Zn-MpolyP阻燃玻纤增强尼龙66的界面相容性与热降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料在当今经济飞速发展的时代,已经成为国民经济和人们日常生活中必不可少的重要材料,其中以玻璃纤维增强复合材料的研究最为完善,其应用领域也最为广泛。由于玻璃纤维增强尼龙复合材料的高机械性能和在汽车、电子电器等行业的广泛的应用,所以其阻燃性就被人们所重视。但是由于玻璃纤维产生的“烛芯效应”使得玻纤增强尼龙的阻燃变得很困难。传统的卤素阻燃玻纤增强尼龙虽然很好,但是在燃烧时释放出有毒的烟和气体,对环境造成了很大危害,所以玻纤增强尼龙的无卤阻燃的研究就变得非常的重要,而要获得高性能的无卤阻燃玻纤增强尼龙复合材料,其材料中各组分之间的界面相容性等情况就成为其关键。
     本文以实验室合成的多聚磷酸蜜铵盐(MpolyP)和锌离子改性的的多聚磷酸蜜铵盐(Zn-MpolyP)为阻燃剂,用玻璃纤维为增强体来制备阻燃玻璃纤维增强尼龙66的复合材料(PA66/GF/FR)。然后对复合材料的结构形态、力学性能、热降解行为、结晶行为,以及复合材料中各组分的表面性质分别进行了表征,通过这些手段来对阻燃玻璃纤维增强尼龙66的复合材料(PA66/GF/FR)的界面相容性进行研究。
     采用反相气相色谱(IGC)技术表征复合材料中各组分的表面色散自由能和Lewis酸碱性,实验数据表明:各组分表面色散自由能大小关系为:Zn-MpolyP>MpolyP>PA66>Glass fiber。相对Lewis碱性(K_b/K_a)大小关系为:PA66(7.17)>Glass fiber(5.61)>MpolyP(4.00)>Zn-MpolyP(2.32)。说明Zn-MpolyP与PA66和Glass fiber比MpolyP与PA66和Glass fiber有更强的路易斯酸碱吸附作用,导致Zn-MpolyP与PA66和Glass fiber之间的界面粘结强度也要更强,主要是由于Zn-MpolyP中的Zn~(2+)与尼龙66(PA66)和玻璃纤维中的O和N的孤对电子之间有强烈的络合作用。
     阻燃剂能显著提高复合材料的拉伸强度和弯曲强度,特别是Zn-MpolyP阻燃剂,但它们都能降低缺口冲击强度。Zn-MpolyP阻燃的玻纤增强尼龙66的复合材料拉伸强度、弯曲强度和缺口冲击强度都高于MpolyP阻燃的玻纤增强尼龙66的复合材料,说明了Zn-MpolyP阻燃的玻纤增强尼龙66的复合材料的界面相容性要更好。Zn-MpolyP阻燃的玻纤增强尼龙66的复合材料在阻燃剂含量为15%的时候拉伸强度、弯曲强度和缺口冲击强度达到最大,分别为180.73MPa、257.84MPa和7.79 kJ·m~(-2)。
     扫描电镜(SEM)结果证明了阻燃剂Zn-MpolyP和MpolyP在阻燃玻纤增强尼龙66体系中有很好的分散性,并且提高了尼龙66与玻璃纤维之间界面的相互作用,使界面的粘结强度增加。而且Zn-MpolyP阻燃的玻纤增强尼龙66复合材料(PA66/GF/Zn-MpolyP)要比MpolyP阻燃的玻纤增强尼龙66复合材料(PA66/GF/MpolyP)的界面的粘结强度要好,界面相容性要好。
     利用DSC研究了阻燃剂和阻燃剂的含量对尼龙66的结晶焓和结晶温度的影响。阻燃剂Zn-MpolyP和MpolyP作为成核剂都起到了成核的作用,都可以提高尼龙66的结晶度和结晶温度。阻燃剂Zn-MpolyP对提高尼龙66的结晶度和结晶温度更加明显,这说明Zn-MpolyP起到的成核效果要比MpolyP好。
     利用热重分析研究了阻燃的玻纤增强尼龙66复合材料(PA66/GF/FR)的热降解行为,结果表明:阻燃剂的加入改变了PA66的降解过程,使之成炭化学反应提前,提高残炭量。复合材料(PA66/GF/Zn-MpolyP)的初始分解温度,第一和第二失重速率峰值温度要比复合材料(PA66/GF/MpolyP)的要高,但残炭量却降低
Nowadays, composites already are indispensable material in national economy and daily life, and the research of glass fiber reinforced composites is the most perfect, at the same time the application of composites reinforced glass fiber is also most broad. Glass fiber reinforced PA66 has more practical applications, such as automobile, electric, electronic etc, due to enhanced softening point and mechanical performance. But the glass fiber reinforced nylon was quite difficult to flame retardanted because of the "candlewick effect" of the glass fibers. Traditional halogen-containing flame retardant and glass fiber reinforced nylon is very important, but it was bad for environment, and released noxious air at burning. Therefore, the research of halogen-free flame retardant glass fiber reinforced nylon is very important. In order to improve the high-performance of halogen-free flame retardant glass fiber reinforced nylon, the interfacial interaction and compatibility are most important, issues that researchers have been paied attention to.
     In the paper, the flame retarded and glass fiber reinforced PA66 composites(PA66/GF/FR) were prepared with glass fiber and the flame retardant of (MpolyP) or Zn-MpolyP. The Morphological structures, mechanical properties, crystallization and melting behavior, thermal degradation behavior, and Surface properties of the components of the composites were studied. According to the results, the interfacial interaction and compatibility of PA66/GF/FR were discussed
     Surface properties of the components of the composites were analyzed by inverse gas chromatography (IGC).The results show that the sorption of Lewis acid-base is stronger between Zn-MpolyP and nylon 66 or Glass fiber than MpolyP and nylon 66 or Glass fiber. This result is probably due to the strong complex between Zn~(2+) in Zn-MpolyP and lone pair electrons at O and N atoms of PA66 and Glass fiber.
     The mechanical properties of flame retarded and glass fiber reinforced PA66 composites were investigated. The results show that the tensile strength, flexural strength and Notched Izod impact strength of Zn-MpolyP flame retarded and glass fiber reinforced PA66 composites (PA66/GF/Zn-MpolyP) were much higher than these of MpolyP flame retarded and glass fiber reinforced PA66 composites(PA66/GF/MpolyP).
     Morphological structures of the flame retarded and glass fiber reinforced PA66 composites were observed by SEM. The results show the interfacial interaction and compatibility between PA66 and glass fiber were not good. However the flame retardants, MpolyP and Zn-MpolyP, could obviously improve the interfacial interaction and compatibility between PA66 and glass fiber. The effect of Zn-MpolyP was much better than that of MpolyP.
     The non-isothermal crystallization of PA66/GF/FR were investigated by DSC. The results show that MpolyP and Zn-MpolyP could clearly enhance the enthalpy (△H_c) and temperature(T_C) of PA66 crystallization in the composites, because the flame retardants present the good nucleation function in PA66. The enthalpy (△AH_c) of PA66 crystallization in PA66/GF/Zn-MpolyP was higher than that in PA66/GF/MpolyP. It further proved that the flame retardants, especially Zn-MpolyP, could improve the interfacial interaction and compatibility among components in the composites.
     The thermal degradation behavior of PA66/GF/FR composites was studied by thermal gravimetric analysis (TGA). The results show that the flame retardants of MpolyP and Zn-MpolyP changed the thermal degradation behavior of PA66, and improved the char residue formation. The T_(initial) , T_(1peak) and T_(2peak) of Zn-MpolyP flame retarded and glass fiber reinforced PA66 composites(PA66/GF/ Zn-MpolyP) were higher than MpolyP flame retarded and glass fiber reinforced PA66 composites(PA66/GF/ Zn-MpolyP).
引文
[1]王建祺.无卤阻燃聚合物基础与应用.北京:科学出版社,2005:5
    [2]M.Sakaguchi,A.Nakai,etal.The mechanical properties of unidirectional thermoplastic composites manufactured by a micro-braiding technique.Composites Science and Technology,2000,60:717-722
    [3]P.Boydell.Durability study of recycled glass-fiber-reinforced polyamide 66 in service-related environment.Journal of Applied Polymer Science,1997,5:1631-1641
    [4]Dar Jong Lin,Chi Lin Chang,Chih Kang Lee,Liao Ping Cheng.Fine structure and erystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66system.European Polymer Journal 2006,42:356-367
    [5]程基伟,王天民.取向玻璃纤维增强塑料的应力腐蚀开裂研究.复合材料学报,2004,21(6):39-46
    [6]Jones R F.短纤维增强塑料手册.北京:化学工业出版社,2002:14
    [7]刘卫平.硅灰石/玻璃纤维掺混增强尼龙6的研究.中国塑料,1998,12(1):52-57
    [8]高志秋,陶伟,金文兰等.长玻纤增强尼龙6复合材料研究.工程塑料应用,2001,29(7):2-5
    [9]Zhang H,Zhang Z,Yang JL,Klaus F.Temperature dependence of crack initiation fracture toughness of various nanoparticles filled polyamide 66.Polymer 2006,47:679-689.
    [10]Lin DJ,Chang CL,Lee CK,Cheng LP.Fine structure and crystallinity of porous Nylon 66membranes prepared by phase inversion in the water/formic acid/Nylon 66 system.European Polymer Journal.2006,42:356-367
    [11]Li LP,Li B,Tang F.Influence of maleic anhydride-grafted EPDM and flame retardant on interfacial interaction of glass fiber reinforced PA-66.European Polymer Journal.2007,43:2604-2611
    [12]Seo Y,Kim B,Kim KU.Structure development during flow of ternary blends of a polyamide (nylon 66),a thermotropic liquid crystalline polymer(poly(ester arnide)) and a functionalized polypropylene.Polymer.1999,40(16):4483-4492
    [13]Chavarria F,Paul D R.Comparison of nanocomposites based on nylon 6 and nylon 66.Polymer.2004,45:8501-8515
    [14]Averett R D,Realff M L,Michielsen S,Neu R W.Mechanical behavior of nylon 66 fibers under monotonic and cyclic loading.Composites Science and Technology 2006,66(11):1671-1681
    [15]Albano C,Sciamanna R,Gonzalez R,Papa J,Navarro O.Analysis of nylon 66 solidification process.European Polymer Journal.2001,37:851-860
    [16]Chen YH,Wang Q.Preparation,properties and characterizations of halogen-free nitrogenephosphorous flame-retarded glass fiber reinforced polyamide 6 composite.Polymer Degradation and Stability.2006,91:2003-2013
    [17]朱静安,王立军,姜明才.增强增韧尼龙66工程塑料结晶行为的研究.高分子材料科学与工程,1999,15(1):76-79
    [18]福本修(日)编.施祖培等译.聚酰胺树脂手册.北京:中国石化出版社,1994
    [19]曲良俊,牛明军,蒋爱云等.SA型透明尼龙的注射成型与力学性能.塑料工业,2004,32(1):23-25
    [20]钟世云,梁吴.影响长纤维增强热塑性塑料注塑制品中纤维长度的主要因素.合成材料老化与应用,2004,33(1):28-33
    [21]金志明,朱复华,高福荣.注射成型塑化过程的可视化研究.中国塑料,2003,17(4):86-90
    [22]吕峰和,孔东胜等.啮合同向双螺杆挤出机螺杆组合及其应用.河南科学,2003,21(1):94-96
    [23]耿孝正.用于玻纤增强粒料制备的啮合同向双螺杆挤出机的螺杆构型[J].中国塑料,2000,14(7):97-100
    [24]V.Bellenger,A.Tcharkhtchi,Ph.Castalng.Thermal and mechanical fatigue of a PA66/glass fibers composite material.International Journal of Fatigue.2006,28:1348-1352
    [25]彭治汉,施祖培.塑料工业手册:聚酰胺.北京化学工业出版社,2001:409-426
    [26]宗若雯,胡源,汪少锋.尼龙的阻燃研究进展.火灾科学,2003,12(1):46-50
    [27]韩红丽,李巧玲,崔丽丽.尼龙-66的无卤阻燃研究与进展.合成技术及应用,2007,22(3):34-36
    [28]汤飞,李丽萍,李斌.镁离子改性MPP对玻璃纤维增强聚酰胺66的阻燃研究.中国塑料,2006,20(11):82-85
    [29]陈永红.红磷的微胶囊化及应用研究.塑料科技,1998,1:45-47
    [30]孙卫青,邱宗玺等.聚乙烯塑料无卤阻燃技术进展.郑州大学学报,2002,34(4):60-64
    [31]朱新生,郑安呐等.卤素类阻燃剂的阻燃基础理论.火灾科学,1999,8(4):31-37
    [32]Bhaskar T,Kaneko J,Muto A,Sakata Y,Jakab E,Matsui T,Uddin MA.Effect of poly(ethylene terephthalate) on the pyrolysis of brominated flame retardant containing high impact polystyrene and catalytic debromination of the liquid products.Journal of Analytical and Applied Pyrolysis 2004,71:765-777
    [33]Uddin M A,Bhaskar T,Kaneko J,Muto A,Sakata Y,Matsui T.Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene(HIPS-Br) mixed with polyvinylchloride(PVC).Fuel.2002,81:1819-1825
    [34]Novikov S N,Oksentevich I A,Kuznetsov A A,Ivanova G S,Mustafayev A M,Pravednikov A N.The action of halogen-containing fire retardants in polyethylene.Polymer Science U.S.S.R.1986,28(11):2623-2630
    [35]B.K.Kandola,A.R.Horrochs,P.Myler,etal.New developments in flame retardancy of glass-reinforced epoxy composites.Journal of Applied Polymer Science,2003,88:2511-2515
    [36]B.K.Kandola,A.R.Horrochs.Complex char formation in flame retarded fiber-intumescent combinations:Ⅲ.Physical and chemical nature of char.Textile Research Journal,1999,69:374-38
    [37]X.Y.Hao,G.S.Gai,J.P.Liu,etal.Flame retardancy and antidripping effect of OMT/PA nanocomposites.Materials Chemistry and Physics,2006,96:34-41
    [38]K.Noda,A.Takahara.Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement.Polymer,2001,42:5803-5811
    [39]Liu Yuan,Wang Qi.Melamine cyanurate-microeneapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66.Polymer Degradation and Stability.2006,91:3103-3109
    [40]S.M.Lomakin,G.E.Zaikov.New type of ecologically safe flame retardant based on polymer char former.Polymer Degradation and Stability,1996,51:343-350
    [41]G.F.Levchik,.S.V.Levchik,A.I.Lesnikovich.Mechanisms of action in flame retardant reinforced nylon 6.Polymer Degradation and Stability,1996,54:361-363
    [42]彭治汉,邓向阳.氮系阻燃剂MCA阻燃尼龙6的机理研究[J].高分子材料科学与工程,1998,14(4):107-109
    [43]宗若雯,胡源等.尼龙的阻燃研究进展.火灾科学,2003,12(1):46-50
    [44]S.V.Levchik,G.F.Levchik,etc.Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants.Polymer Degradation and Stability,1996,54:217-222
    [45]卢子兴,田常津,谢若泽.硬质聚氨酯泡沫塑料压缩力学性能.材料研究学报,1994,8(5):452-456
    [46]周祝林,姚辉,孙佩琼,张小苹.树脂基纤维复合材料界面理论评述.玻璃钢,2006,1:27-31
    [47]洗杏娟.纤维增强复合材料界面的力学行为.力学进展,1992,22(4):464-477
    [48]Da Youxian,Wang Dianxun,Sun Mujin,Chen Chuanzheng,and Yue Jin.A study of the surface of carbon fiber by means of X-ray photoelectron spectroscopy-Ⅲ.Composites Science and Technology,1987,30(2):119-126
    [49]J.D.H.Hughes.The carbon fibre/epoxy interface-A review.Composites Science and Technology,1991,41(1):13-45
    [50]Jang-Kyo Kim.Yiu-Wing Mai.Fracture of CFRP containing impregnated fibre bundles.Composites Science and Technology,1993,49(1):51-60
    [51]李学梅.玻璃纤维/环氧复合材料界面性能研究.武汉理工大学博士论文.2004:4
    [52]陈金周,李相魁.玻璃纤维增强PF尼龙的界面结构研究.郑州大学学报,1994,2(26):83-87
    [53]陈金周,李相魁.偶联剂对玻纤增强PF尼龙界面和性能的影响.工程塑料应用,1994,22(5):54-57
    [54]郑云龙,戴文利,邓鑫.聚酰胺6/玻璃纤维复合材料的界面黏接作用研究.中国塑料,2006,20(4):35-38
    [55] K. Noda, M. Tsuj, A. Takahara, T. Kajiyama. Aggregation structure and molecular motion of(glass-fiber/matrix nylon 66)interface in short glass-fiber reinforced nylon 66 composites. Polymer, 2002,43:4055-4062
    [56] S. Nagaea, K. Nakamaeb. Characterization of glass fiber/nylon-6 interface by laser Raman spectroscopy. International Journal of Adhesion & Adhesives. 2002, 22:139-142
    [57] 张福田.分子界面化学基础.上海,上海科学技术文献出版社,2006.
    [58] C.H. Sun, J.C. Berg. A review of the different techniques for solid surface acid-base characterization. Advances in Colloid and Interface Science. 2003, 105(1-3):151-175
    [59] P. Mukhopadhyay, H.P. Schreiber. Aspects of acid-base interactions and use of inverse gas chromatography. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995, 100:47-71
    [60] N. Vasanthan, R. Kotek, D.W. Jung, D. Shin, A.E. Tonelli. D.R. Salem. Lewis acid-base complexation of polyamide 66 to control hydrogen bonding, extensibility and crystallinity. Polymer. 2004,45 (12):4077-4085
    [61] J.M.R.C.A. Santosa, J.T. Guthrie. Analysis of interactions in multicomponent polymeric systems: The key-role of inverse gas chromatography. Materials Science and Engineering R. 2005, 50 (3):79-107
    [62] Baoli Shi, Qianru Zhang, Lina Jia, Yang Liu and Bin Li. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography. Journal of Chromatography A. 2007,1149 (2):390-393
    [63] Baoli Shi, Shu Zhao, Lina Jia and Lili Wang. Surface characterization of chitin by inverse gas chromatography. Carbohydrate Polymers. 2007,67 (3): 398-402
    [64] Xiaohua Huang, Baoli Shi, Bin Li, Liping Li, Xiucheng Zhang and Shu Zhao. Surface characterization of nylon 66 by inverse gas chromatography and contact angle. Polymer Testing. 2006,25(7): 970-974
    [65] D. Cava, R. Gavara, J.M. Lagaron and A. Voelkel. Surface characterization of poly(lactic acid) and polycaprolactone by inverse gas chromatography. Journal of Chromatography A. 2007,1148(1): 86-91
    [66] J. M. R. C. A. Santos, K. Fagelman . J. T. Guthrie. Characterisation of the surface Lewis acid- base properties of poly(butylene terephthalate) by inverse gas chromatography. Journal of Chromatography A. 2002,969 (1-2):111-118
    [67] Adam Voelkel, Beata Strzemiecka. Application of inverse gas chromatography in the characterization of raw material used in manufacturing of abrasive materials. Colloids and Surfaces A. 2006, 280:177-181
    [68] Qi Chao Zou, Shi Ling Zhang , Qing qiong Tang , Shi Min Wang , Li Min Wu. Surface characterization of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl- polyhedral oligomeric silsesquioxane) by inverse gas chromatography.Journal of Chromatography A.2006,1110:140-145
    [69]Dolunay Sakar,Tuba Erdogan,Ozlem Cankurtaran,Gurkan Hizal,Ferdane Karaman,Umit Tunca.Physicoehemical characterization of poly(tert-butyl acrylate-b-methyl methaerylate)prepared with atom transfer radical polymerization by inverse gas chromatography Polymer 2006,47:132-139
    [70]Fabrice Mutelet,Jean Noel Jaubert.Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography.Journal of Chromatography A.2006,1102:256-267
    [71]Prithu Mukhopadhyay,H.P.Schreiber.Aspects of acid-base interactions and use of inverse gas Chromatography.Colloids and Surfaces A.1995,100:47-71
    [72]李丽萍.无卤阻燃GF/PA66的界面相容性与性能研究.东北林业大学博士论文.2007:25-26
    [73]Tayssir Hamieh and Jacques Schultz.New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution:I.Some new methods to determine the surface areas of some molecules adsorbed on solid surfaces.Journal of Chromatography A.2002,969(1-2):17-25
    [74]Jandura P,Riedl B,Kokta B V.Inverse gas chromatography study on partially esterified paper fiber.Journal of Chromatography A.2002,969(1-2) 301-311
    [75]In(?)s Baeta Neves,Maud Chabut,Christian Perruchot,Mohamed M.Chehimi and Karim Benzarti Interfacial interactions of structural adhesive components with cement pastes:Studies by inverse gas chromatography(IGC).Applied Surface Science.2004,238(1-4):523-529
    [76]李明猛.氮磷阻燃剂(MPP)的制备及其阻燃玻纤增强尼龙6和尼龙66的研究.四川大学工学硕士学位论文.2006:19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700