脂肪酸等生物标志物在海洋食物网研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用生物标志物脂肪酸分析,结合稳定同位素分析、元素分析,对长江口毗邻海域食物网中主要生物的脂肪酸组成、稳定同位素特征及有机碳氮含量进行研究。建立特定化合物稳定同位素技术(GC/C-IRMS)测定单分子脂肪酸碳稳定同位素的方法,并选取研究海域内采集的部分生物样品,测定其特征脂肪酸的碳同位素比值,从分子水平构建食物网中主要生物的摄食关系。研究生物包括浮游植物、桡足类、水母、箭虫、磷虾类等浮游动物、黄鲫、带鱼、小黄鱼、龙头鱼等海洋鱼类,以及中华管鞭虾、似对虾、褐管蛾螺等底栖动物,总计32种,237个样品。碳氮元素分析采用元素分析仪(Vario ELⅢ),稳定同位素分析采用稳定同位素质谱仪(Thermo Finnigan Delta plus XP),脂肪酸分析采用气相色谱仪(Varian CP3800),单分子脂肪酸稳定同位素分析采用气相色谱-稳定同位素质谱联用(Thermo Finngan气相色谱仪和Thermo Finngan Delt plus XP稳定同位素质谱仪联用)。
     鱼类肌肉的有机碳含量42.1~55.8%,有机氮含量9.2~15.5%,有机碳、氮含量呈现线性负相关(R~2=0.60),表明长江口毗邻海域鱼类的肌肉中脂肪和蛋白质的比例保持相对稳定。
     特征脂肪酸能够用于辨别食物网中主要生物的有机质来源,及指示物质在食物网中的传递途径。海洋藻类的脂肪酸标志物二十碳五烯酸(EPA,20∶5n3)和二十二碳六烯酸(DHA,22∶6n3),随生物种类和生物生长发育期的不同在1~30%波动。在长江口毗邻海域,对于鱼类来说,DHA比EPA具有更高的生物吸收、转化速率,是鱼类生存发育的重要脂肪酸。不同营养级生物体内的多不饱和脂肪酸18∶2n6、18∶3n3、20∶4n6、20∶5n3、22∶5n6、22∶5n3、22∶6n3等存在明显差异。随着营养级的升高,鱼类体内源于浮游植物的16∶1n7和源于浮游动物的22∶1n11不断转化减少,同时多不饱和脂肪酸EPA逐渐增加。
     性别和生长期是鱼类脂肪酸组成的重要影响因素。11cm是小黄鱼食性发生转变的关键体长,其食性可能由甲壳类、鱼类混合食性转变为鱼类食性为主。以带鱼为例研究发现,随体长增加,雄性带鱼脂肪酸有机碳增加,雌性带鱼脂肪酸有机碳减少。由于母体的贡献,带鱼卵脂肪酸有机碳含量非常高,其中绝大部分是饱和脂肪酸和多不饱和脂肪酸有机碳
     将脂肪酸分析结果与主成分分析等聚类分析手段结合,将鱼类划分成不同的食性类群。浮游食性为主的鱼类,主要是中小型中上层鱼类及其他鱼类幼鱼;它们虽然主要以浮游动、植物为食,但所摄食的主要种类又各有偏重。食底栖动物的鱼类,主要是一些底层和近底层鱼类。
     建立GC/C-IRMS技术测定生物体单分子脂肪酸碳稳定同位素的方法,应用于长江口毗邻海域主要生物种类带鱼、小黄鱼、黄鲫等海洋鱼类,桡足类、箭虫、水母等浮游动物,中国毛虾、周氏新对虾、中华管鞭虾等底栖生物的研究。研究结果表明,东海北部生物的脂肪酸的碳同位素值-19.8~-32.2‰,最低值是浮游植物的22∶6n3,最高值是竹荚鱼的22∶1n11。不饱和度越高,δ~(13)C-FA值越低。单分子脂肪酸的碳同位素特征与聚类分析手段结合,能够更准确辨别生产者和消费者之间的捕食关系。水生生物体内普遍存在多不饱和脂肪酸,多不饱和脂肪酸不能通过生物自身合成,而必须从食物中获得,且在消化吸收过程中极少发生结构改变,因此是反映食物来源信息的良好标志物。测定食物来源的某些多不饱和脂肪酸(PUFAs)的稳定碳同位素信息,便可指示食物来源的贡献。
In this thesis,previous marine food web studies,including gut content analysis,carbon and nitrogen stable isotope analysis,fatty acid components analysis,were reviewed in detail.A new method detecting carbon stable isotope of individual fatty acid was constructed and evaluated.Habitual organisms in north of East China Sea and alongshore estuarine water areas were measured by different methods mentioned above in order to understand the role of diverse aquatic species composing specific food webs and their control on the flow of matter and energy along the food chain.Trophic member phytoplankton,zooplankton,primary fish species and bottom-dwelling species were analyzed.Carbon and nitrogen was analyzed by Elemental Analyzer (Vario ELⅢ),carbon and nitrogen stable isotope ratios were determined on isotope ratio mass spectrum(IRMS,Thermo Finnigan Delta plus XP),fatty acids were measured by use of Gas Chromatography instrument(GC,Varian CP3800),and carbon stable isotopes of individual fatty acids were tested by combination of Thermo Finngan GC and Thermo Finngan Delt plus XP IRMS.
     Organic carbon content of fish dorsal muscle varied from 42.11%to 55.8% and nitrogen contnent from 9.19%to 15.52%.The negative linear correlation between organic carbon and nitrogen(R~2=0.602)indicated that there existed a relative balance of the ration of lipid and protein in the muscle.
     The fatty acids pattern or specific biomarker fatty acids of consumers were proved to be effective to identify food sources.Nevertheless,the specific marker eicosapentaenoic acid(EPA,20:5n3)and docosahexaenoic acid(DHA, 22:6n3)for marine algae food source structure fluctuated from 1%to 30%of all fatty acids among species and individuals.Also,DHA has a higher adsorption and assimilation efficiency than that of EPA,thus playing a crucial role for the survival and growth of fish.Seven highly unsaturated fatty acids(PUFA),i.e., 18:2n6、18:3n3、20:4n6、20:5n3、22:5n6、22:5n3、and 22:6n3,change a lot among species in different communities in the north of East Cina Sea.In fish musucle,with trophic level increase,fatty acid 16:1n7 for phytoplankton decreased,while fatty acid 18:1n7 for zooplankton increased.
     Gender and life stage are critical factors influencing the fatty acid composition of fish species.Total length 11cm is a turning point for Larimichthyspolyactis,whose food habits transformed from crustacean and fish to fish dominant.For Trichiurusjaponicus species with total length increasing,organic carbon of fatty acids increased in male individuals while decreased in female.Spawn had a large amount of organic carbon of fatty acids relatively,wherein unsaturated fatty acid contributed the most.
     Combined fatty acid content analysis with Cluster and ADS analyses,fish species were separated into two groups.Fish feed on plankton were most pelagic species and larva with specific prey preference,respectively.Benthos feeders were bottom-dwelling or demersal species.Thrissakarnrnalensis was the basal pelagic phytoplankton feeder,while Trachurus japouicu was commonly feed in seagrass circumstance.
     GC/C-IRMS analysis was applied to fish,zooplankton and demersal species. The results showed thatδ~(13)C varied from -19.8 to -32.2‰,of which the minimum one was 22:6n3 for phytoplankton and the maximum 22:1n11 for Trachurus japouicus.Generally,~(13)C/~(12)C ratio was less negative in saturated fatty acids.With desaturation increases,δ~(13)C-FA values decline.It is further demonstrated that ~(13)C/~(12)C ratios of individual fatty acids in potential prey(diet) and consumers allow identifying carbon fluxes and trophic links.Highly unsaturated fatty acids(PUFAs)are often used as dietary indicators since they cannot be created de novo,are seldom modified by marine organisms due to biochemical limitations,and are typically the most common fatty acids in marine ecosystems.
引文
1.蔡德陵,毛兴华,韩贻兵.1999a.13C/12C比值在海洋生态系统营养关系研究中的应用—海洋植物的同位素组成及其影响因素的初步探讨[J].海洋与湖沼,30(3):306-314.
    2.蔡德陵,孟凡,韩贻兵,高素兰.1999b.13C/12C比值作为海洋生态系统食物网示踪计的研究—崂山湾水体生物食物网的营养关系[J].海洋与湖沼,30(6):671-678.
    3.蔡德陵,王荣,毕洪生.2001.渤海生态系统的营养关系:碳同位素研究的初步结果[J].生态学报,21(8):1354-1359.
    4.蔡德陵,张淑芳,唐启升等.2003.鲈鱼新陈代谢过程中的碳氮稳定同位素分馏作用[J]海洋科学进展,21(3):308-316.
    5.陈绍勇,周伟华,吴云华等.2001.南沙珊瑚礁生态系生物体中δ~(13)C的分布[J].海洋科学,25(6):4-7.
    6.陈卫忠,李长松,胡芬等.2001.东海区海洋渔业资源研究数据库系统的设计和实现[J].中国水产科学,7(4):91-94.
    7.陈亚翟,朱启琴.1982.东海带鱼摄食习性、饵料基础及与渔场关系[J].水产学报,8(2):135-145.
    8.程济生,俞连福.2004.黄、东海冬季底层鱼类群落结构及多样性变化[J].水产学报,28:29-34.
    9.程树东,李英文,2004.鱼类必需脂肪酸概述[J].重庆水产,3:39-42.
    10.段毅,宋金明,张辉.2003.南沙海区生物单体脂类碳同位素研究[J].中国科学D辑,33(9):889-894.
    11.邓景耀,孟田湘,任胜民.1986.渤海鱼类食物关系的初步研究[J].生态学报,6:56-364.
    12.邓景耀,姜卫民,杨纪明等.1997.渤海主要生物种间关系及食物网研究[J].中国水产科学,4(4):1-7.
    13.邓景耀,赵传絪.1991.海洋渔业生物学[M].北京:农业出版社,111-163.
    14.邓思明,熊国强,詹鸿禧.1982.东海大陆架外缘鱼类区系研究[R].东海水产研究所研究报告.15:1-19.
    15.段毅,张辉,郑朝阳等.2003.沼泽沉积环境中植物和沉积脂类单体碳同位素组成特征及其成因关系研究[J].中国科学D辑
    16.樊伟,周更芳等.2003.拖网捕捞对东海渔业资源种群结构的影响[J].应用生态学报,14(10):1697-1700.
    17.冯士笮,李凤岐,李少菁等.1998.海洋科学导论[M].331-334.
    18.高建华,汪亚平,潘少明等2007.长江口外海域沉积物中有机物的来源及分布[J].地理学报,62(9):981-991.
    19.何大仁,蔡厚才1997.鱼类行为学[M].厦门:厦门大学出版社,302-307.
    20.洪阿实,李文权,王明亮.1994.N稳定同位素技术在海水养殖研究中的应用[J].海洋学报,16(4):73-81.
    21.黄亮.2004.黄海以鳀鱼为基础食物网中主要生物的碳、氮和磷元素组成及脂肪酸组成特征[D].华东师范大学,PP.72.
    22.关紫烽,姜波,王兰.2003.鱼肉、鱼骨中脂肪酸组成的比较研究[J].大连民族学院学报,5(1):44-46.
    23.李建武,1989.脂类..沈同,王镜岩,生物化学(第二版).高等教育出版社:北京.pp.44-73.
    24.李军.1990.渤海蓝点马鲛食物链结构的研究[J].海洋科学集刊,31:93-107.
    25.李明云,倪海儿,竺俊全等.2000.东海北部哈氏仿对虾的种群动态及其最高持续渔获量[J].水产学报,24(4):364-369.
    26.李圣法,严利平,李长松,胡芬.2004.东海北部鱼类组成特征分析[J].水产学报,28(4):384-392.
    27.李忠义,金显仕,庄志猛等.2005.稳定同位素技术在水域生态系统研究中的应用[J].生态学报,25(11):3052-3060.
    28.林龙山.2003.发光鲷等5种主要小型鱼类[A].郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境[M].上海:上海科学技术出版社,601-625.
    29.林龙山.2004.东海小黄鱼现存资源量分析[J].海洋渔业,26(1):18-23.
    30.林龙山,严利平,凌建忠等.2005.东海带鱼摄食习性的研究[J].海洋渔业,27(3):187-192.
    31.林龙山,郑元甲等.2006.东海区小型鱼类生态研究Ⅰ——小型鱼类的种类组成及季节变化[J].海洋科学,30(8):58-63.
    32.林龙山,张寒野,李惠玉,程家骅2006.东海带鱼食性的季节变化[J].中海海洋大学学报,36(6):932-936.
    33.林龙山,2007.长江口近海小黄鱼食性及营养级分析[J].海洋渔业,29(1):44-48.
    34.林鹏.1997.中国红树林生态学[M].北京:科学出版社,297-316.
    35.林元烧,曹文清,郑爱榕等.2001.几种饵料浮游动物脂肪酸组成分析及营养效果评价[J].台湾海峡,20,Sup.:164-168.
    36.刘洪节,毛兴华.1999.牙鲆幼鱼对n-3多不饱和脂肪酸的吸收及生长关系的初步研究[J].海洋与湖沼,36(3):236-244.
    37.彭兴跃,陈刚,2000.单个体浮游动物脂肪酸的气相色谱分析[J].台湾海峡,19(4):454-459.
    38.#12
    39.石晓勇,王修林,陆茸,孙霞.2005.东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨[J].海洋与湖沼,36(5):404-412.
    40.宋海棠,姚光展,俞存根,薛利建.2003.东海中华管鞭虾的数量分布和生物学特性[J].浙江海洋学院学报(自然科学版),22(4):305-320.
    41.苏奋振,周成虎等.2001.东海区鱼类资源变化GIS时空分析[J].高技术通讯,15:59-63.
    42.苏奋振,周成虎等.2001.东海区鱼类资源时空变化[J].中国水产科学,8(3):15-19.
    43.孙帼英.1982.长江口及其邻近海域的银鱼[J].华东师范大学报(自然科学版),1:111-119.
    44.孙帼英.1990.长江口及其邻近海域有明银鱼的生物学[J].海洋湖沼通报,1:41-46.
    45.唐启升.1999.海洋食物网与高营养层次营养动力学研究策略[J].海洋水产研究,20(2):1-11.
    46.唐启升.2004.海洋食物网及其在生态系统整合中的意义[C].香山科学会议第228次学术研究会,19-24.
    47.唐启升,苏纪兰,孙松等.2005.中国近海生态系统动力学研究进展[J].地球科学进展,12:1287-1299.
    48.田明诚.沈友石,孙宝龄.1992.长江口及邻近海区鱼类区系研究[J].海洋科学集刊,33:265-280.
    49.韦晟,姜卫民,1992.黄海鱼类食物网的研究[J].海洋与湖沼,23(2):182-192.
    50.薛莹.2005.黄海中南部主要鱼种摄食生态和鱼类食物网研究[D].青岛:中国海洋大学.
    51.严利平,李建生,沈德刚等.2006.黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化[J].海洋渔业,28:117-123.
    52.杨东莱,吴光宗,孙继仁.1990.长江口及其临近海区浮性鱼卵和仔稚鱼的生态研究[J].海洋与湖沼,21(4):346-355.
    53.杨纪明.2001.渤海鱼类的食性和营养级研[J].现代渔业信息,16(10):10-19.
    54.杨纪明,郑严.1962.浙江\江苏近海大黄鱼的食性及摄食的季节变化[J].海洋科学集刊,2:14-30.
    55.杨纪明,林景祺.1966.烟台及其附近海区的摄食习性[C]太平洋西部渔业研究委员会第七次全体会议论文集.北京:科学出版社,10-25.
    56.杨伟祥,薛频,卢继武,黄颂芳.1992.三峡工程对河口及邻近海域渔业影响的初步探讨[J].海洋科学集刊,33:341-351.
    57.杨宇峰,王庆,陈菊芳等.2006.河口浮游动物生态学研究进展[J].生态学报,26(2):576-585.
    58.叶建生,王兴强,阎斌伦.2007.周氏新对虾的生物学特性及养殖技术[J].渔业现代化,34(3):26-27.
    59.俞存根,宋海棠,姚光展.东海蟹类群落结构特征的研究.[J].海洋与湖沼,2005,36(3):213~219.
    60.于灏,吴莹,张经.2006.特定化合物同位素分析技术在海洋食物网研究中的应用[J].质谱学报,27(2):122-127.
    61.张波,唐启升.2004.渤、黄、东海高营养层次重要生物资源种类的营养级研究[J].海洋科学进展,22:393-404.
    62.张波,唐启升,金显仕,薛莹.2005.东海和黄海主要鱼类的食物竞争[J].动物学报,51(4):616-623.
    63.张雅芝,李福振,刘向阳等.1994.东山湾鱼类食物网研究[J].台湾海峡,13(1):52-61.
    64.张其永,林秋眠,林尤通等.1981.闽南-台湾浅谈渔场鱼类食物网研究[J].海洋学报,3:275-290.
    65.赵传茵,刘效舜,曾炳光等.1990.中国渔业资源调查和区划——中国海洋渔业资源[M].抗州:浙江科学技术出版社,55-56.
    66.周景祥,黄权,吴莉芳,余涛2000.鱼类脂肪酸组成及需要[J].中国饲料,3:19-20.
    67.周永东,徐汉祥,刘子藩,薛利建,2002.东海带鱼群体结构变动的研究[J].浙江海洋学院学报,21(4):314~320.
    68.朱德林.1987.带鱼[A].见:东海区渔业资源调查和区划[C].上海:华东师范大学出版社,281-299.
    69.左涛2003.东、黄海浮游动物群落结构研究[D].中国科学院海洋研究所,113pp.
    70.Abrajano TA,Murphy DE,Fang J,Comet P,Brooks JM,1994.~(13)C/~(12)C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts [J].Organic Geochemistry,21:611-617.
    71.Aclanan RG.1964.Structural homogenery in unsaturated fatty acids of marine fish lipids[J].Journal of Fishary Research Broad of Canadian,21:247-254.
    72.Arts M.T.,Wainmann B.C.1999 Lipids in Freshwater Ecosystems[M].Springer-Verlag,New York.
    73.AURSAND M.,MABON F.,MARTIN GJ.2000.Characterization of farmed and wild salmon(Salmo salar)by a combined use of compositional and isotopic analyses[J].Journal of the American Oil Chemists' Society 77(6):659-666.
    74.Aydin K.Y.,Gordon A.M.,King J.R.et al.2003.The BASS/ MODEL Report on Trophic Model of the Subarctic Pacific Basin Ecosystems[R].PICES Scientific Report.
    75.Bains S.B.,Pace M.L.1991.The production of dissolved organic carbon by phytoplankton and its importance to bacteria-patterns across marine and fresh-water systems[J].Limnology and Oceanography 36(6):1078-1090.
    76.Ballentine DC,SA Macko,V.C.Turekian,W.P.Gilhooly and B.Martincigh.1996Compound specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbons in aerosols:implications for biomass burning[J].Organic Geochemistry. 25:97-104.
    77. Bouillon, S., P. Chandra Mohan, N. Sreenivas, and F. Dehairs. 2000. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. [J].Marine Ecology Progress Series 208:79-92.
    78. Bourdier G G, Amblard C A.1989. Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae [J].J.Plankton Res., 11:1201-1212.
    79. Burns C.W. and J.J. Gilbert.1993. Predation on ciliates by freshwater calanoid copepods: rates of predation and relative vulnerabilities of prey [J].Freshwat. Biol. 30: 377-393.
    80. Carabel S, Dominguez EG, Verisimo P, et al. 2006.An assessment of sample processing methods for stable isotope analyses of marine food webs[J].Journal of Experimental Marine Biology and Ecology,336:254-261.
    81. Carlos A R M A, Bruce R F, Reynalso V, et al. 1986. Energy sources for Detritivorous Fishes in the Amazon [J].Science, 234:1256-1258.
    82. Carpenter, S.R., J.J. Cole, M. L. Pace, M. Van de Bogert, D.L. Bade, D. Bastviken, C.M. Gille, J. R. Hodgson, J. F. Kitchell, and E. S. Kritzberg. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes [J]. Ecology 86: 2737-2750.
    83. Chamberlain, P.M., Bull, I.D., Black, H.I.J., Ineson, P., Evershed, R.P., 2004. Lipid content and carbon assimilation in Collembola: implications for the use of compound-specific carbon isotope analysis in animal dietary studies [J].Oecologia, 139:325-335.
    84. Cifuentes L A, Salata G G. 2001.Significance of Carbon Isotope Discrimination between Bulk Carbon and Extracted Phospholipid Fatty Acids in Selected Terrestrial and Marine Environments[J].Organic Geochemistry, 32:613-621.
    85. Clarke KR, Warwick RM. 2001.Change in marine communities: an approach to statistical analysis and interpretation (2~(nd) edition). PRIMPER-E: Plymouth.
    86. Cole J.J., Carpenter S.R., Kitchell J.F., Pace M.L. 2002. Pathways of organic carbon utilization in small lakes: results from a whole-lake ~(13)C addition and coupled model [J].Limnol Oceanogr, 47(6): 1664-1675.
    87. Dalsgaard J, M St. John, G. Katter, et al. 2003. Fatty acid trophic markers in the pelagic marine environment [J].Advances in Marine Biology, 46: 225-340.
    88. Dehairs F., R.G. Rao, P. Chandra Mohan, V. Raman, S. Marguillier, and L. Hellings. 2000. Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami-Godavari Delta, Bay of Bengal (India) [J].Hydrobiologia 431:225-241.
    89. DeNiro M J, Epstein S .1978. Influence of diet on the distribution of carbon isotopes in animals [J].Geochim Cosmochim Acta, 42(5):495-506.
    90. Desvilettes C, Bourdier G., Amblard C. & Barth B. 1997.Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae [J].Freshwater Biology, 38: 629-637.
    91. Downs J. N., Lorenzen C. J. 1985. Carbon :pheopigment ratios of zooplankton fecal pellets as an index of herbivorous feeding [J]. Limnol. Oceanogr. 30: 1024-1036.
    92. Dunton KH, DM Schell. 1987.Dependence of consumers on macroalga (Laminaria solodungula) carbon in an arctic kelp community: δ~(13)C evidence [J]. Mar. Biol., 93:615-625.
    93. Falk-Petersen, T.M. Dahl, C.L. Scott, J.R. Sargent, B. Gulliksen, S. Kwasniewski, H. Hop and R. Millar. 2002. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters, Marine Ecology Progress Series 227: 187-194.
    94. Fantle MS, Dittel Al, Schwalm SM, et al.1999. A Food Web Analysis of the Juvenilev Blue Crab, Callinectes Sapidus, Using Stable Isotopes in Whole Animals and Individual Amino Acids [J]. Oecologia, 120:416-426.
    95. Farqahar GD, et al. 1982. Effect of salinity and humidity on δ~(13)C value of helophtes-evidence for diffusional isotope fractionation determined by the ratio of intercellular atmospheric partial pressure of CO_2 under different environment conditions [J]. Oceologia, 52:121-124.
    96. Fogel, M.L., L.A. Cifuentes, D.J. Velinsky, and J.H. Sharp. 1992. Relationship of carbon availability in estuarine phytoplankton to isotopic composition [J].Marine Ecology Progress Series 82:291-300.
    97. Folch JM, Less M & Stanley GH.1957.A simple method for the isolation and purification of total lipids from animal tissues [J]. Journal of Biology Chemistry, 226:497-509.
    98. Fry B. 1981. Natural stable carbon isotope tag traces Texas shrimp migrations [J].Fish Bull US, 79(2):337-345.
    99. Fry B, Joern A, Parker PL .1978. Grasshopper food web analysis: use of carbon isotope ratios to examine feeding relationships among terrestrial herbivores [J].Ecology, 59(3): 498-506.
    100. Fry B, Parker PL. 1978. Animal diet in Texas seagrass meadows: δ~(13)C evidence for the importance of benthic plants [J]. Est Coastal Mar Sci, 8: 499-509.
    
    101. Fry B, Scalan R S, Parker P L. 1983.13C/12C ratios in marine food webs of the Torres strait, Queensland, Australian. J Mar Fresh Res, 34:707-716.
    
    102. Fry B, Sherr E B, 1984.δ~(13) C measurements as indicators of carbon flow in marine and freshwater ecosystem [J]. Contrib Mar Sci, 27: 13-47.
    
    103. Fry B, Macko SA, Zieman JC.1987. Review of stable isotope investigation of food webs in seagrass meadows [J].FIa.Mar.Res.Publ., 42:189-209.
    
    104.Gannes L.Z., O'Brien D.M., Drio C.M. 1997. Stable Isotopes in Animal Ecology: Assumptions, Caveats, a Call for More Laboratory Experiments [J]. Ecology, 78:1271-1276.
    105.Gifford D.J. 1991. The protozoan-metazoan trophic link in pelagic ecosystems [J].J Protozool, 38:81-86.
    106.Goering J, Alexander V, Haubenstock N. 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organism in a North Pacific Bay[J].Estuarine,Coastal and Shelf Science, 30:239-260.
    107.Goulden CE, AR Place. 1990. Fattyacid synthesis and accumulation rates in daphnids [J].J. Exp. Zool. 256: 168-178.
    108.Graeve M, Kattner G, Wiencke C, Kartsen U, 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationship [J]. Mar Ecol Prog Ser 231:67-74.
    109.Greve W., 1994. The 1989 German Bight invasion of Muggiaea atlantica [J]. ICES J.Mar. Sci. 51:355-358.
    110.Grey J., Jones, R.I., Sleep D. 2001. Seasonal changes in the importance of allochthonous organic matter to the diet of zooplankton in Loch Ness indicated by stable isotope analysis [J]. Limnol. Oceanogr. 46(3): 505-513.
    111.Guillermo, E.N., 1999. Fatty acid as trophic and chemical markers in freshwater ecosystems. In: Michael T Arts and Bruce C Wainman (ed.). Lipids in freshwater ecosystems. Inc Springer-Verlag New York. pp. 21-43.
    112.Gurr Ml, Harwood JL and Frayn KN.2002. Lipid Biochemistry, 5th edn [M]. Blackwell Science, Oxford
    113.Haines EB, Montague CL.1979. Food sources of estuarine invertebrates analysed using ~(13)C/~(12)C ratios [J]. Ecology, 60:48-56.
    114.Hamano Tatsuo, Hayashi Ken Ichi, Kabota Katsuhiko, et al. 1996.Population Structure and Feeding Behavior of the Stomatopod Crustacean Kempina Mikado (Kemp & Chopra, 1921) in the East China Sea [J].Fish Sci,62(3):397-399.
    115.Hastings N., Agaba M., Tocher DR, et al. 2001. A vertebrate fatty acid desaturase with A5 and A6 activities [J]. Proc. Nat. Acad. Sci. USA, 98: 14304-14309.
    116. Henderson RJ, Sargent JR. 1981. Lipid biosynthesis in rainbow trout, Salmo gairdnerii, fed diets of differing lipid content [J].Comp. Biochem. Physiol. 69C: 31-37.
    117.Henderson R J and Tocher D R.1987. The lipid composition and biochemistry of freshwater fish. Pregress in Lipid Research , 26: 281-347.
    118.Heras X., Grimalt J.O., Albaiges J. et al. 1989. Origin and diagenesis of the organic matter in Miocene freshwater lacustrine phosphates (Cerandya Basin, Eastern Pyrencos) [J] Org.Geochem., 14:667-677.
    119.Hessen D.O., Andersen T., Lyche A. 1989. Differential grazing and resource utilization ofzooplankton in a humic lake [J].Arch. Hydrobiol. 114: 321-347.
    120.Hill A.M., Sinars D.M., Lodge D.M.1993. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality [J].Oecologia,94:303-306.
    121 .Hobson K A, Fisk A, Karnovsky N, et al. 2002. A Stable lsotope( δ~(13)C, δ~(15)N) Model for the North Water Food Web: Implications for Evaluating Trophodynamics and the Flow of Energy and Contaminants [J].Deep-Sea Research II, 49: 5131—5150.
    122.lverson, S.J., Oftedal, O.T., Bowen, W.D., Boness, D.J., and Sampugna, J. 1995.Prenatal and postnatal transfer of fatty acids from mother to pup in the hooded seal [J]. Journal of Comparative Physiology, 165: 1-12.
    
    123.Johanne Dalsgaard and Michael St John, 2004. Fatty acid biomarkers: validation of food web and trophic marker using ~(13)C-labelled fatty acids in juvenile sandeel (Ammodytes tobianus) [J].Can. J. Fish. Aquat. Sci. / J. can. sci. halieut. aquat.,61(9):1671-1680.
    124.Johns R.B., Nichols P.D.and Perry G.J.1979. Fatty acid composition of ten marine algae from Australian waters, Phytochemistry 18: 799-802.
    125.Jonasdottir SH, Fields D and Pantoja S, 1995. Copepod egg production in Long Island Sound U.S.A. as a function of the chemical composition of seston [J].Marine Ecology Progress Series ,119: 87-98.
    126.Kamjunke N., A. Benndorf, C. Wilbert, M. Opitz, J. Kranich, M. Bollenbach, and Benndorf, J. 1999. Bacteria ingestion by Daphnia galeata in a biomanipulated reservoir, a mechanism stabilizing biomanipulation? [J]. Hydrobiologia 403: 109-121.
    127.Karlsson J., Jonsson A., Meili M. and Jansson M.2003 Control of zooplankton dependence on allochtonous organic carbon in humic and clear-water lakes in northern Sweden, Limnol. Oceanogr. 48: 269-276.
    128.Kharlamenko V.I., S.I. Kiyashko, A.B. Imbsand D.I. Vyshkvartzev. 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur isotope ratio and fatty acid analyses, Marine Ecology Progress Series 220:103-117.
    129.Khotimchenko S.V. and Vaskovsky V.E.1990. Distribution of C20 polyenoic fatty acids in red macrophytic algae, Botanica Marina 33:525-528.
    130.Kiljunen M.,Gery J., et al.2006. A revised model for lipid-normalizing δ 13C values from aquatic organisms,with implications for isotope mixing models [J]. Journal of Applied Ecology, 43:1213-1222.
    
    131 .Kling GW, Fry B, O'Brien WJ.1992.Stable Isotopes and Planktonic Trophic Strncture in Arctic Lakes [J]. Ecology, 73(2):561~566.
    132.Lechevalier, H., Lechevalier, M.P., 1988. Chemotaxonomic use of lipids-an overview. In: Ratledge, C; Wilkinson, S.G., eds. Microbial Lipids. New York: Academic Press. pp. 869-902.
    133.Lee S. Y. 2000. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon- and nitrogen- stable isotopes [J].Marine Ecology Progress Series 205:1-10.
    134.MacAvoy S.E., Macko S.A., Joye S.B., 2002. Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from Gulf of Mexico hydrocarbon seep communities [J]. Chemical Geology, 185: 1-8.
    135.Maeda Y. et al. 1987.Sample analysis method for fatty acid in food samples [J]. J. Food Hygiene Sci. Jap. ,28 (5) :384-389.
    136.McClelland JM, Valiela I , Michener RH, 1997. Nitrogen-stable isoope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds [J].Limnol Oceanogr, 42(5): 930-937.
    137.McConnaughey T. 1978. Ecosystems naturally labeled with carbon-13: applications to the study of consumer food webs [D], 127 pp. M.S. thesis, University of Alaska,Fairbanks.
    138.McConnaughey T, McRoy CP.1979A. Food-web structure and the fractionation of carbon isotopes in the Bering Sea [J]. Mar Biol, 53(3): 257-262.
    139.McConnaughey T, McRoy CP.1979B. ~(13)C label identifies Eelgrass (Zostera marina) carbon in an Alaskan estuarine food web [J].Mar Biol 53:263-269.
    140.McMillan C, Williams, S.C., 1980. Systematic implications of isozymes in Halophila section Halophila [J].Aquatic Bot. 9:21-31.
    141 .McClelland J W , Montoya J P. 2002.Trophic Relationships and the Nitrogen Isotopic Composition of Amino Acids in Plankton[J]. Ecology, 83:2173-2180.
    142.Meier-Augenstein W.1999. Applied Gas Chromatography Coupled to Isotope Ratio Mass Spectrometry [J]. .J Chromatogr A, 842:351-371.
    143.Mills E.L., Pittman K., Tan F.C. 1984.Food-web structure on the Scotian Shelf, eastern Canada: A study using 13C as a food-chain tracer [J].ICES Rapp P-V Reun Cons int Explor Mer, 183:111-118.
    144.Minson DJ, Ludlow MM, Troughton JH. 1975. Differences in natural carbon isotope ratios of milk and hair from cattle grazing tropical and temperate pastures [J].Nature, 256: 602.
    145.Mook, W.C. and F.C. Tan. 1991. Stable carbon isotopes in rivers and estuaries. [M]. In: Degens ET, Kempe S, Richey JE (Eds). Biogeochemistry of major world rivers.Scope, John Wiley & Sonds Ltd, London, 245-264.
    146.Murphy D E, Abrajano T A. 1994. Carbon Isotope Compositions of Fatty Acids in Mussels from Newfoundland Estuaries [J].Estuarine, Coastal and Shelf Science,39:261-272.
    147.MülIer-Navarra DC, Brett MT, Liston AM, Goldman CR.2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers [J]. Nature 403:74-77.
    148.Napolitano GE, 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems [M]. In: Arts, M.T., & B.C. Wainman (Eds.) lipids in freshwater ecosystems, Springer-Verlag New York, 319pp.
    149.Odum, E.P., 1975. Ecology: The Link Between the Natural and Social Sciences (2nd Edition). Holt-Saunders, New York, 244 pp.
    150.Ohman M.D., Hirche H.2001. Density-dependent mortality in an oceanic copepod population [J].Nature 394: 266-269.
    151.Olsen, Y., 1999. Lipids and essential fatty acids in aquatic food webs: What can freshwater ecologists learn from mariculture. In: Michael T. Arts and Bruce C Wainman(ed.). Lipids in freshwater ecosystems. Springer-Verlag New York: 161-202.
    152.Owen JM, Adron JW, et al.1972. Studies on the nutrition of marine flatsifh. The effect of the plaicr Plenronectes platessa [J]. Marine Biology, 13:160-166
    153.Pakocinski CF, Lyczkowski-shultz J, Richarcson SL. 1996. Ichthyoplankton assemblage structure in Mississippi Sound as revealed by canonical correspondence analysis [J].Estu. Coast. Shelf. Sci., 43:237-257.
    154.Pauly D., Palomares M.L, Froese R., et al. 2001 Fishing down Canadian aquatic food webs [J ]. Can. J. Fish. Aquat. Sci., 58: 51-62.
    155.Parrish C.C., T.A. Abrajano, S.M. Budge, R.J. Helleur, E.D. Hudson, K. Pulchan and C. Ramos. 2000. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In: P. Wangersky, Editor, The Handbook of Environmental Chemistry,Part D, Marine Chemistry, Springer, Berlin, Heidelberg, pp. 193-233.
    156.Pimm, S. L, J. H. Lawton, and J. E. Cohen. 1991. Food web patterns and their consequences [J]. Nature 350:669-674.
    157.Pinnegar JK, Polunin NVC.1999. Differential fractionation of δ~(13)C and δ~(15)N among fish tissues: implications for the study of trophic intetactions [J].Functional Ecology,13:225-231.
    158. Pond DW, Bell MV, Harris RP, Sargent JR. 1998. Microplanktonic Polyunsaturated Fatty Acid Markers: a Mesocosm Trial [J].Estuarine, Coastal and Shelf Science A:61-67.
    159.Raclot T., R. Groscolas and Y. Cherel, 1998. Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins Aptenodytes patagonicus. [J]. Mar. Biol.132(3):523-533.
    160.Rajendran N., Y. Suwa, and Y. Urshigawa. 1993. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise bay, Japan [J].Marine Chemistry. 42(1): 39-56.
    161.Rau G. 1978. Carbon-13 Depletion in a subalpine lake: Carbon flow implications [J].Science, 201:901-902.
    162.Rau G. 1980 Carbon-13/carbon-12 variation in subalpine lake aquatic insects: Food source implications [J].Can J Fish Aquat Sci 37: 742-746.
    163.Rau G, Hedges Jl. 1979 Carbon-13 depletion in a hydrothermal vent mussel:Suggestion of a chemosynthetic food source [J]. Science, 203: 648-649.
    164.Rau GH, Teyssie JL, Rassoulzadegan SW et al. 1990.~(13)C/~(12)C and ~(15)N/~(14)N variations among size-fractionated marine particles: implications for their origin and trophic relationships [J]. Marine Ecology Progress Series, 59: 33-38.
    165.Rodelli MR. 1981. Master's thesis, University of Rhode Island, Providence.
    166.Roman M.R., Gauzens A.L.1997.Copepod grazing in the equatorial Pacific [J].Limnol Oceanogr, 43(4): 623-634.
    167. Roth J D, Hobson K A.2000.Stable carbon and nitrogen isotopic frac-tionation between diet and tissue of captive red fox: Implications for dietary reconstruction [J].Can J Zool, 78: 848-852.
    168.Ryther HJ. 1969. Photosynthesis and fish production in the sea [J]. Science, 166,72-76.
    169.Sargent JR, Falk-Petersen S. 1988. The lipid biochemistry of calanoid copepods [J].Hydrobiologia., 167/168:101-114.
    170.Sargent, J.R., Bell, J.G., Bell, M.V. et al. 1995. Requirement criteria for essential fatty acid. J. Appl. Ichthyol. 11:183-198.
    171.Sargent, J.R., Falk-Petersen, S., 1981. Ecological investigation on the zooplankton community of balsfjorden, northern Norway: lipids and fatty acids in Thysanoessa inermis (Kroyer), Thysanoessa taschii (M. Sars) during mid-winter. Mar. Biol. 85,109-116.
    172.Schmidt K., McClelland J.W., et al.2004. Trophic-level interpretation based on δ~(15)N values: implications of tissue-specific fractionation and amino acid composition [J].Mar Ecol Prog Ser, 266:43-58.
    173.Schneider G., Behrends G. 1994. Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic [J]. ICES J Mar Sci 51:359-367.
    174.Shere EB, 1982. Carbon isotope composition of organic seston and sediments in Geogia salt marsh estuary [J]. Geoch. Cosmo. Acta. 46: 1227-1232.
    175.Sell A.F., Keuren D. van, Madin L.P2001. Predation by omnivorous copepods on early developmental stages of Calanus finmarchicus and Pseudocalanus spp.[J].Limnol. Oceanogr. 46: 953-959.
    176.Sholto-Douglas A D, Field J G, James A G,et al.1991. 13C/12C and 15N/14N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collagen tissues. Mar. Ecol. Prog. Sen, 78: 23—31
    177.Sotiropoulos MA, Tonn WM, Wassenaar LI.2004. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies [J].Ecology of Freshwater Fish, 13: 155-160
    
    178.Stefan S., Wim C. M., Klein B., etc, 1998. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: Implications for deciphering the carbon isotopic biomarker record [J]. Geochemica et Cosmochimica Acta, 62: 1397-1406.
    179.Stephson RL, Lyon GL. 1982. Carbon-13 depletion in an estuarine bivale: detection of marine and terrestrial food sources [J]. Oecologia (Berl), 55:110-113.
    180.Tang Q S, Su J L. 2000. Marine ecosystem dynamics study in China I. [M]. Beijing: Science Press, 2000.
    181 .Teal J M. 1962. Energy flow in the salt marsh ecosystem of Georgia [J]. Ecology, 43:614-624.
    182.Thimdee W., Deein G, Sangrungruang C, et al. 2004. Analysis of primary food sources and trohic relationships of aq uatic an imals in a mangrove-fringed estuary,Khung Krabaec Bay(Thailand)using dual stable isotope techniques [J].Wetlands Ecology and Management, 12:135-144.
    183.Tieszen LL, Hein D, Qvortrup SA, Troughton JH, Imbamba SK .1979. Use of δ~(13)C values to determine vegetation selectivity in East African herbivores [J].Oecologia (Berl), 37:351-359.
    184.Turner JP, Rooker JR, 2005. Effect of dietary fatty acids on the body tissues of larval and juvenile cobia and their prey, Journal of Experimental Marine Biology and Ecology, 322, 13-27.
    185.Turner JP, Rooker JR.2005a Effect of diet on fatty acid signatures and turnover rates in an estuarine-dependent fish [J]. J Fish Biol 67:1119-1138
    186.Uhle M E, Macko S A, Spero H J, et al. 1997. Sources of Carbon and Nitrogen;n Mordern Planktonic Foraminifera: the Role of Algal Symbionts as Determined by Bulk and Compound Specific Stable Isotopic Analyses [J].Org Geochem,27:103-113
    187.Vander Zanden, M.J., Rasmussen, J.B., 2001. Variation in δ~(15)N and δ~(13)C trophic fractionation: implications for aquatic food webs [J]. Limnol. Oceanogr, 46:2061-2066.
    188,Voss A, Reinhart M, Sprecher H. 1992. Differences in the interconversion between 20- and 22- carbon (n-3) and (n-6) polyunsaturated fatty acids in rat liver [J].Biochim. Biophys. Acta. 1127:33-40.
    
    189.Wang N.2008.Comparison and Unification of Carbon Stable Isotope Ratios in Specific Aquatic Biota [J]. Commun Nonlinear Sci Numer Simulat, in press.
    190.Wannigama G.P.,Voluman J.K., Gillan F.T. et al. 1981. A comparison of lipid components of the fresh and dead leaves and pneumatophores of the mangrove Avicenia marina [J].Phytochemistry, 20:659-666.
    191.Wu Y, Zhang J, Liu SM, Zhang ZF.et al. 2007. Particulate n-alkanes and fatty acids in the Changjiang river system [J].Acta Oceanologica Sinica, 26(2): 36-48.
    192.Yoshioka T and Wada E.1994.A stable isotope study on seasonal food web dynamics in a eutrophic lake [J]. Ecology, 75(3): 835-846.
    [1] Rau GH, Ainley DG, Bengtson JL, Torres JJ. ~(15)N/~(14)N and ~(13)C/~(12)C in Weddell Sea birds, seals and fish: Implications for diet and trophic structure. Mar Ecoy Prog Ser 1992;84:1-8.
    [2] Post DM. Using stable isotopes to estimate trophic position: models,methods, and assumptions. Ecol 2002;83(3): 703-18.
    [3] Sholto-Douglas AD, Field JG, James AG, van der Merwe NJ. ~(13)C/~(12)C and ~(15)N/~(14)N isotope ratios in the southern Benguela ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collagen tissues. Mar Ecoly Prog Ser 1991 ;78:23-31.
    [4] Del Giorgio PA, France RL. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ~(13)C. Limnol Oceanogr 1996;41:359-65.
    [5] France R, Cattaneo A. δ~(13)C variability of benthic algae: effects of water colour via modulation by stream current. Freshwat Biol 1998;39:617-22.
    [6] Peterson BJ, Fry B. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 1987; 18:293-320.
    [7] DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Sci 1977;197: 261-63.
    [8] Folch J, Lees M, Sloane Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biological Chem. 1957;497-509.
    [9] Pinnegar JK, Polunin NVC. Differential fractionation of δ~(13)C and δ~(15)N among fish tissues: implications for the study of trophic interactions. Funct Ecol 1999; 13:225-31.
    [10]Sotiropoulos MA, Tonn WM, Wassenaar LI. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissue: potential consequences for food web studies. Ecol Freshwat Fish 2004; 13:155-60.
    [11]McConnaughey T. Ecosystems naturally labeled with carbon-13:applications to the study of consumer food webs, 127 pp. M.S. thesis,University of Alaska, Fairbanks; 1978.
    [12]McConnaughey T, McRoy CP. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol 1979; 53:257-62.
    [13]McConnaughey T. and McRoy CP. (1979) ~(13)C Label Identifies Eelgrass (Zostera marina) Carbon in an Alaskan Estuarine Food Web. Mar Biol, 53,263-9.
    [14]Fry B, Baltz DM, Benfield MC, Fleeger JW, Gace A, Laas HL,Quinones-Rivera ZJ. Stable isotope indicators of movement and Residency for Brown Shimp (Farfantepenaeus aztecus) in coastal Louisiana Marshscapes. Estuaries 2003;26: 82-7.
    [15]Lesage V. Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals, Mar Mam Sci 2002;18(1):182-93.
    [16]Lorrain A, Paulet YM, Chauvaud.L, Savoye.N, Donval A, Saout C.Differential δ~(13)C and δ~(15)N Signatures among Scallop Tissues: Implications for Ecology and Physiology. J Exp. Mar. Biol. Eco. 2002;275: 47-61.
    [17]Schmidt K, Atkinson A, Stubing D, McClelland JW, Montoya JP, Voss M.Trophic relationships among Southern Ocean copepods and krill: Some uses and limitations of a stable isotope approach. Limnol Oceanogr 2003;48:277-89.
    [18]Sweeting CJ, Polunin NVC, Jennings S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 2006;20:595-601.
    [19] Franklin R, Satterfield IV, Bruce PF. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Prog Oceanogr 2002;53:231-46.
    [20]Bosley KL, Lavelle JW, Brodeur RD, Wakefield WW, Emmett RL, Baker ET, Rehmke KM. Biological and physical processes in and around Astoria submarine Canyon, Oregon, USA. J. Mar Syst 2004;50:21-37.
    [21]Kiljunen M, Gery J, Sinisalo T. A revised model for lipid-normalizing δ~(13)C values from aquatic organisms, with implications for isotope mixing models.J AppI Ecol 2006;43:1213-22.
    [22]Focken U, Becker K. Metabolic fractionation of stable isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ~(13)C data. Oecologia 1998; 115:337-43.
    [23]Schmidt K, McClelland JW, Mente E, Montoya JP, Atkinson A, Voss M. Trophic-level interpretation based on δ15N values: implications of tissue-specific fractionation and amino acid composition. Mar Ecol Prog Ser 2004;266:43-58.
    [24]Vijverberg J, Frank TH. The chemical composition and energy contents of copepods and cladocerans in relation to their size. Freshwat. Biol. 1976;6:333-45.
    [25]Goulden CE, Moeller RE, McNair JN, Place AR. Lipid dietary dependencies in zooplankton. In: Lipids in Freshwater Ecosystems (Eds M.T. Arts & B.C. Wainman), 91-108. Springer-Verlag, New York.:; 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700