大沽河流域氮磷关键源区识别及整治措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2006年开始实施国家陆源污染物总量控制管理以来,青岛市同步实施了陆源污染物减排措施,但黄海尤其是胶州湾水质并没有同步改善。造成污染物减排与水质改善严重脱节的一个主要原因是现行的青岛市陆源污染物排海通量核算只局限于工业等点源,没有囊括农业等非点源。大沽河流域占青岛市陆域面积的45%,是胶州湾陆源污染物的最大来源。因为非点源和点源的构成、分布、相互作用等复杂原因,只有将两者纳入同一个计算构架如分布式非点源模型中,才能详尽地描述大沽河流域氮、磷排放数量分布、构成和关键源区等。因此,本论文研究目的是针对大沽河流域氮、磷污染物总量控制管理中,排放数量核算方法不完备的突出问题,给出基于SWAT模型的既符合非点源时空变化规律,又与点源密切联系的陆源污染物排放核算方法,在此基础上系统揭示大沽河流域氮、磷排放数量、分布和关键区,并初步提出大沽河流域氮、磷的环境整治的措施。主要研究内容和结论如下:
     1.大沽河流域氮磷排放数量现场监测与统计分析
     2011年9月进行的大沽河流域现场监测表明,大沽河流域无机氮、磷排放量与排放密度较大的区域都位于大沽河流域中上游地区。2012年7月~8月进行的大沽河上游小流域监测表明,氮、磷排放与降雨量、降雨频次以及农业生产活动密切相关。基于全国第一次污染源普查数据的排放数量统计表明,大沽河流域的工业源、生活源、服务业源、农业源的总氮和总磷的比例分别为:5.18%、2.93%和17.12%、12.39%和0.55%、0.66%和77.15%、84.02%。各污染源的排放密度空间差异明显。
     2.基于SWAT的大沽河流域氮磷污染物排放数量模拟计算
     (1)构建SWAT模型数据库与子流域划分。数据库包括数字高程(DEM)、土地利用、土壤类型、气象数据、污染源等数据库。应用SWAT时,将流域内工业、城镇生活点源叠加到相应子流域的河道中;将畜禽养殖、农村生活非点源以化肥施用的形式叠加到相应子流域的耕地中。在数字高程的基础上,将大沽河流域一共划分了35个子流域。
     (2)模型校准、验证与模拟计算。通过历史监测数据以及本论文现场监测数据对SWAT模型进行校准和验证,评价指标决定系数(R~2)和Nash-Suttcliffe系数(Ens)都在0.5以上,表明SWAT模型对大沽河流域的模拟计算具有较好适用性。SWAT模型模拟计算表明,2002年~2012年期间,有机氮、无机氮和总氮年平均排放量分别为:324.2t、2271.0t和2595.2t;有机磷、无机磷和总磷年平均排放量分别为:20.4t、385.9t和406.3t;月均变化都表现为“倒V”型的形式,丰水期的总氮和总磷分别占年均排放量的75.6%和84.3%;枯水期总氮和总磷仅仅只占年均排放数量的1.5%和1.2%。
     3.大沽河流域氮磷关键源区识别及其污染特征分析
     (1)大沽河流域氮磷排放空间分布与构成。2002年~2012年平均排放密度计算结果表明,大沽河流域35个子流域的总氮和总磷排放密度呈现出明显的空间差异,总氮和总磷排放密度较大的地区分布在大沽河上游、小沽河、五沽河以及流浩河等地区。全流域总氮和总磷排放密度平均值为1661.8Kg/km~2和74Kg/km~2。污染构成分析表明,人类生产活动的总氮和总磷占全流域总氮和总磷排放的69%和58%,其中化肥流失和畜禽养殖废物排放分别占了人为来源总氮的49.9%和29.6%,总磷的41.4%和40.3%。这说明,大沽河流域主要的总氮和总磷污染源是由人类生产活动所形成的非点源,特别是种植业化肥流失、畜禽废弃物排放等。
     (2)大沽河流域氮磷关键源区识别。SWAT模拟计算表明,大沽河流域土壤侵蚀较小,87%的区域小于500t/(km~2·a),属微度侵蚀,其余13%为500~2500t/(km~2·a),属轻度侵蚀。与总氮侵蚀分级标准对比表明,大沽河流域27.4%的区域总氮排放密度大于2000Kg/(km~2·a),属于氮的关键排放源区,关键排放源区的总氮排放量占了全流域总氮排放量的36.1%。大部分关键排放源区的氮来源于耕地种植业区,其土壤类型主要是潜育土和淋溶土。结果显示,大沽河流域不存在磷的关键排放源区。进一步根据大沽河流域35个子流域对大沽河河口总氮和总磷贡献率分析可知,五沽河地区贡献率都是最大的,可以看成是影响胶州湾水质的关键影响源区。
     4.大沽河流域环境整治措施模拟评价及整治措施方案
     根据《大沽河流域保护与空间利用总体规划》设置和模拟评价了六种措施对大沽河流域氮、磷污染整治的效果。结果表明,化肥削减整治、畜禽养殖整治,特别是退耕还林整治是大沽河流域有效的氮、磷污染环境整治措施方案。分别实施化肥削减50%、畜禽排放削减70%和在大沽河中上游丘林区退耕还林30%三种措施时,大沽河流域氮的关键源区都基本消失,而控制工业排放或农村污水排放,则效果较差。实际情况下,结合六种措施,关键源区将全部消失,大沽河总氮入海通量减少近80%,总磷减少近70%,整治措施效果明显,也有望明显改善胶州湾水质。
     本文的科学创新点主要是基于SWAT模型的大沽河流域非点源和点源叠加的氮、磷排放数量的核算,并在此基础上科学全面地识别了大沽河流域氮、磷关键排放源区和对胶州湾水质影响较大的关键影响源区。研究特色主要是基于SWAT模型的效果模拟,初步提出了大沽河流域氮、磷污染环境整治措施方案。
Anthropogenic discharge of pollutants in Qingdao, e.g., nitrogen and COD, hasbeen dramastically reduced since the implementation of a plan for controlling thedischarge of land-source pollutants in2006. However, the water quality of JiaozhouBay has not been significantly improved yet till now. This is reasonable as onlypoint-source discharge of pollutants was reduced, while no change was made on theagriculture, rural life and the other non-point sources. Dagu watershed accounted for45%of the land areas of Qingdao City and it is the largest source of pollutants forJiaozhou Bay. Qingdao City developed the “Dagu Watershed Protection and SpaceUse Planning” in2011, and introduced “2013-2015Jiaozhou Bay Watershed PollutionRemediation Action Plan" in2013. Both plans take agriculture, rural life and othernon-point sources as the objects of environmental remediation of the Dagu RiverBasin. The composition and distribution of non-point and point sources are verycomplicated. Therefore, it is necessary to put non-point sources and point sources intothe same framework in order to calculating the total discharge of pollutants andindentifying the critical source areas of non-point sources. Distributed non-pointsource model, such as SWAT (Soil and Water Assessment Tool), is a useful tool in thisarea. The major objectives of this thesis is to develop a method for calculating theno-point and point discharge of nitrogen and phosphorus in Dagu watershed, tocalculate the discharge amount of nitrogen and phosphorus and identify the criticalsource areas in Dagu watershed, and to propose several feasible environmentalremediation measures for controlling nitrogen and phosphorus pollution. The maincontents and conclusions are as follows:
     1. Field observations and statistical analysis of nitrogen and phosphorus dischargeamounts in Dagu watershed.
     Field monitoring data show that the middle and upper reaches of Dagu River hada larger discharge of nitrogen and phosphorus in terms of both discharge amount and discharge density (Kg/km~2). In addition, observations in the upstream watershed areasindicate that the discharge of nitrogen and phosphorus are closely related to rainfall,rainfall frequency, as well as agricultural production activities. Statistical analysis ofnitrogen and phosphorus emission amount of Dagu watershed shows that industrialsource, life source, service industry source and agricultural source account for5.18%and2.93%,17.12%and12.39%,0.55%and0.66%,77.15%and84.02%of the totaldischarge of nitrogen and phosphorus, respectively. The emission density of eachsource presents a significant spatial pattern.
     2. Calculation of the discharge amounts of nitrogen and phosphorus in Daguwatershed by SWAT mode
     (1)The SWAT required database of Dagu watershed and subbasin delineation.The required data include the Digital Elevation Model (DEM), land use/land covertype map, soil type map, meteorological data, pollution source information and someother data. During the development of the SWAT model in Dagu watershed, nitrogenand phosphorus from the industrial source and urban living source are thought to bedirectly discharged into the river.Animal waste, rural livingsources were are treated aschemical fertilizer applied in each subbasin. The Dagu watershed was divided into35subbasins.
     (2)Model calibration, validation and simulation. The developed SWAT modelin Dagu watershed was calibrated and validated by the historical investigation dataand field monitoring data obtained in this study. The results showed that thedeveloped SWAT model simulated the field monitoring data very well (Ens>0.5andR~2>0.5). The model was then used to calculate the discharge of nitrogen andphosphorus in Dagu watershed. The annually average discharge amounts of organicnitrogen, inorganic nitrogen and total nitrogen from2002to2012were calculated tobe324.2t,2271.t and2595.2t, respectively. The annually average discharge amountsof organic phosphorus, inorganic phosphorus and total phosphorus were calculated tobe20.4t,385.9t and406.3t, separately. In addition, the monthly variation of nitrogenand phosphorus discharge followed an “inverted V” pattern, with a peak appearing inwet season. The discharge of total nitrogen and total phosphorus in wet seasonaccounted for75.6%and84.3%of the annual discharge of nitrogen and phosphorus.3. The distribution of critical source areas in Dagu watershed and their pollution
     characteristics.
     (1)Spatial distribution and constitution of sources of nitrogen and phosphorus inthe Dagu watershed. Model simulation results show that the average annual dischargedensities of total nitrogen and total phosphorus in35subbasins have a significantspatial pattern, with the highest value appeared in the upstream areas, e.g., XaioguRiver, Wugu River and Liuhao River subbasins. The average discharge density oftotal nitrogen and total phosphorus in Dagu watershed were1661.8Kg/km~2and74Kg/km~2, respectively. The results also show that human activities were the mainsources of nitrogen and phosphorus in this area (69%(nitrogen) and58%(phosphorus)). Fertilizer loss and animal waste accounted for49.9%and29.6%of thetotal nitrogen from human activities respectively,41.4%and40.3%of totalphosphorus from human activities respectively.
     (2)Identification of the critical source areas in Dagu watershed. Soil erosiondensity was calculated in each subbasin. This parameter was calculated to be lowerthan500t/(km~2·a)(slight erosion) in around87%of Dagu watershed.13%of Daguarea is under mild erosion, with a erosion density between500and2500t/(km~2·a).According to the total nitrogen erosion classification standard,27.4%of Daguwatershed is the critical source areas, and the total nitrogen discharge amounts fromthese critical source areas accounted for36.1%of the total nitrogen discharge in Daguwatershed. Farmland is the main source of total nitrogen in the critical source areas,and gleysols and luvisols are the main soil type. Moreover, the contributions of eachsubbasin to the discharge of total nitrogen and total phosphorus from Dagu River toJiaozhou Bay were calculated. The results suggested that the Wugu River regioncontributes the largest to overall discharge of both nutrients to Jiaozhou Bay.
     4. The establishment of feasible Environmental Remediation Measures of nitrogenand phosphorus in Dagu watershed
     A variety of environmental remediation measures proposed in “Dagu WatershedProtection and space use planning” were tested by using the developed SWAT modelin Dagu watershed. The results show that reducing the use of fertilizer, and animalwaste, and restoring farmland to forest would be the most feasible environmentalremediation measures in Dagu watershed.
     In this study, we established a method for calculating the non-point source andpoint source discharge amounts of nitrogen and phosporusin Dagu watershed usingSWAT model. On the basis of this method, the critical source areas of Dagu watershed and critical areas affecting the water quality of Jiaozhou Bay were identified. Inaddition, seaveral feasible Environmental Remediation Measures has been made andvalidated by the model to improve the pollution of nitrogen and phosphorus in Daguwatershed.
引文
[1] Abbott M B, Bathhurst J C, Cunge J A, et al. A introduce to the European HydrologicSystem-Systeme Hydrologique, SHE: History and philosophy of a physically baseddisturbed modeling Systems. Journal of Hydrology,2001,87(5):45-59
    [2] Arabi M, et al. Role of watershed subdivision on modeling the effectiveness of bestmanagement practices with SWAT. Journal of the American Water Resources Association,2006.42(2):513-528
    [3] Allen R G, Jensen M E, et al.Operational estimates of evapotranspiration. Agron,1989,81:650-662
    [4] Arnold J G, Williams J R, Srinivasan R, et al. Large area hydrologic modeling andassessment part I: Model development. Journal of the American Water ResourcesAssociation,1998,34(1):73-89
    [5] Beaulac MN, Reckhow KH. An examination of land use nutrient export relationships.Water Resources Bulletin,1982,18:1013-1023
    [6] Behera S, Panda R K. Evaluation of management alternatives for an agricultural watershedin a sub-humid subtropical region using a physical process based model. Agriculture,Ecosystems and Environment,2006,113(1-4):62-72
    [7] Bera M, Borah D K. Watershed-scale hydrologic and nonpoint-source pollution models:Review of mathematical bases. Transactions of the American Society of AgriculturalEngineers,2003,46(6):1553-1566
    [8] Berit A, Maja BL. Modeling nitrogen transport and retention in the catchments of southernSweden AMBIO,1998,(6):471-481
    [9] Beven K J, Kirkby M J. A physically based variable contributing area model of basinhydrology. Hydrologic Science Bulletin,1979,24(1):43-69
    [10] Birr A S, Mulla D J. Evaluation of phosphorus index in the watershed at the regional scale.Journal of Environmental Quality,2001,30:2018-2025
    [11] Boswell V G. The influence of temperature upon the growth and yield of garden peas. Proc.Amer. Soc. Hort. Sci,1926,23:162-168
    [12] Cross H Z, Zuber M S. Prediction of flowering dates in maize based on different methodsof estimating thermal units. Agronomy Journal,1972,64:351-355
    [13] Bouraoui F, Benabdallah S, Jrad A, et al. Application of the SWAT model on the Medjerdariver basin (Tunisia). Physics and Chemistry of the Earth, Parts A/B/C,2005,30(8-10):497-507
    [14] Dennis L, Gorwin et al. Non-point pollution modeling based on GIS. Soil and WaterConservation,1998,1:75-88
    [15] Daniel E S, Michael W, Michael D, Smolen, Hailin Zhang. Modeling PhosphorousLoadingFor the Lake Eucha Basin. Oklahoma:Biosystems and Agriculture EngineeringDepartment of Oklahoma State University,2001
    [16] Di Luzio M, Arnold J G. Formulation of a hybrid calibration approach for a physicallybased distributed model with NEXRAD data input. Journal of Hydrology,2004,298(1-4):136-154
    [17] Ding X, Shen Z, Hong Q, et al. Development and test of the Export Coefficient Model inthe Upper Reach of the Yangtze River. Journal of Hydrology,2010,383(3-4):233-244
    [18] Duan Q Y, Sorooshian S, Gupta V K. Effective and efficient global optimization forconceptual rainfall-runoff models. Water Resources Research,1992,28(4):1015-1031
    [19] Eileen CDMackay. Effeets of distribution-based Parameter aggregation on a spatiallydistributed Agricultural nonpoint source Pollution model. Journal of Hydrology,2004,295:211-224
    [20] Endreny T A, Wood E F.Watershed weighting of export coefficients to map criticalphosphorous loading areas.American Water Resources Association,2003,39(1):165-181
    [21] Fargas D, Casasnovas J A M, Poch R. Identification of critical sediment source areas atregional level. Phys Chem Earth,1997,22:355-359
    [22] Fisher P, Abrahart R J, Herbinger W. The Sensitivity of Two Distributed Non-Point SourcePollution Models to the Spatial Arrangement of the Landscape. Hydro Proc,1997(11):241-252
    [23] Gao C, Zhu J G, Zhu J Y, et al. Nitrogen export from an agriculture watershed inthe Taihu Lake area, China. Environmental Geochemistry and Health,2004,26:199-207
    [24] Gassman P W,Reyes M R, Green C H, etal. The soil and water assessment tool: historicaldevelopment, applications and future research directions. Transactions of the ASAE,2007,50(4):1211-1250
    [25] Gburek W J,Sharpley A N.Hydrology control on phosphorus loss from uplandagriculturalwatersheds. Environ Qual,1998,27:267-277
    [26] Ghebremichael LT, Veith TL, Watzin MC.Determinationof critical source areas forphosphorus loss: Lake ChamplainBasin, Vermont.Soil&Water Assessment Tool,2010,53:1595-1604
    [27] Green W H, Ampt G A. Studies on soil physics:Ⅰ, Flow of air and water through soils. JAgric Sci,1911,4:1-24
    [28] Gurbert W J, Sharpley A N, Heathwaite L, et al. Phosphorus management at the watershedscale: A modification of the phosphorus index. Journal of Environmental Quality,2000,29:130-144
    [29] Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature.Applied Engineering in Agriculture,1985,1:96-99
    [30] Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem P A. Sensitivity analysis forhydrology and Pesticide supply towards the river in SWAT. Physics and Chemistry of theEarth,2005,30(8-10):518-526
    [31] Hubbard R K, Erickson A E, Ellis B G, et al. Influence of macrophytes on nitrate removalin wetlands. Ambio,1982,23(6):363-366
    [32] Hughes KJ, Magette WL, Kurz I. Identifying critical source areas for phosphorus loss inIreland using field and catchments scale ranking schemes. Journal of Hydrology,2005,304:43-445
    [33] Ierodiaconou D, Laurenson L, Leblanc M, et al. The consequences of land use change onnutrient exports: a regional scale assessment in south-west Victoria, Australia. Journal ofEnvironmental Management,2005,74(4):305-316
    [34] Jayakrishnan R, Srinivasan R, Santhi C, et al. Advances in the application of the SWATmodel for water resources management. Hydrological Process,2005,19(3):749-762
    [35] Johnes P J. Evaluation and management of the impact of land use change on the nitrogenand phosphorus load delivered to surface waters: the export coefficient modeling approach.Journal of Hydrology,1996,83:323-349
    [36] Jensen M E, Burman P W, Allen R G. Evapotranspiration and irrigation water requirements.ASCE Maunal,1990,(70):360
    [37] Klemes V. Operational testing of hydrological simulation model. Hydrological SciencesJournal,1986,(31):13-24
    [38] Lee S I. Nonpoint Source Pollution. Fisheries,1979,(2):50-52
    [39] Lemunyon J L, Gilbert R G. The concept and need for a phosphorus assessment tool.Journal of Production Agriculture,1993,6:483-496
    [40] Luo Y, Zhang M. Management oriented sensitivity analysis for pesticide transport inwatershed-scale water quality modeling using SWAT. Environmental Pollution,2009:1-9
    [41] Ma Y, Bartholic J, Asher J, et al. NPS assessment model:An example ofAGNPSapplication for watershed erosionand phosphorus sedimentation. Journal ofSpatial Hydrology,2001,1:1-8
    [42] Maas R P,SmolenM D, Dressing SA. Selecting critical area for non-point source pollutioncontrol.SoilW ater Conser,1985,40(1):68-71
    [43] Magoon C A, Culpepper C W. Response of sweet corn to varying temperatures from time ofplanting to canning maturity. USDA tech Bull,1932:312
    [44] Mark D K.Network Models in Geomorphology. Modeling in Geomorphologic Systems,1988,2:78-81
    [45] Marsh W M. Landscape planning: Environmental applications. New York: JohnWiley&Sons, Inc.,1998
    [46] Mattikalli N M,Richard K S. Estimation of surface water quality changes in response toland use change: Application of the exportco efficient model using remote sensing andgeographic information system. Journal of Environmental Management,1996,48:263-282
    [47] McElroy A D, Chiu S Y, Nebgen J W, Aleti A, Bennett F W. Loading functions forassessment of water pollution from nonpoint sources. Environ Prot Tech Serv, EPA,1976,600/2:76-151
    [48] Menzel R G. Enrichment ratios for water quality modeling. In W G Knisel (ed.) CREAMS,A field scale model for chemicals, runoff, and erosion from agricultural managementsystems. US Dept Agric ConservRes Rept No.26,1980:486-492
    [49] Monteith J L. Evaporation and the environment. In: The stateand movement of water inliving organisms,19thSymposia of the Society for Experimental Biology. London, U K:Cambridge Univ Press,1965,205-234
    [50] Morris M D. Factorial sampling Plans for Preliminary computational experiments.Technometrics,1991,33(2):161-174
    [51] Muleta M K, NieklowJ W. Sensitivity and uncertainty analysis ecuped with automaticcalibration for a discributed watershed model. Journal of Hydrology,2005,306:127-145
    [52] Ng H Y F, Mayer T, Marsalek J. Phosphorus transport in runoff from a small agriculturalwatershed. Water Science Technology,1993,28(3-5):451-460
    [53] Neitseh S L, Arnold J G, Kiniry J R, Williams J R. Soil and Water Assessment Tool User’sManual Version2000. Agriculture Research Service and Blackland Research Center,2001
    [54] Nonpoint Source pollution from Agriculture. US Environmental protection Agency, http://www.epa.gov/region8/water/nps/npsag.html,2003
    [55] Novotny V, Chester S G. Handbook of Non-Point Pollution: Sources and Management.1981
    [56] Novontny VH. Water Quality:Preveniion, Identifieationand Management of DiffusePollution.JofinWiley&Sons,1993
    [57] NRCS. National handbook of conservation practices. WashingtonD C: NRCS—USDA.1998
    [58] Olivera F, Valenzuela M, Srinivasan R, etal. ArcGIS-SWAT: a geodata model and GISinterface for SWAT. Journal of the American Water Resources Association,2006,42(2):295-309
    [59] Panuska J C, Moore I D, Kramer L A. Terrain analysis: integration into the agriculturalnon-point souree Pollution (AGNPS) model.Journal of soil and WaterConservation,1991,45:59-64
    [60] Perman H L. Evaporation:An introductory survey. Netherlands Journal of AgriculturalScience,1956,(4):7-29
    [61] Polyakov V, Fares A, Kubo D, et al. Evaluation of anon-point source pollution model,AnnAGNPS, in a tropicalwatershed. Environmental Modeling&Software,2007,22:1617-1627
    [62] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation usinglarge-scale parameters. Mon Weather Rev,1972,100:81-92
    [63] Rallison R E, Miller N. Past, present and future SCS runoff procedure. In: V P Singh (ed.)Rainfall runoff relationship. Littleton, CO8: Water Resources Publication,1981:353-364
    [64] Renard K G, Yober D C, Mccool D K. Rusle revisited: status,questions,answers, and thefuture.Soil Water Cons,1994,49(l):213-220
    [65] Saleh A, Arnold J GGassman P W. Application of Swat for the Upper North Bosque RiverWatershed. Transactions of the American Society of Agricultural Engineers,2000,43(5):1077-1087
    [66] Santhi C, Arold J G, Williams J R, et al. Validation of the SWAT model on a large riverbasin with point and non-point sources. Journal of the American Water ResourceAssociation,2001,37(5):1169-1188
    [67] Saxton K E, Rawls W J, Romberger J S, et al. Estimating generalized soil-watercharacteristics from texture. Soil Science Society of America Journal,1986,50(4):1031-1036
    [68] Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matterforhydrologic solutions,2005
    [69] Seibert J. Conceptual runoff models-fiction or representation of reality?, Uppsala: theFaculty of Science and Technology, Uppsala University,1999
    [70] Sharpley A N, Weld J L, Beegle D B, et al. Development of phosphorus indices for nutrientmanagement planning strategies in the United States. Journal of soil and water conservation,2003,58:137-152
    [71] Soil Conservation Service Section4: Hydrology in National Engineering Handbook. SCS,1981:353-364
    [72] Tim U S, Mostaghim S, Shanholtz V O. Identification of critical nonpoint pollution sourceareas using geographic information systems and water quality modeling. Water ResourcesBulletin,1992,28(5):877-887
    [73] Theodore A E, Eric F W. Watershed weighting of export coefficients to map criticalphosphorous loading areas. Journal of American Water Resources Association,2003,39:165-181
    [74] Thornton J A. Assessment and control of non-point source pollution of aquatic ecosystems:a practicalPearl River, Urban hydrology for small watersheds, Soil Conservation ServiceEngineering Division. U S Department of Agriculture, Technical Release, New York: TheParthenon Publishing Group,1986,55:296-299
    [75] Trenkel M E.Controlled-releaseandFertilizerinAgrieulture.Paris:InternationalFertilizerIndustryAssoeiation(Tfa),1997:61-64
    [76] Tripathi M P, Panda R K, Raghuwanshi N S. Calibration and validation of SWAT model forpredicting runoff and sediment yield of a small watershed in India. AgriculturalEngineering Journal,2003,12(1&2):95-118
    [77] Tripathi M P, Panda R K, Raghuwanshi N S. Identification and prioritisation of criticalsub-watersheds for soil conservation management using the SWAT model. BiosystemsEngineering,2003,85(3):365-379
    [78] Tripathi M P, Panda R K, Raghuwanshi N S. Development of effective management planfor critical subwatersheds using SWAT model.Hydrol.Process,2005,19:809-826
    [79] Urban hydrology for small watersheds, Soil Conservation Service Engineering Division. US Department of Agriculture, Technical Release,1986:55
    [80] USEPA. PLOAD version3.0.An ArcView GIS Tool to Calculate Nonpoint Sources ofPollution in Watershed and Storm water Projects,User’s Manual,2001
    [81] Van Griensven. Sensitivity, auto–calibration, uncertainty and model evaluation inSWAT2005. Grassland, soil and water research service, Temple TX,2007
    [82] Vandenberghe V, Van Griensven A, Bauwens W. Sensitivity analysis and calibration of theParameters of ESWAT: Application to the river Dender. Water Science and Technology,2001,43(7):295-301.
    [83] Vertessy R A, Hatton T J, O’Shaughnessy P J etal. Predicting water yield from a mountainash forest catchment using a terrain analysis based catchment model. Journal of Hydrology,1993,(150):665-700
    [84] Wang Q J. The genetic algorithm and its application to calibration conceptualrainfall-runoff models. Water Resources Research,1991,27(9):2467-2471
    [85] Weijers S R, Vanrolleghem P A. A Procedure for selecting Parameters in calibrating theactivated Sludge model no.1with full-scale plant data. Water Science and Technology,1997,36(5):69-79
    [86] White K L, Chaubey I. Sensitivity analysis, calibration, and validations for a multisite andmultivariable SWAT model. Journal of the American Water Resources Association,2005,41(5):1077-1089
    [87] Williams J R, Hann R W. Optimal operation of large agricultural watersheds with waterquality constraints. Texas Water Resources Institute, Texas A&M Univ., Tech. Rept. R WNo.96
    [88] Williams J R, Sharply A N. EPIC-Erosion Productivity Impact CalculatorⅠ. ModelDocumentation. US Department of Agriculture Technical Bulletin N,1990
    [89] Williams J R, Hann R W, Optimal Operation of large agricultural watersheds with waterquality constraints. Texas: Texas Water Resources Institute, Texas A&M University,1973
    [90] Williams J R.Chapter25: The EPIC model. In: V P Singh (ed.) Computer models ofwatershed hydrology,Winnipeg, Canada: Water Resources Publications,1995:909-1000
    [91] Wisehmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of theRoeky Mountains.USDA Agricultural Handbook, No1292,1965
    [92] Worrall F, Burt T P. The impact of land-use change on water quality at the catchment scale:the use of export coefficient and structural models. Journal of Hydrology,1999,221(1-2):75-90
    [93]白木,庚晋,子荫.切实解决我国化肥施用不当造成的污染问题.磷肥与复肥,2003,18(1):9-11
    [94]白薇,刘国强,董威,等. SWAT模型参数自动率定的改进与应用.中国农业气象,2009,30(增2):271-275
    [95]鲍全盛,王华东.我国水环境非点源污染研究与展望.地理科学,1996,16(1):66-72
    [96]鲍全盛,曹利军,等.密云水库非点源污染负荷评价研究.水资源保护,1997,(1):8-11
    [97]蔡明,李怀恩,庄咏涛,等.改进的输出系数法在流域非点源污染负荷估算中的应用.水利学报,2004,(7):40-45
    [98]曹文志,洪华生,张玉珍,等.AGNPS在我国东南亚热带地区的检验.环境科学学报,2002,(4):537-540
    [99]曹志洪.科学施肥与中国的粮食安全.土壤,1998,(30):57-63
    [100]陈丁江,吕军,金树权,沈哗娜.非点源污染河流的水环境容量估算和分配.环境科学,2007,28(7):1416-1424
    [101]陈强,苟思,秦大庸,等.一种高效的SWAT模型参数自动率定方法.水利学报,2010,41(1):113-119
    [102]陈同斌,曾希柏,胡清秀.中国化肥利用率的区域分异.地理学报,2002,57(5):531-538
    [103]崔广柏,扎黑尔,罗建.利用GIS定量评价太湖流域的非点源污染.湖泊科学,2003,15(3):236-244
    [104]范丽丽,沈珍瑶,刘瑞民.不同降雨一径流过程中农业非点源污染研究.环境科学与技术,2008,(10):5-8
    [105]房孝铎,王晓燕,欧洋.径流曲线数法(SCS法)在降雨径流量计算中的应用—以密云石匣径流试验小区为例.首都师范大学学报(自然科学版),2007,28(1):89-92
    [106]傅大放,石峻青,李贺.高速公路雨水径流重金属污染初期效应.环境科学学报,2009,29(8):1672-1677
    [107]高良敏,陆根法,刘丽莉,等.大浦镇农村生活污染公众调查研究.环境污染与防治,2005,27(8):575-577
    [108]高祥照,马常宝,陈守伦.我国农业发展与化肥施用趋势分析.化肥工业,2003,30(3):3-7
    [109]高扬,朱波,周培,等.紫色土坡地氮素和磷素非点源输出的人工模拟研究.农业环境科学学报,2008,27(4):1371-1376
    [110]葛怀凤,秦大庸,周祖昊,等.基于污染迁移转化过程的海河干流天津段污染关键源区及污染类别分析.水利学报,2011,42(1):61-67
    [111]郝芳华,程红光,杨胜天.非点源污染模型——理论、方法与应用.北京:中国科学环境出版社,2006
    [112]洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究.北京:科学出版社,2005
    [113]洪华生,黄金良,张洛平,等.AnnAGNPS模型在九龙江流域农业非点源污染模拟应用.环境科学,2005,(4):63-69
    [114]贾宁凤.基于AnnAGNPS模型的黄土高原小流域土壤侵蚀和养分流失定量评价:[硕士学位论文].北京:中国农业大学,2005
    [115]金平,王雁,王金辉.农膜污染与防治对策.安徽技术师范学院学报,2003,1v(1):66-67
    [116]李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,1996,(2):14-18
    [117]李家科,刘健,秦耀民,等.基于SWAT模型的渭河流域非点源氮污染分布式模拟.西安理工大学学报,2008,(3):278-28
    [118]李家康,林葆,梁国庆,等.对我国化肥使用前景和剖析.植物营养与肥料学报,2001,7(1):1-10
    [119]李吉学,李金玉,李平.南四湖水质有机污染评价及趋势分析.治淮,1999,(07):38-39
    [120]李俊然,陈利顶,傅伯杰,等.于桥水库流域地表水非点源N时空变化特征.地理科学,2002,22(22):238-242
    [121]李琪,陈利顶,齐鑫,等.流域尺度农业磷流失危险性评价与关键源区识别方法.应用生态学报,2007,18(9):1982-1986
    [122]李爽.基于SWAT模型的南四湖流域非点源氮、磷污染模拟及湖泊沉积物的响应研究:
    [博士学位论文].山东:山东师范大学,2012
    [123]李振炜,于兴修,姚孝友,等.农业非点源污染关键源区识别方法研究进展.生态学杂志,2011,30(12):2907-2914
    [124]廖凯华.大沽河流域土壤水资源评价及农业节水灌溉模式研究:[硕士学位论文].山东:青岛大学,2009
    [125]梁博,王晓燕,曹利平.中国水环境非点源污染负荷估算研究方法.吉林师范大学学报,2004,(3):58-61
    [126]林葆.化肥与无公害农业.北京:中国农业出版社,2003.24-100
    [127]林葆,李家康.当前我国化肥的若干问题和对策.磷肥与复肥,1997,12(2):1-6
    [128]林成谷.土壤污染与防治.北京:中国农业出版社,1996
    [129]刘宝存,赵同科.农业面源污染综合防控技术研究与应用.北京:中国农业科学技术出版社,2011
    [130]刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展,2003,22(5):437-445
    [131]刘光栋,吴文良,彭光华,等.华北高产农区公众对农业面源污染的环境保护意识及支付意愿调查.农村生态环境,2004,20(2):4-45
    [132]刘建昌,陈伟琪,张洛平,等.构建流域农业非点源污染控制的环境经济手段研究-以福建省九龙江流域为例.中国生态农业学报,2005,13(3):56-190
    [133]刘晋,李致家.黄河河源区分布式水文模拟研究.人民黄河,2007,29(9):30-32
    [134]刘梅梅.大沽河流域农业非点源N、P污染物入海量模拟研究:[硕士学位论文].山东:中国海洋大学,2009
    [135]龙天渝,梁常德,李继承,等.基于SLURP模型和输出系数法的三峡库区非点源氮、磷负荷预测.环境科学学报,2008,28(3):574-581
    [136]毛晓健.(青岛北宅)白沙河流域非点源污染模拟研究:[硕士学位论文].山东:青岛理工大学,2006
    [137]孟庆华,杨林章.三峡库区不同土地利用方式的养分流失研究.生态学报,2000,20(6):1028-1033
    [138]孟丹,王宁,刘振峰.石头口门水库双阳河流域农业非点源污染发生潜力评价.农业环境科学学报,2008,27(4):1421-1426
    [139]孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社,2008.1-263
    [140]美国土壤保持局Soil Conservation Service National Enginering Handbook, Section4.1956.23-65
    [141]浦祥.大沽河流域非点源氮输出及其对胶州湾水质影响的数值研究:[硕士学位论文].山东:中国海洋大学,2011
    [142]庞靖鹏.非点源污染分布式模拟—以密云水库水源地保护为例.北京师范大学:[博士论文].北京:北京师范大学,2007
    [143]钱国栋.青岛市陆源污染物排放总量控制网络化综合管理平台总体框架设计研究:[博士学位论文].山东:中国海洋大学,2012
    [144]荣混,陈兴伟,林文娇.晋江西溪流域非点源污染的SWA丁模型模拟.亚热带资源与环境学报,2008,(4):37-43
    [145]阮晓红,宋世霞,张瑛.非点源污染模型化方法的研究进展及其应用.人民黄河,24(11):25-27
    [146]单保庆,尹澄清,于静,等.降雨-径流过程中土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(1):7-12
    [147]水利部水力水电规划设计总院,全国水资源综合规划技术工作组.全国水资源综合规划地表水水质评价及污染物排放量调查估算工作补充技术细则.北京:水利部水利水电规划设计总院,2003
    [148]苏保林,王建平,贾海峰,等.密云水库流域非点源污染识别.清华大学学报(自然科学版),200613(3):360-365
    [149]苏允兰,莫汉宏,杨克武,等.土壤中结合态农药环境毒理研究进展.环境科学进展,1999,7(3):45-51
    [150]唐莉华,林文蜻,张思聪,等.基于SWAT模型的温榆河流域非点源污染模拟与分析.水利发电学报,2010,(4):6-13
    [151]万超,张思聪.基于GIS的潘家口水库面源污染负荷计算.水力发电学报,2003,(2):62-68
    [152]王飞儿,吕唤春,陈英旭,王栋.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284
    [153]王书功.水文模型参数估计方法及参数估计不确定研究:[博士学位论文].北京:中国科学院,2006
    [154]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟—以密云水库北部流域为例.农业环境科学学报,2008,(3):1098-1105
    [155]王晓燕.非点源污染及其管理.北京:海洋出版社,2003
    [156]王小治,王爱礼,尹微琴等.太湖流域农业非点源污染优先识别区研究—以昆山为例.农业环境科学学报,2009,28(9):1874-1879
    [157]王中根,刘昌明,黄友波. SWAT模型的结构、原理及应用研究.地理科学进展,2003,1:79-86
    [158]王忠忠,罗定贵,周文斌,等.基于SWAT-X模型的抚河流域径流量模拟研究.地理与地理信息科学,2009,25(4):95-99
    [159]王玉合,张贵文. SWAT模型简介及其在非点源污染研究中的应用.科技广场,2008,(05):67-86
    [160]王文善.农业要持续发展绝对离不开化肥.磷肥与复肥,2003,18(4):1-4
    [161]王振刚.密云水库上游石匣小流域非点源污染负荷模型研究与建立:[博士学位论文].北京:首都师范大学,2002
    [162]肖军仓,周文斌,罗定贵,等.非点源污染模型SWAT用户应用指南.北京:地质出版社,2010
    [163]许炯心.黄河中游多沙粗沙区高含沙水流的粒度组成及其地貌学意义.泥沙研究,1999,(5):89-95
    [164]徐玉宏.我国农膜污染现状和防治对策.环境科学动态,2003,(2):9-11
    [165]徐宗学.水文模型.北京:科学出版社,2009
    [166]薛晨.基于SWAT模型的产流产沙模拟与模型参数不确定性分析:[博士学位论文].北京:华北电力大学,2011
    [167]薛丽娟.太湖西苔溪流域径流过程模拟:[博士学位论文].大连:大连理工大学,2006
    [168]燕惠民.中国农业面源污染现状与防治对策.见:全国农业面源污染与综合防治学术研讨会论文集.北京:中国农学通报,2004
    [169]阎伍玫.巢湖流域不同土地利用类型地表径流污染特征研究.长江流域资源与环境,1995,7(3):274-277
    [170]杨苏树,倪喜云.大理州洱海流域农业非点源污染现状.农业环境与发展,1999,(2):43-44
    [171]尹刚.基于SWAT2000的图们江流域氮、磷营养物非点源污染研究:[硕士学位论文].吉林长春:东北师范大学,2009
    [172]袁宇,等.污染物入海通量非点源贡献率的分析方法.环境科学研究,2008,21(5):169-173
    [173]曾希柏,胡学玉,胡清秀.我国肥料的施用现状及发展趋势.科技导报,2002(8):36-39
    [174]赵磊,邓维,朱继业,等.太湖流域农村公众环境意识案例研究.长江流域资源与环境,2005,3:58-61
    [175]赵小敏.土壤地质与资源环境.北京:地质出版社,2001
    [176]张皓天,张弛,周惠成,等.基于SWAT模型的流域非点源污染模拟.河海大学学报(自然科学版),2010,(6):644-650
    [177]张乃明,余扬,等.滇池流域农田土壤径流磷污染负荷影响因素.环境科学,2003,24(3):155-157
    [178]张平仓,唐克丽,郑粉丽,等.皇甫川流域泥沙来源及其数量分析.水土保持学报,1990,(4):59-62
    [179]张秋玲.基于SWAT模型的平原区农业非点源污染模拟研究:[博士学位论文].浙江:浙江大学,2010
    [180]张水龙,庄季屏.农业非点源污染研究现状与发展趋势.生态学杂志,1998,17(6):51-55
    [181]张素梅,王宗明,张柏.石头口门水库流域土地利用/覆被变化对非点源污染负荷的影响.生态科学,2009,25(1):66-72
    [182]张淑荣,陈利顶,等.农业区非点源污染潜在危险性评价—以于桥水库流域磷流失为例.第四纪研究,2003,23(3):262-269
    [183]张天柱.区域水污染物排放总量控制系统的理论模式.环境科学动态,1990,(1):1-23
    [184]郑一,王学军.非点源污染研究的进展和展望.水科学进展,2002,13(1):105-110
    [185]中华人民共和国水利部.水土保持监测技术规程.北京:中国水利水电出版社,2002
    [186]庄咏涛,李怀恩.农业非点源污染模型浅析.西北水资源与水工程,2001,(4):12-16
    [187]周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法.生态学报,2005,25(12):3368-3374
    [188]周慧平,高超.巢湖流域非点源磷流失关键源区识别.环境科学,2008,29(10):2696-2701
    [189]周徐海,王宁,郭红岩,等.农业非点源污染潜力指数系统(APPI)在太湖典型区域的应用.农业环境科学学报,2006,25(4):1029-1034
    [190]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究.资源科学,2005,27(12):16-22
    [191]朱兆良,诺斯,孙波.中国农业面源污染控制对策(中英文).北京:中国环境科学出版社,2006
    [192]邹桂红.基于AnnAGNPS模型的非点源污染研究—以大沽河典型小流域为例:[博士学位论文].山东:中国海洋大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700