洪水及截流对长江入海悬浮有机质分布和扩散的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文根据国内外对陆架边缘海域悬浮颗粒有机质的研究现状,通过目前国际上公认的对海水颗粒有机碳(POC)、氮(PN)测定的先进方法,即利用元素分析仪和MAT-251质谱仪和Finnigan Delta plus同位素比值质谱仪测量了黄东海及长江河口区悬浮颗粒有机碳、氮含量和同位素组成,以弄清1998年长江特大洪水对黄东海悬浮颗粒物质输运的影响和三峡截流对长江口区悬浮颗粒有机物质分布的影响。主要结果如下:
     一、洪水事件对长江颗粒有机质入海扩散的影响
     1998年秋季,在黄东海采集的五层悬浮体样品中,TSM浓度与POC和PN质量浓度之间存在着显著的正相关性(r=0.90~0.98)的同时,TSM浓度又与盐度之间存在显著的负相关性(r=-0.29~-0.59);而且POC与PN质量浓度之间也存在着显著的正相关性(r=0.89~0.98)。由此推断,在该航次采集的悬浮有机质中碳氮主要是由TSM浓度所控制。颗粒有机质的C/N分子比值与PN%之间存在有显著的负相关性(r=-0.44~-0.71),但是,C/N分子比值与POC%之间却无明显的相关性,说明C/N分子比值主要是由PN%的变化所决定。
     δ15N与表层POC%、PN%之间都存在着显著的正相关性,相关系数r分别为0.36和0.24(p<0.01),然而在更深的水层中这种关系就不复存在了,说明颗粒氮容易受到除有机质降解以外的其它因素,诸如在水柱中营养盐的利用程度、硝化作用、反硝化作用、不同来源物质的输入等的影响,而使其同位素值发生变化。
     由C/N分子比值的“谷形”和δ13C的“峰形”分布可以认为,在1998年夏长江特大洪水期后长江入海悬浮颗粒可以直接被输运至冲绳海槽海区,这突破了我国学者过去根据平常水文条件下所得出的长江入海悬浮颗粒物质不能直接输运到冲绳海槽的认识。
     二、三峡截流后长江口悬浮体及颗粒有机碳、氮的分布和来源2004年秋末冬初,在具有高悬浮泥沙浓度的长江口区,POC、PN质量浓度和TSM含量呈现正相关关系,相关系数分别为R=0.708 6和R=0.648 3,表明长江口TSM和POM的物源一致性;而且悬浮体有机C/N比值大多数在12以上,显示了该区域TSM及其POM的陆源性质。
     对照了三峡截流前后长江口区的悬浮体和颗粒有机质的质量浓度分布数据,说明迄今为止三峡截流尚未对长江口区悬浮颗粒分布特征造成明显的影响。
Water column concentrations of total suspended matter(TSM),particulate organic carbon(POC),particulate nitrogen(PN)and their stable isotopic compositions(δ13C andδ15N)are measured at two to five different depths in the Yellow Sea and East China Seas and Yangtze Estuary to clarify the effect of the Yangtze River close off at the Three Gorges project on the distribution of suspended matter in the estuary and the effect of’98 Yangtze great flood on the transport of suspended matter in the Yellow Sea and East China Sea. The results are followed:
     1. The effect’98 Yangtze great flood on the transport of suspended matter in the Yellow Sea and East China Sea
     Suspended matters are collected to analyze the distributions of TSM, POC, PN and S throughout the Yellow Sea and East China Sea in the autumn of 1998. There are marked positive correlations (r=0.89~0.98) among TSM, POC and PN, but negative relationships (r=-0.29~-0.59) between TSM and salinity. These results conclude that the POC and PN were controlled primarily by the concentrations of TSM.
     The C/N ratios of particulate organic matter have a negative linear correlation with PN % (r=-0.44~-0.71), but no correlation with POC %, which suggests C/N ratios are mainly controlled by PN %.
     There are distinct positive correlations betweenδ15N and POC % or PN % in surface water( r=0.36 and 0.24,p<0.01,respectively), however, the correlation don’t exist in more deeper depths. It indicates thatδ15N could be changed by a lot of factors such as nutrient utility, nitrification, denitrification, and different material sources and so on, except decomposition of organic matter.
     The distributions of C/N ratio andδ13C values of the particulate organic matter suggest that suspended matters from Yangtze River could be transported directly into the Okinawa Trough under the condition of’98 Yangtze great flood, which break through the foregone knowledge obtained under the normal hydrological condition.
     2. The distributions and source of POM in the water column throughout the Yangtze River Estuary after the Three Gorges There are positive correlations between concentrations of POC and TSM (R=0.708 7) and between concentrations of PN and TSM (R=0.648 4) throughout the turbid Yangtze River Estuary during November and December 2004, it shows the POM has the same source with TSM. Furthermore, Most samples display C:N ratio >12, suggesting the both TSM and POM in this region are mainly of terrestrial origin.
     Comparing the data of concentrations of TSM and POC in the Yangtze River estuary before and after the Three Gorges project, it indicates that the Yangtze River close off at the Three Gorges has not influenced on the distribution feature of TSM and POC in the Yangtze River estuary.
引文
[1] Altabet M A, Deuser W G, Honjo S, et al.Seasonal and depth-related changes in the source of sinking particles in the North Atlantic [J]. Nature, 1991, 354: 136-139.
    [2] Boldrin A, Langone L, Miserocchi S, et al. Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates [J]. Marine Geology, 2005, 222-223: 135-158.
    [3] Cai D L, Tan F C, Edmond J M. Sources and transport of particulate organic carbon in the Amazon River and Estuary [ J]. Estuarine Coast and Shelf Science, 1988, 26: 1-14
    [4] Cai Deling, Shi Xuefa, Zhou Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: Evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48 Supp., 21-29.
    [5] Cauwet G et al. Carbon inputs and distribution in estuaries of turbid rivers: the Yangtze and Yellow rivers (China) [J].Marine Chemistry, 1993, 43: 235-246.
    [6] Fasham M J R, Balifio B M, Bowles M C. 2001. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS) , AMBIO, special Report, 10: 4~3.
    [7] Fry B, Sherr E B. 13C measurements as indicator of carbon flow in marine and freshwater ecosystems [J]. Marine Science, 1984, 27: 13-47.
    [8] Fontugne M R, Jouanneau J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: Evidence from measurements of carbon isotopes in organic matter from the Gironde system [J]. Estuarine Coast and Shelf Science, 1987, 24:377-387.
    [9] Gleseman A, Jaeger H J, Norman A L, et al. On-line sulfer-isotope determination using an elemental analyzer coupled to a mass spectrometer [J].Anal.Chem., 1994, 66:2816-2819.
    [10] Goericke R, Fry B.Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean [J].Global Biogeochemical Cycles.1994, 8: 85-90
    [11] Gramham M C, Eaves M A, Farmer J G,et al. A study of carbon and nitrogen stable isotope and elemental radios as potential indicators of source and fate of organic matter in sediments of the Forth Estuary, Scotland [J].Estuarine and Coastal Marine Science, 2001,52:375-380.
    [12] Hammond D E,Mcmanus J,Berelson W M et al. Early Diagenesis of Organic Material in Equatiorial Pacific Sediments : Stoichiometry and Kinetics. L imnol. Oceanogr. 1996,43(4-6) :1365-14121
    [13] Havey H R, Mannino A. The chemical composition and cycling of particulate and acromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers [J]. Organic Geochemistry.2001, 32: 527-542.
    [14] Hedges J I,Keil R G,Benner R. What happens to terrestrial organic matter in the ocean? Org. Geochem. ,1997,27(5/6):195-212.
    [15] Hopkinson C S, Buffam I, Hobbies J, et al. Terrestrial inputs of organic matter to coastal ecosystems: an intercalibration of chemical characteristics and bioavailability [J].Biogeochemistry, 1997, 43:211-234.
    [16] Hossain S, Eyre B, McConchie D. Suspended sediment transport dynamics in the sub-tropical micro-tidal Richmond river estuary, Australia [J].Estuarine, Coastal and Shelf Science, 2001, 52: 529-541.
    [17] Hu J F, Peng P A, Jia G D, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J].Marine Chemistry, 2006, 98: 274-285.
    [18] Hu D X. Upwelling and sedimentation dynamics. The role of upwelling in sedimentation in the Huanghai Sea and East China Sea-A description of general features.Chin J Oceanol Limnol, 2(1): 12-19.
    [19] Ittekkot V. Global trends in the nature of organic matter in river suspensions [J].Nature, 1988, 332:436-438.
    [20] Jack J M, Joop N. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary [J].Marine Chemistry, 1998, 60:217-225.
    [21] Jennerjahn T C, Ittekkot V, Klopper S, et al. Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal waters of madura Strait, Java, Indonesia [J].Estuarine, Coastal and Shelf Science, 2004, 60: 503-514.
    [22] Kao S J, Lin F J, Liu K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough [J]. Deep-Sea Research Ⅱ , 2003, 50:1203-1217.
    [23] Likens G E, Bormann F H et al. Interactions between major biogeochemical cycles in terrestrial ecosystem.In Likens G E(Ed.),Some perspective of the Major BiogeochmicalCycles,1981,SCOPE.
    [24] Liu K K, Iseki L et al. The changing Ocean Carbon Cycle [J]. Cambrige University Press, 2000, 187-239.
    [25] Mantoura R F C.Ocean Margin Processes in Global Change.1991, 469.
    [26] Medina E, Francisco M, Sternberg L, et al. Isotopic signatures of organic matter in sediments of the continental shelf facing the Orinoco Delta: Possible contribution of organic carbon from Savannas[J]. Estuarine, Coastal and Shelf Science, 2005, 63: 527-536
    [27] Megents L, Van der Plicht J, De Leeuw J W, et al. Stable carbon and radiocarbon isotope composition of particle size fractions to determine origins of sedimentary organic matter in an estuary [J]. Organic geochemistry, 2002, 33: 945-952.
    [28] Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry, 1998, 60: 217-225
    [29] Miguel A G, Mary M C, Yong H K, et al. Fluxes and sources of suspended organic matter in estuarine turbidity maximun region during low discharge conditions [J]. Estuarine Coastal and Shelf Science,2005, 63: 683-700.
    [30] Miguel A G, Natalie M, Rachel G, et al. Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea)[J].Estuarine Coastal and Shelf Science, 2006,69:225-245.
    [31] Milliman J D, Beardsley R C, Yang Z S et al. Modern Huanghe derived mud on the outer shelf of the East China Sea: Identification and Potential Transport Mechanism, Continental Shelf Research, 1985, 4:175-188.
    [32] Milliman J D, Qin Y S, Park Y A. Sediment and Sedimentary Processes in the Yellow and East China Seas.In :Taira A,Masuda F ed. Sedimentary Faces in the Active Plate Margin. Tokyo: Terra Scientific Publishing Company, 1989, 233-249.
    [33] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediments discharge to the ocean: the importance of small mountainous rivers[J]. National Academy Press, 1994, 74-85.
    [34] Milliman J D, Xie Q C, Yang Z. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the Ocean[J]. American Journal of Science, 1984, 284:824-834.
    [35] Qu T D, Hu D X. Upwelling and sedimentation dynamics. A simple model. Chin J Oceanol Limnol,1993,11 (4):289-295.
    [36] Rau G H, Sweeney R E, Kaplan I R. Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans [J]. Deep-Sea Research, 1982, 29: 1035-1039
    [37] Saino T.15N and 13C natural abundance in suspended particulate organic matter from a kuroshio warm-core ring [J]. Deep-Sea Research, 1992, 39: S347-S362
    [38] Shelly A M, Anne E C.Organic matter sources and transport in an agriculturally dominated temperate watershed[J].Applied Geochemistry, 2004,19:1111-1121.
    [39] Shulz D J, Carder J A. Organic carbon 13C/12C variations in estuarine sediments [J].Geochim.Cosmochim.Acta, 1976, 40:381-385.
    [40] Su J L, Wang K S. The suspended sediment balance in Changjiang Estuary [J].Estuarine Coastal and Shelf Science, 1986, 23:81-98.
    [41] Tan F C, Strain P M. Organic carbon isotope radios in recent sediment in the St.Lawence Estuary and the Gulf of St.Lawence[J]. Estuarine and Coastal Marine Science, 1979, 8: 213-225.
    [42] Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen [J]. Nature, 1991, 350: 53-55.
    [43] 蔡 德 陵 . 黄 河 口 区 有 机 碳 同 位 素 地 球 化 学 研 究 [J]. 中 国 科 学 ( B辑),1993,23(10):1105-1113.
    [44] 蔡德陵,Tan F C,Edmond J M.长江口区有机碳同位素地球化学[J].地球化学,1992,3:305-312.
    [45] 高抒,李安春.浅海现代沉积作用研究展望[J].海洋科学,2000,24(2):1-3
    [46] 郭炳火,黄振宗,李培英等.中国近海及邻近海域海洋环境[M].北京海洋出版社,2004,85-97.
    [47] 郭志刚,杨作升. 东海颗粒碳的垂直转移过程[J]. 海洋与湖沼,1997,28(6):659-664.
    [48] 郭志刚,杨作升,胡敦欣等. 春季东海北部海域悬浮体的分布结构与沉积效应[J]. 海洋与湖沼,1997,28(增刊):66-72.
    [49] 郭志刚,杨作声,张东奇等.冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔阻隔作用[J].海洋学报,2002,24(5):71-80.
    [50] 金海燕,林以安,陈建芳等.黄海、东海颗粒有机碳的分布特征及其影响因子分析[J].海洋学报,2005,27(5):46-53.
    [51]雷坤,杨作升,郭志刚. 东海陆架北部泥质区悬浮体的絮凝沉降作用[J]. 海洋与湖,2001,32(3):288-295.
    [52]李军,高抒,曾志刚等. 长江口悬浮体粒度特征及其季节性差异[J]. 海洋与湖沼,2003,34(5): 499-509.
    [53] 林以安,唐仁友,李炎.长江口区 C、N、P 的生物地球化学变化对悬浮体凝絮沉降的影响[C]∥张经.中国主要河口的生物地球化学研究-化学物质的迁移与环境.北京:海洋出版社,1996:133-145.
    [54]刘文臣,王荣,吉鹏.东海颗粒有机碳的研究[J].海洋与湖沼,1997,28(1):39-43.
    [55] 毛登,范德江,郭志刚等.长江、黄河河口沉积物中生物标志化合物组成的初步研究[J].青岛海洋大学学报,2001,31(5):747-745.
    [56] 庞重光,王凡,白学志.夏、冬两季长江口及邻近海域悬浮物的分布特征及其沉积量[J].海洋科学.2003,27:31-35.
    [57] 秦蕴珊,李凡,徐善民等. 南黄海海水中的悬浮体的研究[J].海洋与湖沼,1989,20(2): 101-111.
    [58] 宋金明等. 海洋沉积物中的生物种群在生源物质循环中的功能[J].海洋科学,2000,24(4):22-26.
    [59] 宋金明.中国近海沉积物-海水界面化学[M].海洋出版社,1997,166-170.
    [60] 孙效功,方明,黄伟.黄、东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼,2000,31(6):581-587.
    [61] 唐运千,卢冰.长江口有机物质的生物地球化学特征[C] ∥张经.中国主要河口的生物地球化学研究. 北京:海洋出版社,1996:146-159.
    [62] 陶贞,高全洲,姚冠荣等.增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报,2004,24(5):790-795.
    [63] 杨作升,郭志刚,王兆祥等. 黄、东海水体中的有机包膜及其沉积作用. 海洋与湖沼,1991,23(2):222-226.
    [64] 吴加学,张叔英,任来法.长江河口北槽抛泥作业状态下的悬沙浓度分布与扩散过程[J].海洋与湖沼,2003,34(1):83-92.
    [65] 吴莹,张经,张再峰等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布[J].海洋与湖沼,2002,33(5):546-552.
    [66] 王保栋,陈爱萍,刘峰.1998 年夏季长江特大洪水入海的化学水文学特征[J].海洋科学进展,2002,20(3):44-51.
    [67] 翟世奎,张怀静,范德江.长江口及其邻近海域悬浮物浓度和浊度的对应关系[J].环境科学学报,2005,25(5):693-699.
    [68] 张经,应时理.长江口中的颗粒态重金属[C] ∥张经.中国主要河口的生物地球化学研究.北京:海洋出版社,1996:146-159.
    [69] 张经.盆地的风化作用对河流化学成分的控制[M]//张经.中国主要河口的生物地球化学研究.海洋出版社,北京,1996,1-15.
    [70] 张岩松,章飞军,郭学武等. 黄海秋季典型站位沉降颗粒物的垂直通量[J]. 地球化学,2005,34(2):123-128.
    [71] 张岩松,章飞军,郭学武等. 黄海夏季水域沉降颗粒物垂直通量的研究[J]. 海洋与湖沼,2004,35(3):230-238.
    [72] 张正斌.海洋化学[M].青岛:中国海洋大学出版社,2004,196-198.
    [73] 郑永飞,龚冰,王峥嵘等.岩石中碳同位素比值的 EA-MS 测定及其地球化学应用[J].地质论评,1999,45(5):529-538.
    [74] 郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000,193-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700