding rates in central Iran [J]. Field Corps Res.,2001,63:57–64
    Herrera, J.M., Feil, B., Stamp, P., Liedgens, M. Root growth and nitrate–nitrogen leaching ofcatch crops following spring wheat [J]. J Enviro. Qual.,2010,39:845–854
    Hiltbrunner, J., Streit, B., Liedgens, M. Are seeding densities an opportunity to increase grainyield of winter wheat in a living mulch of white clover?[J] Field Crops Res.,2007,102:163–171
    Hoad, S.P., Russell, G., Kettlewell, P.S., Belshaw, M. Root system management in winterwheat: practices to increase water and nitrogen use [J/OL]. Project Rep. No.351, HGCA,2004, http://www.hgca.com/publications/documents/cropresearch/351_Complete_final_report.pdf.
    Huang, Y., Rickerl, D.H., Kephat, K.D. Recovery of deep–point injected soil nitrogen–15bySwitchgrass, Alfalfa, Ineffective Alfalfa, and Corn [J]. J Environ. Qual.,1996,25:1394–1400
    Hund, A., Ruta N., Liedgens, M. Rooting depth and water use efficiency of tropical maizeinbred lines, differing in drought tolerance [J]. Plant Soil,318:311–325
    Jackson, L.F., Dubcovsky, J., Gallagher, L.W., Wenning, R.L., Heaton, J., Vogt, H., Gibbs,L.K., Kirby, D., Canevari, M., Carlson, H., Kearney, T., Marsh, B., Munier, D., Mutters,C., Orloff, S., Schmierer, J., Vargas, R., Williams, J., Wright, S.2000regional barley,common and durum wheat, triticale, and oat performance tests in California [R].Agronomy Progress Report No.272. University of California, Davis, CA.,1999.,2000
    Jamieson, P.D., Porter, J.R., Goudriaan, J., Ritchie, J.T., Van Keulen, H., Stol, W. Acomparison of the models AFRCWHEAT2, CERES–Wheat, Sirus, SUCROS2andSWHEAT with measurements from wheat grown under drought [J]. Field Crops Res.,1998,55:23–44
    Kirby, E.J.M. Botany of the wheat plant. In: Curtis BC, Rajaram S, Gómez Macpherson H(eds.) Bread wheat: improvement and production. Food and agriculture organization ofthe united nations [DB/OL]. Rome. Corporate Document Repository. Agriculture andConsumer Protection,2002, http://www.fao.org/docrep/006/y4011e/y4011e05.htm
    Kirkegaard, J.A., Lilley, J.M. Root penetration rate–a benchmark to identify soil and plantlimitations to rooting depth in wheat [J]. Aust. J. Exp. Agric.,2007,47:590–602
    Knapp, W.R., Knapp, J.S. Response of winter wheat to date of planting and fall fertilization[J]. Agron. J.,1978,70:1048–1053
    Kristensen, H.L., Thorup–Kristensen, K. Uptake of15N labeled nitrate by root system ofsweet corn, carrot and white cabbage from0.2–2.5meters depth [J]. Plant Soil,2004a,265:93–100
    Kristensen, H.L., Thorup–Kristensen, K. Root growth and nitrate uptake of three differentcatch crops in deep soil layers [J]. Soil. Sci. Soc. Am. J.,2004b,68:529–537
    Kuhlmann, H., Barraclough, P.B., Weir, A.H. Utilization of mineral nitrogen in the subsoil bywinter wheat [J]. J. Plant Nutr. Soil Sc.,1989,152:291–295
    Ladha, J.K., Pathak H., Kupnik T.J., Six J., Van Kessel C. Efficiency of fertilizer nitrogen incereal production: retrospects and prospects [J]. Adv. Agron.,2005,87:85–156
    Lawlor, D.W., Boyle, F.A., Kendall, A.C., Keys, A.J. Nitrate nutrition and temperature effetson wheat: enzyme composition, nitrate and total amino acid content of leaves [J]. J. Exp.Bot.,1987,38:378–392
    Laude, H.H., Pauli, A.W. Influence of lodging on yield and other characters in winter wheat[J]. Agron. J.,1956,10:452–455
    Le Gouis, J., Beghin, D., Heumez, E., Pluchard, P. Genetic differences for nitrogen uptake andnitrogen utilization efficiencies in winter wheat [J]. Eur. J. Agron.,2000,12:163–173
    Lemaire, G., Gastal, F. N uptake and distribution in plant canopies. In: Lemaire G.(Ed.)Diagnosis of the Nitrogen Status in Crops [M]. Springer–Verlag, Heidelberg,1997. pp.3–43
    Lilley, J.M., Kirkegaard, J.A. Benefits of increased soil exploration by wheat roots [J]. FieldCrops Res.,2011,122:118–130
    Lloveras, J., Manent J., Viudas J., López A., Santiveri P. Seeding rate influence on yield andyield components of irrigated winter wheat in a Mediterranean climate [J]. Agron. J.,2004,96:1258–1265
    López–Bellido, R.J., López–Bellido, L. Efficiency of nitrogen in wheat under Mediterraneanconditions: effect of tillage, crop rotation and N fertilization [J]. Field Crops Res.,2001,71:31–46
    Loyce C., Meynard J.M., Bouchard C., Rolland B., Lonnet P., Bataillon P., Bernicot M.H.,Bonnefoy M., Charrier X., Debote B., Demarquet T., Duperrier B., Félix I., Heddadj D.,Leblanc O., Leleu M., Mangin P., Méausoone M., Doussinault G. Interaction betweencultivar and crop management effects on winter wheat diseases, lodging, and yield [J].Crop Prot.,2008,27:1131–1142
    Ma, W., Li, J., Ma, L., Wang, F., Sisák, I., Cushman, G., Zhang, F. Nitrogen flow and useefficiency in production and utilization of wheat, rice, and maize in China [J]. Agr. Syst.,2009,99:53–63
    Mcleod, J.G., Campbell, C.A., Dyck, F.B., Vera, C.L. Optimum seeding dates of winter insouthwestern Saskatchewan [J]. Agron. J.,1992,84:86–90
    Mennan, H., Zandstra, B.H. Effect of wheat (Triticum aestivum) cultivars and seeding rate onyield loss from Galium aparine (cleavers)[J]. Crop Prot.,2005,24:1061–1067
    Millard. P. The accumulation and storage of nitrogen by herbaceous plants [J]. Plant Cell andEnviron.,1988,11:1–8.
    Miller, A.J., Cramer, M.D. Root nitrogen acquisition and assimilation [J]. Plant Soil,2004,274:1–36
    Miller, T.D. Growth stages of wheat: identification and understanding improve cropmanagement [J]. Better Crops with Plant Food, Summer,1992,12–17
    Moll, R.H., Kamprath, E.J., Jackson, W.A. Analysis and interpretation of factors whichcontribute to efficiency to nitrogen utilization [J]. Agron. J.,1982,75:562–564
    Muurinen, S., Slafer, G.A., Peltonen–Sainio, P. Breeding effects on nitrogen use efficiency ofspring cereals under northern conditions [J]. Crop Sci.,2006,46:561–568.
    Nakamoto, T., Oyanagi, A. The direction of growth of seminal roots of Tricum aestivum L.and experimental modification threrof [J]. Ann. Bot.,1994,73:363–367
    Neenan, M., Spencer–Smith J.L. An analysis of the problem of lodging with particularreference to wheat and barley [J]. J. Agric. Sci. Camb.,1975,85:495–507
    Nleya, T., Rickertsen, J.R. Winter wheat response to planting date under dryland conditions[J]. Agron. J.,2014,106:915–924
    Ortiz–Monasterio, J.I., Sayre, K.D., Rajaram, S., McMahom, M. Genetic progress in wheatyield and nitrogen use efficiency under four nitrogen rates [J]. Crop Sci.,1997,37:898–904
    Ottman M. Seeding rates for small grains in Arizona [DB/OL]. The university of ArizonaCooperative extension. cals.arizona.edu/pubs/crops/az1334.pdf,2004
    Ozturk, A., Caglar, O., Bulut, S. Growth and yield response of facultative wheat to wintersowing, freezing sowing and spring sowing at different seeding rates [J]. J. Agron. CropSci.,2006,192:10–16
    Pask, A.J.D., Sylvester–Bradley, R., Jamieson, P.D. and Foulkes, M.J. Quantifying howwinter wheat crops accumulate and use nitrogen reserves during growth [J]. Field CropsRes.,2012,126:104–118
    Pinthus, M.J. Lodging in wheat, barley and oats; the phenomenon–its causes and preventativemeasures [J]. Adv. Agron.,1973,25:209–263
    Qi, W., Liu, H., Liu, P., Dong, S., Zhao, B., So, H., Li, G., Liu, H., Zhang, J., Zhao, B.Morphological and physiological characteristics of corn (Zea mays L.) roots fromcultivars with different yield potertials [J]. Eur. J. Agron.,2012,38:54–63
    Qin, R., Stamp, P., Richner, W. Impact of tillage on root systems of winter wheat [J]. Agron. J.,2004,96:1523–1530
    Rajkumara S. Lodging in cereals–a review [J]. Agric. Rev.,2008,29:55–60
    Raun, W.R., Johnson, G.V. Improving nitrogen use efficiency from cereal production [J].Agron. J.,1999,91:357–363.
    Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Mullen, R.W., Freeman K.W., Thomason,W.E., Lukina, E.V. Improving nitrogen–use efficiency in cereal grain production withoptical sensing and variable rate application [J]. Agron. J.,2002,94:815–820.
    Sadras, V.O., Lawson C. Nitrogen and water use efficiency of Australian wheat varietiesreleased between1958–2007[J]. Eur. J. Agron.,2013,46:34–41
    Salvagiotti, F., Castellarin, J.M., Miralles, D.J., Pedro, H.M. Sulfer fertilization improvesnitrogen use efficiency in wheat by increasing nitrogen uptake [J]. Field Crops Res.,2009,113:170–177
    Schenk, H.J., Jackson, R.B. The global biogeography of roots [J]. Eco. Monogr.,72(3):311–328
    Scudamore, K.A. Mycotoxins in stored grain. In: Proceedings of the Seventh Home–GrownCereals Association R&D Conference on Cereals and Oilseeds [Z]. HGCA, London,2000, pp.18.1–18.9
    Shah, S.A., Harrison, S.A., Boquet, D.J., Colyer, P.D., Moore, S.H. Management effects onyield and yield components of late planted wheat [J]. Crop Sci.,1994,34:1298–1303
    Sinclair, T.R., Horie, T. Leaf nitrogen, photosynthesis and crop radiation use efficiency: areview [J]. Crop Sci.,1989,29:90–98
    Smith, C.J., Dunin, F.X., Zegelin, S.J., Poss, R. Nitrate leaching from a Riverine clay soilunder cereal rotation [J]. Aust. J. Agric. Res.,1998,49:379–390
    Spaner, D., Todd, A.G., McKenzie, D.B. The effect of seeding date, seeding rate and Nfertilization on winter wheat yield and yield components in eastern Newfoundland [J].Can. J. Plant Sci.,2000,80:703—711
    Stapper, M., Fischer, R.A. Genotype, sowing date and plant spacing influence onhigh–yielding irrigated wheat in Southern New South Wales. I. Phasic development,canopy growth and spike production [J]. Aust. J. Agric. Res.,1990,41:997–1019
    Sun. H., Zhang, X., Chen, S., Pei, D., Liu, C. Effects of harvest and sowing time on theperformance of the rotation of winter wheat–summer maize in the North China Plain [J].Ind. Crop. Prod.,2007,25:239–247
    Svoboda, P., Haberle, J. The effect of nitrogen fertilization on root distribution of winterwheat [J]. Plant Soil Environ.2006,52:308–313
    Sylvester–Bradley, R., Kindred D.R. Analysing nitrogen response of cereals to prioritizeroutes to the improvement of nitrogen use efficiency [J]. J. Exp. Bot.,2009,60:1939–1951
    Thill, D.C., Witter, R.E., Papendick, R.I. Interactions of earlyand late–planted wheat withtheir environment [J]. Agron. J.,1978,70:1041–1047
    Thorup–Kristensen, K. Effect of deep and shallow root systems on the dynamics of soilinorganic N during3–year crop rotations [J]. Plant Soil,2006,288:233–248
    Thorup–Kristensen, K., Cortasa, M.S., Loges, R. Winter wheat roots grow twice as deep asspring wheat roots, is this important for N uptake and N leaching losses?[J] Plant Soil.,2009,322:101–114
    Tompakins, D.K., Fowler, D.B., Wright, A.T. Water use by no–till winter wheat. Influence ofseed rate and row spacing [J]. Agron. J.,1991a,83:766–769
    Tompakins, D.K., Hultgreen, G.E., Wright, A.T., Fowler, D.B. Seed rate and row spacing ofno–till winter wheat [J]. Agron. J.,1991b,83:684–689
    Tripathi, S.C., Sayre, K.D., Kaul, J.N., Narang, R.S. Growth and morphology of spring wheat(Triticum aestivum L.) culms and their association with lodging: effects of genotypes, Nlevels and ethephon [J]. Field Crops Res.,2003,84:271–290
    Van Sanford, D.A., MacKown, C.T. Variation in nitrogen use efficiency among soft redwinter wheat genotypes [J]. Theor. Appl. Genet.,1986,72:158–163
    Wagner, R. A new method for auto mated nitrate determination in sea water using theautoAnalyzer [C]. In: Technicon Symposium, Frankfurt at am Main,1974(In German)
    Widdowson, F.V., Penny, A., Darby, R.J. Bird, E., Hewitt, M.V. Amount of NO3–N andNH4–N in soil, from autumn to spring, under winter wheat and their relationship to soiltype, sowing date, previous crop and N uptake at Rothamsted, Woburn and Saxmundham,1979–1985[J]. J. Agric. Sci. Camb.,1987,108:73–95
    Wiesler, F., Horst, W.J. Root growth and nitrate utilization of maize cultivars under fieldconditions [J]. Plant Soil,1994,163:267–277
    Wilhelm, W.W., Mielke, L.N., Fenster, C.R. Root development of winter wheat as related totillage practice in Western Nebraska [Z]. USDA–ARS/UNL Faculty.1982, pp.13,http://digitalcommons.un l.edu/usdaarsfacpub/133
    Winter, S.R., Musick, J.T. Wheat planting date effects on soil water extraction and grain yield[J]. Agron. J.,1993,85:912–916
    Wu, J., Zhang, R., Gui, S. Modeling soil water movement with water uptake by roots [J].Plant Soil,1999,215:7–17
    Wuest, S.B., Cassman, K.G. Fertilizer–nitrogen use efficiency of irrigated wheat: I. Uptakeefficiency of preplant versus late–season application [J]. Agron. J.,1992a,84:682–688
    Wuest, S.B., Cassman, K.G. Fertilizer–nitrogen use efficiency of irrigated wheat: II.Partitioning efficiency of preplant versus late–season application [J]. Agron. J.,1992b,84:689–694
    Zhao, R., Chen, X., Zhang, F., Zhang, H., Schroder, J., Romheld, V. Fertilization and nitrogenbalance in a wheat–maize rotation system in North China [J]. Agron. J.,200698:938–945
    Zhou, S., Wu, Y., Wang, Z., Lu, L., Wang, R. The nitrate leached below maize root zone isavailable for–deep–rooted wheat in winter wheat–summer maize rotation in the NorthChina Plain [J]. Environ. Pollut.,2008,152:723–730
    Zuber, U., Winzeler, H., Messmer, M.M., Keller, M., Keller, B., Schmid, J.E., Stamp, P.Morphological traits associated with lodging resistance of spring wheat (Triticumaestivum L.)[J]. J. Agron. Crop. Sci.,1999,182:17–24
    Zuo, Q., Jie, F., Zhang, R., Meng, L. A generalized function of wheat’s root length densitydistributions [J]. Vadose Zone J.,2004,3:271–277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700