武汉东湖碳循环过程和碳收支研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对长江中下游典型的富营养型湖泊东湖的碳循环过程和碳收支进行了研究,内容包括水-气界面CO_2和CH_4通量的过程、水柱中DOC、TOC和DIC的过程和2003年4月至2004年3月碳收支等方面,主要研究结果如下:
     1.东湖水-气界面CH_4在一年中始终是释放的,Ⅰ、Ⅱ、Ⅲ站CH_4释放速率分别是0.97、1.071和1.136 mg m~(-2) h~(-1)。夏季是CH_4的主要释放释放时段。水—气界面的CH_4通量与水体营养水平的相关关系不显著,但最大释放通量受到各站营养水平的控制;温度对于CH_4的释放速率有着显著的促进作用。水—气界面的CO_2在一年中变化十分剧烈,但从年平均值看,CO_2呈释放状态,Ⅰ、Ⅱ、Ⅲ站平均值分别为9.87、13.33和26.06 mg m~(-2) h~(-1)。水—气界面的CO_2通量与水体的营养水平成负相关;温度对水—气界面的CO_2释放的影响不显著。
     2.东湖水柱中DOC的平均含量是7.31mg/L,含量秋季达到最高;水柱中TOC的平均含量是8.78 mg/L,含量秋季达到最高;水柱中DIC的平均含量是11.89mg/L,春夏季的含量高于秋冬季。运用聚类分析和主成分分析,将东湖水柱中碳含量分为三类:第一类由于温度较高、营养盐较高,DOC、TOC平均含量最高;第二类DOC、TOC平均含量中等;第三类由于短时间内降雨突增,DOG、TOC平均含量最低。
     3.采用清单法,主要考虑东湖生态系统的水—气界面,水—陆界面和水—泥界面三个界面的碳收支,2003年4月至2004年3月,东湖的净收支是8018.9t。其中,由水-气界面界面释放到大气的碳达到880.2 t,占支出的22.6%。与Ontario湖相比,这一比例偏低。与三江平原湿地相比,东湖水-气界面是一个较小的碳源。
Carbon cycling and budget in the shallow, eutrophic Lake Donghu were studied from April 2003 to March 2004. This thesis mainly included:1) the fluxes of carbon dioxide and methane across water-air interface, 2) seasonal changes in DOC ( dissolved organic carbon ), TOC( total organic carbon ) and DIC( dissolved inorganic carbon ) in the water column, and 3) carbon budget of the whole lake. The main results and conclusions are as follows:
    Methane concentration in the lake water was always supersaturated and the methane emission rate at Stations I , II and III was 0.97, 1.071 and 1.136 mg m-2 h"1, respectively. Most of the methane emission took place in the summer. There was no significant relationship between methane flux across water-air interface and trophic level, but the maximum emission was associated with high trophic level. Temperature significantly promoted methane emission. There was great variation in carbon dioxide flux across water-air interface, and the average emission rates of carbon dioxide at Stations I , II and HI were 9.87, 13.33, 26.06 mg m-2 h-1, respectively. There was a negative relationship between carbon dioxide fluxes across water-air interface and trophic levels, but there was no significant relationship between carbon dioxide fluxes across water-air interface and temperature.
    The average concentrations of DOC, TOC and DIG in the water column were 7.31, 8.78 and 11.89 mg/L, respectively. The concentrations of both DOC and TOC were the highest in autumn, whereas the DIG concentration was higher in spring and
    
    
    summer than in autumn and winter. Based on cluster and principal composition analyses, the carbon concentrations in the water column were divided into three groups: 1) highest concentrations of DOC and TOC due to higher temperature and trophic level, 2) medium concentrations of DOC and TOC, and 3) lowest DOC and POC values due to strong rainfall.
    Using inventory method, the carbon budget of Lake Donghu during April 2003 and March 2004 were estimated from water-air, water-land and water-sediment interfaces. Lake Donghu was a sink of carbon (8018.9t in total). The gaseous carbon released from the water-air interface was 880.2t, accounting for 22.6% of the total outflow. Compared with other lakes (e.g., Lake Ontario), this proportion was small. Compared with wetlands in San Jiang Plain, the water-air interface of Lake Donghu is a smaller source of carbon.
引文
1. Achtnich, C., Schuhamann, A., Wind, T. and Conrad, R., 1995a, Role of interspecies H_2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiology Ecolgoy, 16:61-69
    2. Barnola J M. Vostik ice: A 160000 year records of atmospheric CO2. Natrure, 1987,329:408-414
    3. Boden G, Broecker W, Johnsen S, et al. Correlations between climate records for North Atlantic sediments and Greenland ice. Nature, 1993,365:143-147
    4. Cao M. K. and Woodward F. I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393:249~252
    5. Caraco, N. E., and J.J. Cole.2000. When terrestrial organic matter is sent down the river: importance of allochthonous C inputs to the metabolism in lakes and rivers. In A. Polis and M. E. Power [eds.]. Food webs at the landscape level.
    6. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559-568.
    7. Casper, P., 1992. Methane production in lakes of different trophic state.Arch.Hydrobiol. Beih.Ergebn. Limnol.37,149-154
    8. Casper, P., S.C. Maberly, G.H. Hall, and B.J. Finlay. 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49:1-19
    9. Chanton, J.P., Crill, P., Bartlett, K., Martens, C., 1989a. Amazon capims (floating grass mats): A source of ~(13)C enriched methane to the troposphere. Geophys. Res. Lett. 16, 799-802
    10. Chapperllaz J, Barnolz J M, Raynaud D, et al. Ice-core record of atmospheric methane over the past 160000 years. Nature, 1990,345:127-131
    11. Cole J J, Caraco N F, Kling G W and Kratz T K 1994 Carbon dioxide supersaturation
    
    in the surface waters of lakes. Science 265, 1568-1570.
    12. Conrad, R. and Rothfuss, F., 1991, Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Boil. Fert. Soi1,12:28~32
    13. Conrad, R., 1989. Control of methane production in terrestrial ecosystems, In exchange of Trace Gaes between Terrestrial Ecosystems and the Atomsphere, eds. M. O. Andreae and D. S. Schime, 39-58
    14. Dag O. Hessen, Egil T. Gjessing, Johan Knulst &Eirik Fjeld. TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 36: 139-151, 1997.
    15. David L. Correl, Thomas E. Jordan And Donald E. Weller. Effects Of Precipitation, Air Temperature, and Land Use on Organic Carbon Discharges from Rhode River Watersheds. Water, Air, and Soil Pollution 128: 139-159, 2001
    16. Dean, W. E. & E. Gorham, 1976. Major chemical and mineral components of profundal sediments in Minnesota lakes. Limnol Oceanogr. 21: 259-284.
    17. Dean, W. E. & J. P. Bradbury, 1997, Transects of organic carbon, calcium carbonate, and diatoms in surface sediments of Williams and Shingobee Lakes, In Winter T. C. (ed.). Interdisciplinary Research Initiative: Hydrological and Biogeochemical Kesearch in the Shingobee River Headwaters Area, North-Central Minnesota, U. S. Geological Survey, Water Resources Investigations Research 96-4215: 117-129.
    18. Dean,W. E., E. Gorham & D.J. Swaine,1993. Geochemistry of surface sediments of Minnesota laks. In Bradbury J. P. and W. E. Dean (eds.). Elk Lake, Minnesota: Evidence for rapid Climatic change in the North-Central United States. Geol. Soc. Am. Spec. paper 276:115-133
    19. Devol, A.H., Zaret, T.M., Forsberg, B.R. Sedimentary organic matter diagenesis and its relation to the carbon budget of tropical Amazon floodplain lakes. Congress in France 1983. Proceedings., 1984, P. 1299-1304
    20. Dilip K Datta, Lallan P Gupta, V Subramanian. Distribution of C,N and P in the
    
    sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin. Organic geochemistry, 1999,30:75-82
    21. Downing J. P, Meybeck M. Orr J et al., Land and water interface zones. Water air and soil pollut., 1993, 11:123-127.
    22. Ford, T. E., S. A. Ford, A. A. Lock & J. Naiman, 1990. Dissolved organic carbon concentrations and fluxes along the Moisie River,Quebec. Freshwat. Biol. 24: 35-42.
    23. Gonzalez, E. & J. Pozo, 1995. El carbono orgánico disuelto enel Río Agüera (Norte de Espaa) en condiciones deestabilidad hidrológica. Limnética 11: 57-62.
    24. Houghton,J.H. Global Warming. Lion Publishing, 1994:192
    25. Huttunen, J T., J. Aim, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola and P.J. Martikainen. 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609-621.
    26. Huttunen, J.T., Alm, J., Juutinen, S., Silvola, J., Martikainen, P.J., 2000. Greenhouse gas .uxes in a boreal agricultural landscape. In: Pietola, L. (Ed.), Soil Science in the Service of Mankind. Extended Abstracts of the First Finnish Soil Science Conference, Helsinki 21 - 22 November 2000, Pro Terra 4. University of Helsinki, Finland, pp. 131 - 133
    27. Inger Bergmana, Peter Lundbergb, Mats Nilssona. Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations,Soil Biology and Biochemistry,1999, 31:1867-1877
    28. Inubushi, K., Umebayashi M., and Wada, H., 1990a, Methane emssion from paddy fields. In: Transactions 14th International Congress of Soil Science (August 12-18, 1990), Kyoto. Vol .Ⅱ, pp. 249-254
    29. Kelly, C.A., Chynoweth, D.E, 1981. The contributions of temperature and of the input of organic matter to controlling rates of sediment methanogenesis. Limnol. Oceanogr.26, 891 - 897
    
    
    30. Khalil MAK & Shearer MJ (1993) Sources of methane: An overview. In: Khalil MAK (Ed.) Atmospheric Methane: Sources, Sinks, and Role in Global Change :180-198
    31. Kiene, R P 1991 Production and consumption of methane in aquatic systems. In Microbial Production and Consumption of Greenhouse Gases:Methane, Nitrogen Oxides and Halomethanes. Eds. J E Rogers and W B Whitman. American Society for Microbiology, Washington D.C. pp 111-146
    32. Kling G W, Kipphut G W, Miller M C. 1992.The flux of CO_2 and CH_4 from lakes and rivers in arctic Alaska [J]. Hdrobiologia, 240:23-26.
    33. Kling, G.W., G.W. Kipphul & M.C. Miller, 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298-301.
    34. Klump, J.V., Fitzgerald, S.A., Waples, J.T .Sedimentary carbon cycling and a carbon budget for Green Bay, Lake Michigan. Abstracts from the 44th Conference on Great Lakes Research, June 10-14, 2001. Great Lakes Science: Making it Relevant. p. 68
    35. Kortelainen, P., Huttunen, J.T., V.aais.aanen, T., Mattsson, T., Karjalainen, P., Martikainen, P.J., 2000. CH_4, CO_2 and N_2O supersaturation in 12 Finnish lakes before and after ice-melt.Verbatim Internal.Verein. Limnol. 27, 1410 - 1414.
    36. Liikanen, A., 2002. Greenhouse Gas and Nutrient Dynamics in Lake Sediment and Water Column in Changing Environment, Ph.D. Thesis. In: Natural and Environmental Sciences, vol. 147. Kuopio University Publications C, Kuopio, Finland
    36. Louis St, Kelly V L, Duchemin C A, et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience, 2000,50
    37. Lovley D. R. and Kiug M. J. (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of an euthrophic lakes. Appl. Environ. Microbiol. 45, 1310-1315
    38. MaConnaughey, T.A., J. W. Labaugh, D. O. Rosenberry, R. G. Striegl, M. M. Reddy, P. F. Schuster, and V. Carter. 1994. Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnol. Oceanogr. 39:1319-1332.
    
    
    39. Maljanen Marja, Pertti J. Marti kainen, Heikki Aaltonen, Jouko Silvola. 2002. Short-term variation in fluxes of carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils Soil Biology& Biochemistry 34:577-584.
    40. Martens, C.S. and J.P Chanton. 1989. Radon tracing and biogenic gas equilibration and transport from methane saturated sediments. J. Geophys. Res. 94, 3451-3459
    Minami, K., Neue, H-U., 1994. Rice paddies as a methane source., Climate Change 27, 13-26
    41.Moore Berrein,Braswell J B H.地球的新陈代谢:了解碳循环.刘文新译.AMBIO(人类环境杂志),1994,23(1):1-12
    42. Mukhopadhyay S.K., H. Biswas, T.K. De, B.K. Sen, S. Sen, T.K. Jana, 2002. Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratios at the NE Coast of Bay of Bengal, India. Atmospheric Environment 36: 629-638.
    43. Nakano Tomoko, Shunich Kuniyoshi, Masami Fukuda, 2000. Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmospheric Environment 34:1205-1213
    44. Neue, H.U. and Scharpenseel, W. W., 1984. Gaseous products of decomposition of organic matter in submerged soils, In: Organic matter and rice. International Rice Reserch Institute, Los Banos. 311-328
    45. Plass G N.The influence of the 15-micron carbon dioxide band on the atmospheric infrared cooling rate.Quart. J. Roy. Meter. Soc., 1956,82:310-324
    46. Raynaud D, Jouzel J, Barnola M, et al. The ice record of green gas. Science, 1993,259:926-934
    47. Rebsdorf A, Thyssen N & Erlandsen M (1991) Regional and temporal variation in pH, alkalinity and carbon dioxide in Danish streams, related to soil type and land use. Freshwat. Biol 25:419-435.
    48. Rfisdli H, Lotscher H, Oeschger H, et al. Ice core record of the ~(13)C/~(12)C ratio of atmosphereic CO_2 in the past two centuries. Nature, 1986, 324:237-238
    
    
    49. Robertson A.and B. J. Eadie, 1975. A carbon budget for Lake Ontario.
    Robertson A.and B. J. Eadie, 1975. A carbon budget for Lake Ontario. Verh.Int.Ver.Limnol. 19:291-299
    50. Roulet Nigel T., P.M.Crill. N.T. Comer, A.Dove, And R. A. Boubonniere, 1997. CO2 and CH4 flux between a boreal beaver pond and the atmosphere. J. Geophys. Res.102, No. D24, :29313--29319.
    51. Rudd J.W.M. & R.D.Hamilton. 1978. Methane cycling in a eutrophic shield lake and its effect on whole lake metabolism, Limnol. and Oceanogr., 23(2), 337-348.
    52. Schimel, J. P. and Gulledge, J., 1998, Microbial community structure and global trace gaes. Global Change Biology, 4,:745-758
    53. Schindler, D.W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18-29.
    54. Schindler, D.W., Brunskill, G.J., Emerson, S., Broeker, W.S., Peng, T-H., 1972. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science 177,1192 - 1194.
    55. Schütz H., Seiler, W. and Conrad, R., 1989. Processes involved in formation and emssion of methane in rice paddies. Biogeochemistry 7:33-53
    56. Schütz H., Seiler, W. and Conrad, R., 1990. Influence of soil temperature on methane emssion from rice fields. Bioehemsitry 11:77-95
    57. Striegl R G and Michrnerhuizen C M 1998 Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol. Oceanogr. 43, 1519-1529.
    58. Subcommitteeon Earth Sciences and Technology, Council for Aeronautics, Electronics and Other Advanced Technologies, Science and Technology Agency, Japan. Frontier Research Program for Global Change-To,yard the Prediction of Global Change. 1997.
    59. Svensson, B.H., 1984. Different temperature optima for methane formation when
    
    enrichments from acid peat are supplement with acetate or hydrogen. Applied Environmental Microbiology 48, 389-394
    60. Takai, Y and Wada, E., 1990, Methane formation in waterlogged paddy soils and its controlling factors. In: soil on a warmer earth (eds H. W. Scharpenseel, H. W., M. Schomaker and A. Ayoub). Development In Soil Science 20, Elsevier, Atmosterdam. pp. 101-107
    61. Tans R R, Fung I. Y. and TakahashiT. Observational constraints on the global atmospheric CO2 budget. Science, 1990,247:1431~1438
    62. Wanninkhof, R., J. R. Ledwell & W. S. Broecker, 1987. Gas exchange on Mono Lake and Crowley Lake, California. J.Geophys. Res. 92:14567-14580.
    63. Waples, J.T., Eadie, B.J., Klump, J.V. An isotopic mass balance for sedimentary carbon diagenesis in Green Bay, Lake Michigan. 36th Conference of The International Association for Great Lakes Research, June 4-10, 1993. Program and Abstracts, 1993, 64
    64. Weimer R J. and Zeikus J. G. (1978) Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119, 175-182
    65. Wetzel R. G. 2001. Limnology. 3ird Edition. Academic Press, San Diego.
    66. Wickland K P. Carbon gas exchange at a southern Rocky Mountain wetaland, 1996~1998. Global Biogeochem Cycles, 2001, 15(2):321-335.
    67. Woodwell G.D., Mackenzie F. T., Houghton R.A>, et al. Bioticfeedbacks in the warming of the earth. Climate Change,1998, 40:495~518
    68. Zindler S. H. and Brock T. D. (1978a) Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaer-obic lake sediments. Nature 273, 226-228.
    69. Zindler S. H. and Brock T. D. (1978b) Methane, carbon dioxide and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl, Environ. Microbiol. 35, 344-352
    70.陈毅凤,张军,万国江.贵州草海湖泊系统碳循环简单模式.湖泊科学,2001,
    
    13(1):15-20
    71.方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化.环境科学学报,1998,18(2):113-121
    72.何晓群.现代统计分析方法与应用.北京:中国人民大学出版社,1998.220-221
    73.黄耀,2001.关于中国陆地生态系统碳循环研究的几点思考.世界科技研究与发展,66-68。
    74.黄耀.中国陆地和近海生态系统碳收支研究.中国科学院院刊,2002,2:104-107
    75.李绚丽,谈哲敏.大气圈碳循环的模拟研究进展.气象科学,2000,20(3):400-412
    76.刘健康,东湖生态学研究(二),科学出版社,1995
    77.潘文斌,蔡庆华.保安湖大型水生植物在碳循环中作用.水生生物学报,2000,24(5):418-425
    78.上官行健,1993,稻田CH_4产生与排放过程的研究.中国科学院大气物理研究所博士论文
    79.舒金华.我国主要湖泊富营养化程度的评价.海洋与湖沼.1993,24(6):616-620
    80.谭骏.东湖生态系统碳氮稳定同位素研究.中科院水生生物研究所博士后研究工作报告,1996
    81.王浩然,万国江,陈业材.湖泊沉积物有机碳的仪器分析法[J].重庆环境科学,1996,18(5):36-38,41
    82.王明星.中国稻田甲烷排放.北京:科学出版社,2001
    王树伦,陈镇东,张哲明.台湾地区湖泊甲烷释放量[J].海洋与湖沼,1998,29(5):527-533
    83.王苏民,余源盛,吴瑞金等.岱海[M].合肥:中国科学技术大学出版社,1990:82-145
    84.许新宜主编,中国资源科学百科全书·水资源学.北京:中国大百科全书出版
    
    社,2000
    85.严国安,刘永定.水生生态系统的碳循环及对大气CO_2的汇.生态学报,2001,21(5):827-833
    86.杨洪,易朝路,谢平,邢阳平.人类活动在武汉东湖沉积物中的记录.中国环境科学,2004a,24(3)
    87.杨洪,易朝路,邢阳平,谢平.东湖沉积物孔隙度与含水量的研究.湖泊科学,2004b,16(1):68-72
    88.杨洪,易朝路,邢阳平,杨涛.~(210)Pb和~(137)Cs法对比研究武汉东湖现代沉积速率.华中师范大学学报,2004c,38(1):109-113
    89.叶笃正,陈泮勤.中国的全球变化预研究.北京:地震出版社,1992
    90.张华,蔡靖芳,刘会平.神农架大九湖12500 a.B.P以来的孢粉植物群与气候变化.华中师范大学学报(自然科学版),2002,36(1):87-92
    91.庄亚辉,李长生,高拯民.复合生态系统元素循环.北京:中国环境科学出版社,1996.30-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700