太湖蓝藻水华形成过程中的浮游植物群落动态及其驱动因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水华蓝藻早在上个世纪已经出现在富营养化的内陆、河口和海岸等水域。浮游植物是水生生态系统生物资源的重要组成部分,是水域食物链的基础环节,作为水环境中的主要自养生物,浮游植物的种类组成特点和数量分布等生态特征,在一定程度上反映了水域生态环境的基本特征。多年来,针对太湖浮游植物群落结构的野外观测、数值模拟等方面进行了大量研究工作。但目前已有的研究中,多集中在水华蓝藻发生的机制研究和水华暴发过程中的浮游植物优势类群与环境因子二者的相关性分析方面,对浮游植物的群落结构,特别是水华爆发期的浮游植物的群落结构的时空变化特征的研究明显不足;此外,研究区域多数局限于蓝藻水华暴发水域以及与湖心区的对比等。
     本文通过对2009至2010年对太湖浮游植物时空分布特征、营养盐分布进行了全湖性的阶段性监测。分析了浮游植物群落结构的分布特点,包括浮游植物种类组成、优势种组成、细胞数量、时空分布、季节动态等,利用多元统计分析(CCA和RDA)进一步主要环境因子对浮游植物群落组成的影响;为了进一步验证营养盐对水华蓝藻暴发的作用,对蓝藻优势种Microcystis aeruginosa进行精确的室内控制培养,结果发现在室内培养中,该优势种只表现出生长快的特征,而没有发生相应的藻类聚集的特点。主要研究结论如下:
     (1)本次调查研究的结果中,浮游植物种类数量共计为8门、79属、207种,分别属于8个门,其中蓝藻门26种,占总种数的11.1%;硅藻门73种,占总种数的31.1%;绿藻门种类最多,108种,占总种数的46.00%;裸藻门20种,占8.50%:甲藻门3种,占1.3%;隐藻门2种,占0.9%;金藻门4种,占1.7%。结合太湖40多年的研究资料分析,得出总趋势为藻类的物种数量减少而细胞密度急剧增加。浮游植物优势类群和常见属种的变化相对较小。
     (2)通过水华暴发期和非水华暴发期间的浮游植物优势类群空间分布的对比研究,发现水华暴发期的浮游植物的群落结构具有非常明显的特征,铜绿微囊藻M. aeruginosa生物量最大为2.987mg/L,其次为阿氏拟鱼腥藻0.306mg/L;它们的细胞丰度分别为192.98×105cell/L和7.47×105cell/L。因此微囊藻属Microcystis不仅是蓝藻门中的优势类群,且是整个浮游植物群落的优势类群,特别是微囊藻属Microcystis生物量和细胞丰度可作为监测太湖水质和富营养化进程的指示物种和指标。
     (3)通过浮游植物群落结构在蓝藻水华暴发前期、爆发期和蓝藻越冬期的动态研究分析得出,1月由于水温较低,处于4℃以下,虽然水体中的营养盐浓度高,铜绿微囊藻M. aeruginosa在沉积物表层中以活体形式存在,但不能形成蓝藻水华。推断低水温(<4℃)是驱动太湖浮游植物群落季节演替的主要因子,是蓝藻水华发生的最重要限制因子。
     (4)利用多元统计分析方法(CCA和RDA)分析了营养盐、透明度等主要环境因子对浮游植物群落组成和优势类群的影响,结果表明:总磷、总氮、氨态氮和透明度是影响浮游植物群落结构的主要因子。梅梁湾、西太湖湾水体中氮磷含量均很高且总氮含量高于总磷含量,均值分别达到2.0mg/L和0.14mg/L,N/P为12时,形成明显的蓝藻水华;而在太湖东太湖湾,水体中氮磷含量相对较低,分别为1.52mg/L和0.09mg/L,其N/P为16时,不形成蓝藻水华,因此推测高氮磷含量和较低的N/P是蓝藻水华发生的营养盐限制因子。
     (5)通过不同氮磷浓度对铜绿微囊藻M. aeruginosa生长实验,结果为:铜绿微囊藻M. aeruginosa最大现存量出现在氮磷比为10时,随着所设定的磷浓度的增加而增大。盘星藻Scenedesmus. sp随着培养基中磷浓度增大,细胞最大现存量的数值逐渐减小。混合培养条件下,3种藻类中铜绿微囊藻M. aeruginosa的藻类细胞现存量最大,当氮磷比为20和30,蛋白核小球藻C. pyrenoidosa和盘星藻Scenedesmus.sp的藻类细胞现存量数值差别不大。
     (6)通过3种磷源对藻类的生长实验得出三聚磷酸钠Na5P3O10对M. aeruginosa现存量的影响最大,与该盐能够分解为HPO42-和P043-两种离子有关。焦磷酸钠Na4P2O7为磷源的水体中藻类现存量是3种氮源中最低的,降幅为40%~59%之间。
     (7)通过3种氮源对藻类的生长实验,分析不同的氮源对藻类的生长促进作用不同,硝态氮和氨态氮是藻类的主要无机氮源,氨氮是藻类能够优先利用的氮源。尿素小分子有机氮也促进了水体铜绿微囊藻M. aeruginosa生长。
Rapidly growing anthropogenic inputs, associating with agriculture, aquaculture, urbanization and industrial expansion is a primary cause of the water quality declining. Within the past several decades, many of our freshwater lakes have changed from productive ecosystems to ones experiencing sudden trophic changes, biogeochemical alterations, and a deterioration in habitat quality. Nuisance and harmful phytoplankton blooms are becoming more common generally. These blooms are increasing worldwide and representing a serious threat to drinking water supplies, and the economic sustainability. Nutrients over richment of waters by urban, agricultural, and industrial development have promoted the growth of cyanobacteria. Phytoplankton utilizes light, carbon dioxide, a range of inorganic and organic nutrients to generate compounds by photosynthesis, which provides fundamental energy and matter for food webs. The ecological characteristics of phytoplankton species composition and abundance may be in response to aquatic environment gradients to a certain extent. Taihu Lake has experienced accelerating eutrophication over the past several decades. It has changed from a mesotrophic, diatom-dominated lake to hyper-eutrophic, cyanobavteria-dominated system, with Microcystis blooms now occurring regularly. In the last few years, already a large literature referring to field observation and numerical modeling of cyanobacterial blooms, and the phosphorus controlling of phytoplankton biomass seems more valuable than the nitrogen and phosphorus controlling. However, more researches have focused on the mechanism of algal bloom and relationships analysis between phytoplankton community structure and the possible controlling factors. There is apparently deficient about the spatial and temporal characteristics of phytoplankton community structure. In addition, studied area mostly confined to the comparative between cyanobacteria bloom zone and central lake zone. This paper studied the processes of spatial-temporal variability in the phytoplankton community structure, biomass, dominance species, and the nutrients concentrations characteristics in Taihu Lake during2009-2010year. We analyzed biological responses to these nutrient alterations including shifts in probable nutrient limitations for phytoplankton growth, shifts in phytoplankton production, and indicators of eutrophication. Considering the occurrence of cyanobacterial bloom, the aims of the present study were also to analyze the linkage between nutrient-eutrophication and dominance species Microcystis, to try exploring the competitive mechanism of dominance species. This paper aimed to provide the information about phytoplankton community composition and succession changes, and to aid understanding of lake ecosystems as well as for effective management of lake.
     (1) A total of207phytoplankton species were identified from the May2009to August2010, belonged to8phyla,79genera. Over the whole water column the Chlorophyceae dominated total species richness, followed by Bacillariophyceae, and then the Cyanophyceae. However, Cyanophyceae dominated during the study period, with peak abundance occurring in summer and autumn. Based on the studies of the past40years about Taihu Lake, result showed that phytoplankton species composition and cell abundance had changed significantly. The general trend was the species number reduced while cell abundance accelerated sharply, and with relatively little changes about dominant species and common genera. These reflected that the seriousness of water pollution and eutrophication status.
     (2) Through the comparative study of phytoplankton community spatial distribution in bloom and non bloom period, we found that phytoplankton community structure was with obvious characteristics during bloom period. In May, there was visible bloom strips distribution in lake, the cyanobacterial biomass was about1.01~21.56%of total phytoplankton biomass. While in the bloom period, the block and patchy distribution of cyanobacteria could be observed, the proportion of cyanobacteria biomass was increased significantly, and the ratio often comprised of an excess of90%at some water zone. Microcystis not only was the dominant species of cyanobacteria, also was the dominant species of total phytoplankton. The phytoplankton biomass values and cell abundance could be as indicators of water quality and eutrophication progress of Taihu Lake.
     (3) In January, due to water temperature was4℃, Microcystis couldn't find or rarely exist in surface layer, while hibernated in surface layer or mid layer of sediments. Taihu Lake is a larger shallow lake with the temperature difference between surface layer and bottom water in general is between0~1℃. Microcystis could withstand lower water temperatures and would be expected to survive at sediment during winter in Taihu Lake. Although with higher nutrients concentrations and Microcystis species, the algal bloom was not forming due to the lower water temperature. Thus, the lower water temperature is the most significant factor in blooming occurrence.
     (4) The nitrogen content and phosphorus content in Taihu Lake were high and the nitrogen concentration was higher than phosphorus's. Nutrients contents, especially increasing nitrogen values could not influence on phytoplankton biomass, but may have impact on phytoplankton community structure and succession needed to be studied further future. Phosphorus could be a key factor to determine the distribution of cyanobacterial bloom in Taihu Lake.
     (5) The experiment results showed that Microcystis aeruginosa growth had different sensitivity to nitrogen sources; ammonium and nitrate were the major inorganic nitrogen. M. aeruginosa growth preferred ammonium to nitrate, and organic nitrogen (CO(NH2)2) could promote Microcystis aeruginosa growth. Therefore, recent frequent cyanobacterial bloom may relate to urea concentrations and be worth to study further.(6) Among three phosphorus sources, M. aeruginosa standing crop was highest by phosphorus sources of Na5P3O10, while by the Na4P2O7with the lowest values, and the M. aeruginosa standing crop decreased about40%-59%.
     There was relative importance of picophytoplankton to total phytoplankton biomass. A comprehensive observation of that picophytoplankton, including phytoplankton biomass, growth rates and so on, has contributed to explainations of water bloom in Taihu Lake. Then, the water body turbulence from other factors, such as wind force, wind direction, bottom terrain and light, and the influence from interaction between those factors on phytoplankton community should be studied further.
引文
[1]Nixon SW. Coastal marine eutrophication:a definition, social causes, and future concerns [J]. Ophelia,1995,41(1):199-219.
    [2]Paerl HW Huisman J. Climate change:a catalyst for global expansion of harmful cyanobacterial blooms [J]. Environmental Microbiology Reports,2009,1(1):27-37.
    [3]Paerl HW Huisman J. Blooms like it hot [J]. SCIENCE-NEW YORK THEN WASHINGTON-, 2008,320(5872):57-58.
    [4]Huisman J, Matthijs HCP, Visser PPM. Harmful cyanobacteria [M]. Springer,2005.
    [5]Paerl HW Fulton Iii RS, Ecology of harmful cyanobacteria, in Ecology of Harmful Algae.2006, Springer, p.95-109.
    [6]Carmichael WW. Health effects of toxin-producing cyanobacteria:"the CyanoHABs"? [J]. Human and ecological risk assessment:An International Journal,2001,7(5):1393-1407.
    [7]Guo L. Doing battle with the green monster of Taihu Lake [J]. Science,2007,317(5842):1166.
    [8]Bonsdorff E, Blomqvist EM, Mattila J, Norkko A. Long-term changes and coastal eutrophication. Examples from the hand Islands and the Archipelago Sea, northern Baltic Sea [J]. Oceanologica Acta,1997,20(1):319-329.
    [9]Sommer U, Gliwicz MZ, W L. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea [J]. Estuarine, Coastal and Shelf Science,2007,71 (3-4):580-592.
    [10]Paerl HW, Valdes LM, Peierls BL, Adolf JE, Harding LW. Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems [J]. Limnology and Oceanography,2006, 51(1):448-462.
    [11]Dokulil M, Chen W, Cai Q. Anthropogenic impacts to large lakes in China:the Tai Hu example [J]. Aquatic Ecosystem Health and Management,2000,3(1):81-94.
    [12]Karentz D Smayda TJ. Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980) [J]. Marine Ecology Progress Series,1984,18:277-293.
    [13]Visser ME. Keeping up with a warming world; assessing the rate of adaptation to climate change [J]. Proceedings of the Royal Society B:Biological Sciences,2008,275(1635):649-659.
    [14]Elliott JA. Is the future blue-green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria [J]. Water research,2012,46: 1364-1371.
    [15]Merila" J, Sheldon BCK, B LE. Explaining stasis:microevolutionary studies in natural populations [J]. Genetica 2001,112,:199-222.
    [16]Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J. Climate change and evolution:disentangling environmental and genetic responses [J]. Molecular Ecology,2007,17(1):167-178.
    [17]Chen FZ, Song XL, Hu YH, Liu ZW, Qin BQ. Water quality improvement and phytoplankton response in the drinking water source in Meiliang Bay of Lake Taihu, China [J]. Ecological Engineering,2009,35(11):1637-1645.
    [18]Chen M, Chen F, Zhao B, Wu QL, Kong F. Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China [J]. Aquatic Ecology,2010, 44(1):1-12.
    [19]Chen W, Song L, Peng L, Wan N, Zhang X, Gan N. Reduction in microcystin concentrations in large and shallow lakes:Water and sediment-interface contributions [J]. water research,2008, 42(3):763-773.
    [20]Sun SC Huang YP, Taihu.1993, The Ocean Press, Beijing.
    [21]Kisand V Noges T. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake [J]. FEMS microbiology ecology,2004,50(1):51-62.
    [22]Noges P, Mischke U, Laugaste R, Solimini AG. Analysis of changes over 44 years in the phytoplankton of Lake Vortsjarv (Estonia):the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices [J]. Hydrobiologia,2010,646(1):33-48.
    [23]Elliott JA, Jones ID, Thackeray SJ. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake [J]. Hydrobiologia,2006, 559(1):401-411.
    [24]Kahru M, Leppanen JM, Rud O, Savchuk OP. Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea [J]. Marine Ecology Progress Series,2000, 207:13-18.
    [25]Markensten H, Moore K, Persson I. Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate [J]. Ecological Applications,2010,20(3): 752-767.
    [26]Tonk L, Bosch K, Visser PM, Huisman J. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa [J]. Aquatic microbial ecology,2007,46(2):117.
    [27]Moisander PH, McClinton E, Paerl HW. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria [J]. Microbial Ecology,2002, 43(4):432-442.
    [28]Carlsson P, Graneli E, Graneli W, Rodriguez EG, de Carvalho WF, Brutemark A, Lindehoff E. Bacterial and phytoplankton nutrient limitation in tropical marine waters, and a coastal lake in Brazil [J]. Journal of Experimental Marine Biology and Ecology,2012,418:37-45.
    [29]Wiedner C, Rucker J, Bruggemann R, Nixdorf B. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions [J]. Oecologia,2007,152(3): 473-484.
    [30]Graneli E Turner JT. Ecology of harmful algae [M]. Springer,2007.
    [31]Kardinaal WEA, Janse I, Kamst-van Agterveld M, Meima M, Snoek J, Mur LR, Huisman J, Zwart G, Visser PM. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes [J]. Aquatic microbial ecology,2007,48(1):1-12.
    [32]Honjo M, Matsui K, Ueki M, Nakamura R, Fuhrman JA, Kawabata Z. Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond [J]. Journal of Plankton Research,2006,28(4):407-412.
    [33]Hallegraeff GM. A review of harmful algal blooms and their apparent global increase* [J]. Phycologia,1993,32(2):79-99.
    [34]Aubry FB, Acri F, Bastianini M, Pugnetti A, Socal G. Picophytoplankton contribution to phytoplankton community structure in the Gulf of Venice (NW Adriatic Sea) [J]. International Review of Hydrobiology,2006,91(1):51-70.
    [35]Barbosa AB, Domingues RB, Galvao HM. Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana estuary, south-western Iberia):A decadal study of anthropogenic and climatic influences [J]. Estuaries and Coasts,2010,33(2):324-341.
    [36]Anderies JM Beisner BE. Fluctuating environments and phytoplankton community structure:a stochastic model [J]. The American Naturalist,2000,155(4):556-569.
    [37]Ben A. Ward, Stephanie Dutkiewicz, Andrew D. Barton, Michael J.Follows. Biophysical Aspects of Resource Acquisition and Competiton in Algal Mixotrophs [J]. The American Naturalist, 2011,178(1):98-112.
    [38]Torremorell A, Llames ME, Perez GL, Escaray R, Bustingorry J, Zagarese H. Annual patterns of phytoplankton density and primary production in a large, shallow lake:the central role of light [J]. Freshwater Biology,2009,54(3):437-449.
    [39]陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步回归统计和蓝藻水华的初步预测[J].湖泊科学,2001,13(1):63-71.
    [40]宋晓兰,刘正文,潘宏凯,杨桂军,陈宇炜.太湖梅梁湾与五里湖浮游植物群落的比较[J].湖泊科学,2007,19(006):643-651.
    [41]Chen Y, Qin B, Teubner K, Dokulil MT. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China [J]. Journal of Plankton Research,2003,25(4):445.
    [42]Smayda TJ Reynolds CS. Community assembly in marine phytoplankton:application of recent models to harmful dinoflagellate blooms [J]. Journal of Plankton Research,2001,23(5):447.
    [43]Sommer U, Lengfellner K, Lewandowska A. Experimental induction of a coastal spring bloom early in the year by intermittent high-light episodes [J]. Marine Ecology Progress Series,2012, 446:61-71.
    [44]Lancelot C, Hannon E, Becquevort S, Veth C, De Baar H. Modeling phytoplankton blooms and carbon export production in the Southern Ocean:dominant controls by light and iron in the Atlantic sector in Austral spring 1992 [J]. Deep Sea Research Part I:Oceanographic Research Papers,2000,47(9):1621-1662.
    [45]Tilman D. Niche tradeoffs, neutrality, and community structure:a stochastic theory of resource competition, invasion, and community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):10854.
    [46]Butterwick C, Heaney SI, Tailing JF. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance [J]. Freshwater Biology,2004,50(2): 291-300.
    [47]Arhonditsis GB, Winder M, Brett MT, Schindler DE. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA) [J]. Water research,2004,38(18):4013-4027.
    [48]Anneville O, Ginot V, Druart J-C, Angeli N. Long-term study (1974-1998) of seasonal changes in the phytoplankton in Lake Geneva:a multi-table approach [J]. Journal of Plankton Research, 2002,24(10):993-1008.
    [49]Goldman CR, Jassby AD, Hackley SH. Decadal, interannual, and seasonal variability in enrichment bioassays at Lake Tahoe, California-Nevada, USA [J]. Canadian Journal of Fisheries and Aquatic Sciences,1993,50(7):1489-1496.
    [50]Lewandowska AM, Breithaupt P, Hillebrand H, Hoppe H-G, Jurgens K, Sommer U. Responses of primary productivity to increased temperature and phytoplankton diversity [J]. Journal of Sea Research,2012,72:87-93.
    [51]Robarts RD Zohary T. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria [J]. New Zealand Journal of Marine and Freshwater Research,1987,21(3):391-399.
    [52]Drakare S, Blomqvist P, BergstrOm AK, Jansson M. Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content [J]. Freshwater Biology,2003,48(4):729-740.
    [53]Fonseca BM Bicudo CEDM. How important can the presence/absence of macrophytes be in determining phytoplankton strategies in two tropical shallow reservoirs with different trophic status? [J]. Journal of Plankton Research,2010,32(1):31.
    [54]Tilzer MM. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake [J]. Limnol. Oceanogr,1973,18:15-30.
    [55]Interlandi SJ Kilham SS. Limiting resources and the regulation of diversity in phytoplankton communities [J]. Ecology,2001,82(5):1270-1282.
    [56]李夜光,李中奎,耿亚红,胡鸿钧,殷春涛,桂建平.富营养化水体中N,P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报,2006,26(2):317-325.
    [57]Chen Y, Fan C, Teubner K, Dokulil M. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China:an 8-year investigation [J]. Hydrobiologia,2003,506(1): 273-279.
    [58]Song X, Liu Z, Yang G, Chen Y. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of Lake Taihu, China [J]. Aquatic Ecology, 2010,44(1):41-54.
    [59]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学,2008,20(1):21-26.
    [60]沈爱春,徐兆安,吴东浩.太湖夏季不同类型湖区浮游植物群落结构及环境解释[J].水生态学杂志,2012,2(33):43-47.
    [61]Kling HJ, Watson SB, McCullough GK, Stainton MP. Bloom development and phytoplankton succession in Lake Winnipeg:a comparison of historical records with recent data [J]. Aquatic Ecosystem Health & Management,2011,14(2):219-224.
    [62]吴功果,倪乐意,曹特,谢平,徐军.洱海水生植物与浮游植物的历史变化及影响因素[J].水生生物学报,2013,37(5):912-918.
    [63]Xu H, Paerl HW, Qin B, Zhu G, Gao G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China [J]. Limnology and Oceanography,2010,55(1):420.
    [64]Reynolds CS. The ecology of freshwater phytoplankton [M]. Cambridge Univ Pr,1984.
    [65]Noges T, Noges P, Laugaste R. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake [J]. Hydrobiologia,2003,506(1): 257-263.
    [66]A. Sfriso, C. Facca, P.F.Ghetti. Temporal and spatial changes of macroalgae and phytoplankton in a Mediterranean coastal area:the Venice lagoon as a case study [J]. Marine Environmental Research,2003,56:617-636.
    [67]Bonilla S, Aubriot L, Soares MCS, Gonzalez-piana M, Fabre A, Huszar VLM, Lurling M, Antoniades D, Padisak J, Kruk C. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? [J]. FEMS microbiology ecology,2012,79:594-607.
    [68]Tuvikene L, Noges T, Noges P. Why do phytoplankton species composition and "traditional" water quality parameters indicate different ecological status of a large shallow lake? [J]. Hydrobiologia,2011,660(1):3-15.
    [69]Pinckney JL, Paerl HW, Harrington MB, Howe KE. Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina [J]. Marine Biology,1998,131(2):371-381.
    [70]Bomin S Shuqing S. The analysis on the features of the atmospheric circulation in preceding winters for the summer drought and flooding in the Yangtze and Huaihe River Valley [J]. Advances in Atmospheric Sciences,1994,11(1):79-90.
    [71]Kong Y, Xu X, Zhu L, Miao L. Control of the Harmful Alga Microcystis aeruginosa and Absorption of Nitrogen and Phosphorus by Candida utilis [J]. Applied biochemistry and biotechnology,2013,169(1):88-99.
    [72]Reynolds C. S. What factors influence the species composition of phytoplankton in lakes of different trophic status? [J]. Hydrobiologia,1998,369/370:11-26.
    [73]Smetacek V, Bathmann U, Nothig E-M, Scharek R. Coastal eutrophication:causes and consequences [J]. RFC Mantoura, J.-M. Martin, R. Wollast (eds.) Ocean margin processes in global change. John Wiley, Chichester,1991:251-279.
    [74]Harris GP. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management [J]. Canadian Journal of Fisheries and Aquatic Sciences,1980,37(5): 877-900.
    [75]James RT, Havens K, Zhu G, Qin B. Comparative analysis of nutrients, chlorophyll and transparency in two large shallow lakes (Lake Taihu, PR China and Lake Okeechobee, USA) [J]. Hydrobiologia,2009,627(1):211-231.
    [76]Cardoso LdS Marques DdM. The influence of hydrodynamics on the spatial and temporal variation of phytoplankton pigments in a large, sub-tropical coastal lake (Brazil) [J]. Brazilian Archives of Biology and Technology,2004,47(4):587-600.
    [77]Smith VH, Joye SB, Howarth RW. Eutrophication of freshwater and marine ecosystems [J]. Limnology and Oceanography,2006:351-355.
    [78]Schindler DW. Recent advances in the understanding and management of eutrophication [J]. Limnology and Oceanography,2006:356-363.
    [79]Cembella AD, Antia NJ, Harrison PJ. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae:A multidisciplinary perspective:Part Ⅰ [J]. Critical reviews in microbiology,1982,10(4):317-391.
    [80]Mackey KRM, Labiosa RG, Calhoun M, Street JH, Post AF, Paytan A. Phosphorus availability, phytoplankton community dynamics, and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea [J]. Limnology and Oceanography,2007:873-885.
    [81]范成新.太湖水体生态环境历史演变[J].湖泊科学,1996,8(4):297-304.
    [82]钱奎梅,陈宇炜,宋晓兰.太湖浮游植物优势种长期演化与富营养化进程的关系[J].生态科学,2008,27(2):65-70.
    [83]Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):The need for a dual nutrient (N & P) management strategy [J]. Water research,2011,45(5):1973-1983.
    [84]Rhew K, Ochs RM, Threlkeld ST. Interaction effects of fish, nutrients, mixing and sediments on autotrophic picoplankton and algal composition [J]. Freshwater Biology,2001,42(1):99-109.
    [85]Meijun Chen, Feizhou Chen, Biying Zhao, Wu QL, Fanxiang Kong. Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China [J]. Aquatic Ecology,2010,44:1-12.
    [86]Tan X, Kong F, Zeng Q, Cao H, Qian S, Zhang M. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors [J]. Journal of Environmental Sciences,2009, 21(7):892-899.
    [87]Liu YQ, Xie P, Zhang DW, Wen ZR. Seasonal dynamics of microcystins with associated biotic and abiotic parameters in two bays of Lake Taihu, the third largest freshwater lake in China [J]. Bulletin of environmental contamination and toxicology,2008,80(1):24-29.
    [88]Diehl S. Phytoplankton, light, and nutrients in a gradient of mixing depths:theory [J]. Ecology, 2002,83(2):386-398.
    [89]Bledsoe EL Phlips EJ. Relationships between phytoplankton standing crop and physical, chemical, and biological gradients in the Suwannee River and plume region, USA [J]. Estuaries and Coasts,2000,23(4):458-473.
    [90]Dillon PJ Rigler FH. A simple method for predicting the capacity of a lake for development based on lake trophic status [J]. Journal of the Fisheries Board of Canada,1975,32(9):1519-1531.
    [91]Vollenweider RA Kerekes J. The loading concept as basis for controlling eutrophication: philosophy and preliminary results of the OECD programme on eutrophication [J]. Progress in Water Technology,1980,12(2):5-38.
    [92]Reynolds CS. The response of phytoplankton communities to changing lake environments [J]. Aquatic Sciences-Research Across Boundaries,1987,49(2):220-236.
    [93]Spencer CN King DL. Regulation of blue-green algal buoyancy and bloom formation by light, inorganic nitrogen, CO 2, and trophic level interactions [J]. Hydrobiologia,1987,144(2): 183-191.
    [94]Qin B, Xu P, Wu Q, Luo L, Zhang Y. Environmental issues of Lake Taihu, China [J]. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China,2007:3-14.
    [95]Ochumba PBO Kibaara DI. Observations on blue-green algal blooms in the open waters of Lake Victoria, Kenya [J]. African Journal of Ecology,2008,27(1):23-34.
    [96]Hu W, Jorgensen SE, Zhang F. A vertical-compressed three-dimensional ecological model in Lake Taihu, China [J]. Ecological modelling,2006,190(3):367-398.
    [97]King DL. The role of carbon in eutrophication [J]. Journal (Water Pollution Control Federation), 1970:2035-2051.
    [98]Keating K.I. Blue-green algal inhibition of diatom growth:transition from mesotrophic to eutrophic community structure [J]. Science (New York, NY),1978,199(4332):971.
    [99]Murphy TP, Lean DR, Nalewajko C. Blue-green algae:their excretion of iron-selective chelators enables them to dominate other algae [J]. Science (New York, NY),1976,192(4242):900.
    [100]Porter KG. Selective grazing and differential digestion of algae by zooplankton [J].1973.
    [101]Kalff J Knoechel R. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes [J]. Annual Review of Ecology and Systematics,1978:475-495.
    [102]Pearsall WH. Phytoplankton in the English Lakes:Ⅱ. The composition of the phytoplankton in relation to dissolved substances [J]. The Journal of Ecology,1932:241-262.
    [103]Schindler DW. Evolution of phosphorus limitation in lakes [J]. Science,1977,195(4275): 260-262.
    [104]Niemi A. Blue-green algal blooms and N:P ratio in the Baltic Sea [J]. Acta Botanica Fennica, 1979,110:57-61.
    [105]Leonardson L Ripl W. Control of undesirable algae and induction of algal successions in hypertrophic lake ecosystems [J]. Developments in hydrobiology,1980,2:57-65.
    [106]Klemer AR, Feuillade J, Feuillade M. Cyanobacterial blooms:carbon and nitrogen limitation have opposite effects on the buoyancy of Oscillatoria [J]. Science,1982,215(4540): 1629-1631.
    [107]Yuwei C, Xiyun G, Boqiang Q. The Summer Phytoplankton Species Composition in Northern Part of West Taihu Lake [J]. JOURNAL OF LAKE SCIENCE,1998,4:35-40.
    [108]马荣华,孔繁翔,段洪涛,张寿选,孔维娟,郝景燕.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,2008,20(6):687-694.
    [109]孔繁翔,马荣华,高俊峰.太湖蓝藻水华的预防,预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.
    [110]胡鸿均魏印心,中国淡水藻类——系统,分类及生态.2006,北京:科学出版社.
    [111]Shei P, Lin W, Wang S, Liu J. Plankton and seston structure in a shallow, eutrophic subtropic Chinese lake [J]. Archiv fur Hydrobiologie. Stuttgart,1993,129(2):199-220.
    [112]Keylock CJ. Simpson diversity and the Shannon-WIener index as special cases of a generalized entropy [J]. Oikos,2005,109(1):203-207.
    [113]Xie L, Rediske RR, Hong Y, O'Keefe J, Gillett ND, Dyble J, Steinman AD. The role of environmental parameters in the structure of phytoplankton assemblages and cyanobacteria toxins in two hypereutrophic lakes [J]. Hydrobiologia,2012,691(1):255-268.
    [114]Takamura N Nakagawa M. Phytoplankton species abundance in Lake Kasumigaura (Japan) monitored monthly or biweekly since 1978 [J]. Ecological Research,2012:1-1.
    [115]Kishimoto N, Ichise S, Suzuki K, Yamamoto C. Analysis of long-term variation in phytoplankton biovolume in the northern basin of Lake Biwa [J]. Limnology,2013,14(1):117-128.
    [116]Sidik MJ, Rashed-Un-Nabi M, Azharul Hoque M. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia [J]. Estuarine, Coastal and Shelf Science,2008,80(2):251-260.
    [117]Sabater S, Artigas J, Duran C, Pardos M, Romani AM, Tomes E, Ylla I. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River) [J]. Science of the Total Environment,2008,404(1):196-206.
    [118]刘金殿,顾志敏,杨元杰,张玉明.长诏水库浮游植物群落结构及水质评价[J].生态学杂志,2012,31(11):2865-2871.
    [119]Ke Z, Xie P, Guo L. Controlling factors of spring-summer phytoplankton succession in Lake Taihu (Meiliang Bay, China) [J]. Hydrobiologia,2008,607(1):41-49.
    [120]Leon LF, Smith REH, Hipsey MR, Bocaniov SA, Higgins SN, Hecky RE, Antenucci JP, Imberger JA, Guildford SJ. Application of a 3D hydrodynamic-biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie [J]. Journal of Great Lakes Research,2011,37(1):41-53.
    [121]Reynolds CS. The ecology of phytoplankton [M]. Cambridge University Press,2006.
    [122]Chen Y, Song B, Olson D, Yu N. Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing [J]. Fisheries Research,2009,95(2-3):309-324.
    [123]Kwon Y, Hwang S, Park K, Kim H, Kim B, Shin K, An K, Song Y, Park Y. Temporal changes of phytoplankton community at different depths of a shallow hypertrophic reservoir in relation to environmental variables [J]. Ann. Limnol.-Int. J. Lim,2009,45:93-105.
    [124]Borics G, T6thmeresz B, Lukacs BA, Varbiro G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems [J]. Hydrobiologia,2012:1-12.
    [125]Hall NS, Paerl HW, Peierls BL, Whipple AC, Rossignol KL. Effects of climatic variability on toplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA [J]. Estuarine, Coastal and Shelf Science,2012:70-82.
    [126]Lewandowska AM, Hillebrand H, Lengfellner K, Sommer U. Temperature effects on phytoplankton diversity-the zooplankton link [J]. Journal of Sea Research,2012:359-364.
    [127]Wu X Mitsch WJ. Spatial and temporal patterns of algae in newly constructed freshwater (?)lands [J]. Wetlands,1998,18(1):9-20.
    [128](?)rong Qian, Ann E. Jochens, Mahlon C.Kennicutt Ⅱ, Biggs DC. Spatial and temporal (?)riability of phytoplankton biomass and community structure over the continental margin of (?)northeast Gulf of Mexico based on pigment analysis [J]. Continental Shelf Research,2003, 23:1-17.
    [129]Yang DF, Gao ZH, Chen Y, Wang PG, Sun PY. Examination of seawater temperature influence on phytoplankton growth in Jiaozhou Bay, North China [J]. Chin. J. Oceanol. Limnol,2004, 2(2):166-175.
    (?)LM. Characterization of native bacteria and their utilization of algal extracellular products by a mixed-substrate kinetic model [J]. Oikos,1985:311-322.
    [131]Imamura N. Studies on the water blooms in Lake Kasumigaura [J]. Proceedings-International Association of Theoretical and Applied Limnology,1981,1980.
    [132]T kamura N, Iwakuma T, Yasuno M. Photosynthesis and primary production of Microcystis aeruginosa Kutz. in Lake Kasumigaura [J]. Journal of Plankton Research,1985,7(3): 303-312.
    [133]Tan X, Kong F, Yu Y, Zhang M. Spatio-temporal variations of phytoplankton community composition assayed by morphological observation and photosynthetic pigment analyses in Lake Taihu (China) [J]. African Journal of Biotechnology,2011,8(19):4977-4982.
    [134]Thompson JK, Koseff JR, Monismith SG, Lucas LV. Shallow water processes govern system-wide phytoplankton bloom dynamics:A field study [J]. Journal of Marine Systems, 2008,74(1-2):153-166.
    [135]赵林林,朱广伟,陈元芳,李未,朱梦圆,姚昕,蔡琳琳.太湖水体水温垂向分层特征及其影响因素[J].水科学进展,2011,22(6).
    [136]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    (?)X Tu Q. The standard methods for observation and analysis in lake eutrophication [J]. China Environmental Science Press, Beijing, China (in Chinese),1990.
    [138]Xin H Stone R. China Amasses War Chest to Confront Its Environmental Nightmares [J]. Science, 2010,327(5972):1440-1441.
    [139]Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE. Controlling eutrophication:nitrogen and phosphorus [J]. Science (Washington),2009: 1014-1015.
    [140]徐耀阳,蔡庆华,黎道丰,王岚,孔令惠,余伟.三峡水库香溪河库湾拟多甲藻昼夜垂直分布初步研究[J].武汉植物学研究,2008,26(6):608-612.
    [141]白晓华胡维平.太湖水深变化对氮磷浓度和叶绿素a浓度的影响[J].水科学进展,2006,17(005):727-732.
    [142]Dai GZ, Shang JL, Qiu BS. Ammonia may play an important role in the succession of cyanobacterial blooms and the distribution of common algal species in shallow freshwater lakes [J]. Global Change Biology,2012:1571-1581.
    [143]张运林秦伯强.太湖水环境的演变研究[J].海洋湖沼通报,2001,2:8-15.
    [144]Burkholder JM. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries [J]. Ecological Applications,1998,8(spl): S37-S62.
    [145]Howarth RW Marino R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:evolving views over three decades [J]. Limnology and Oceanography,2006, 51(1):364-376.
    [146]Zohary T Robarts RD. Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa [J]. Journal of Plankton Research,1989,11(1):25-48.
    [147]Paerl HW, Fulton RS, Moisander PH, Dyble J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J]. The Scientific World Journal,2001,1:76-113.
    [148]吴生才陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学,2004,24(2):151-154.
    [149]秦伯强.太湖生态与环境若干问题的研究进展及其展量[J].湖泊科学,2009,21(4):445-455.
    [150]Cleveland CC Liptzin D. C:N:P stoichiometry in soil:is there a redfield ratio for the microbial biomass? [J]. Biogeochemistry,2007,85(3):235-252.
    [151]Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. Towards a functional classification of the freshwater phytoplankton [J]. Journal of plankton research,2002,24(5):417.
    [152]Rocha MR, Gaedke U, Vasseur DA. Functionally similar species have similar dynamics [J]. Journal of Ecology,2011,1453-1459.
    [153]Salmaso N, Buzzi F, Garibaldi L, Morabito G, Simona M. Effects of nutrient availability and temperature on phytoplankton development:a case study from large lakes south of the Alps [J]. Aquatic sciences,2012,74(3):555-570.
    [154]Levine SN Schindler DW. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada [J]. Canadian journal of fisheries and aquatic sciences,1999,56(3): 451-466.
    [155]Downing JA McCauley E. The nitrogen:phosphorus relationship in lakes [J]. Limnology and Oceanography,1992,37(5):936-945.
    [156]Oliver RL, Hamilton DP, Brookes JD, Ganf GG, Physiology, blooms and prediction of planktonic cyanobacteria, in Ecology of Cyanobacteria Ⅱ.2012, Springer, p.155-194.
    [157]Elser JJ, Marzolf ER, Goldman CR. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America:a review and critique of experimental enrichments [J]. Canadian journal of fisheries and aquatic sciences,1990,47(7):1468-1477.
    [158]Nalewajko C Murphy TP. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach [J]. Limnology,2001,2(1):45-48.
    [159]Barica J, Kling H, Gibson J. Experimental manipulation of algal bloom composition by nitrogen addition [J]. Canadian journal of fisheries and aquatic sciences,1980,37(7):1175-1183.
    [160]Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science,1983,221(4611):669-671.
    [161]黄文敏,毕永红,胡征宇.尿素对铜绿微囊藻905生理活性及产毒的影响[J].中国藻类学会第八次会员代表大会暨第十六次学术讨论会论文摘要集,2011.
    [162]Weber T Deutsch C. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation [J]. Nature,2012,489(7416):419-422.
    [163]Li Y, Waite AM, Gal G, Hipsey MR. An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment [J]. Ecological Modelling,2012:196-213.
    [164]宋玉芝,秦伯强,高光.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学,2007,19(2):125-130.
    [165]Trommer G, Leynaert A, Klein C, Naegelen A, Beker B. Phytoplankton phosphorus limitation in a North Atlantic coastal ecosystem not predicted by nutrient load [J]. Journal of Plankton Research,2013,35(6):1207-1219.
    [166]Singh A, Lomas MW, Bates NR. Revisiting N2 fixation in the North Atlantic Ocean:Significance of Deviations from the Redfield Ratio, Atmospheric Deposition and Climate Variability [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2013:148-158.
    [167]Dortch Q. The interaction between ammonium and nitrate uptake in phytoplankton [J]. Marine ecology progress series. Oldendorf,1990,61(1):183-201.
    [168]Xie L, Xie P, Li S, Tang H, Liu H. The low TN:TP ratio, a cause or a result of Microcystis blooms? [J]. Water Research,2003,37(9):2073-2080.
    [169]许海,朱广伟,秦伯强,高光.氮磷比对水华蓝藻优势形成的影响[J].Environmental Science,2011,31(10):1676-1683.
    [170]Kameyama K, Sugiura N, Isoda H, Inamori Y, Maekawa T. Effect of nitrate and phosphate concentration on production of microcystins by Microcystis viridis NIES 102 [J]. Aquatic ecosystem health & management,2002,5(4):443-449.
    [171]Berman T. Dissolved organic nitrogen utilization by an Aphanizomenon bloom in Lake Kinneret [J]. Journal of Plankton Research,1997,19(5):577-586.
    [172]Berman T Bronk DA. Dissolved organic nitrogen:a dynamic participant in aquatic ecosystems [J]. Aquatic Microbial Ecology,2003,31(3):279-305.
    [173]杨柳,章铭,刘正文.太湖春季浮游植物群落刘不同形态氮的吸收[J].湖泊科学,2011,23(4):605-611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700