北部湾北部记录的全新世气候变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北部湾是由中国的广西沿海、广东雷州半岛、海南西部,以及越南的东北部所围成的天然半封闭浅水海湾,是受东亚季风与西南季风影响的气候敏感区。由于海南岛的屏障作用,受南海海流作用影响小,适合开展气候变化研究,也有助于理解季风气候变化过程,快速气候变化事件及其驱动机制。当前,对北部湾古气候的研究比较少,且年代控制精度不高。北部湾北部具有较高的沉积速率,可以实现较高分辨率的气候变化恢复研究。
     本文首先对表层沉积物进行粒度和孢粉分析,获得孢粉分布规律与沉积环境的关系。对Q24孔(岩芯长6.25 m)和Q43孔(岩芯长5.13 m)的柱状样品进行孢粉、粒度、碳屑、C/N、δ13C和XRF全芯扫描等分析,将表层样品中获得的气候代用指标与沉积环境代用指标的关系应该到钻孔数据的综合解译中,在210pb和AMS14C年代框架下,重建了北部湾北部8.50 cal. kyr BP以来的古环境和古气候。主要研究内容及结果如下.
     (1)表层孢粉分布规律
     对表层沉积物的粒度和孢粉分析结果表明,孢粉浓度与沉积物的粒径具有一定的正相关;蕨类孢子和松属花粉含量随离岸距离增加而增加,而草本植物花粉含量则随离岸距离的增加而减少。
     (2.)气候变化过程和模式
     本研究利用粒度参数作为沉积环境水动力的代用指标,C/N、δ13C和Al/Ti值指示陆源输送变化,孢粉及碳屑为主要气候代用指标,通过校正沉积环境变迁及陆源输送变化对孢粉分布的影响来提取气候变化信息,获得气候变化过程。
     约8.50 cal. kyr BP琼州海峡的完全开通,现代北部湾基本形成,研究区处于相对稳定的浅海环境,环境对气候代用指标的影响相对较弱。根据沉积相分析及AMS14C年代框架,Q24孔在8.5-4.0 cal. kyr BP期间沉积连续,Q43孔主要为4.0 cal. kyr BP之后的沉积,综合两个钻孔的气候及沉积环境多代用指标的测试结果,恢复8.50 cal. kyr BP以来的气候变化过程:
     7.84 cal. kyr BP之前,反映比现代温暖湿润的气候特征;7.84~7.36 cal. kyr BP期间,较上一阶段偏凉偏干的气候所致;7.36~6.51 cal. kyr BP期间,变凉变湿的气候特征;6.51~4.09 cal. kyr BP期间,总体上Quercus和湿生草本类型均增加,粒径参数及δ13C值较稳定,反映总体上呈现偏凉湿的气候特征,但结合粒度参数及其它沉积环境指标的变化校正,可以识别出三个亚阶段:6.51~6.00 cal. kyr BP,偏凉湿的气候;6.00-5.80 cal.kyr BP,尚需进一步分离研究气候变化信息;5.80~4.09 cal. kyr BP,反映出气候略偏暖。4.09-1.84 cal. kyr BP期间,由于Q43孔在该阶段取样扰动,记录缺失,仅由一个未扰动样品无法实现高分辨率研究,迄待今后进一步研究;2.20-1.84 cal. kyr BP期间,说明了变凉变干的气候特征;1.84~1.40 cal. kyr BP期间,比上一阶段更加变凉变干;1.40-0.33cal. kyr BP期间,指示了变暖变湿的气候特征。
     (3)北部湾北部记录的突发性气候冷事件及其驱动机制
     北部湾北部记录的8.50 cal. kyr BP以来突发性气候冷事件分别为7.8-8.0 cal. kyr BP、8-6.0 cal. kyr BP、1.4-1.8 cal. kyr BP,通过与不同地区和区域记录的冷事件对比,认为这些事件可能太阳辐射和温盐环流有关。
The Northern Beibu gulf is a natural semi-closed shallow gulf, which is bounded by Chinese Guangxi coast, peninsula Leizhou of Guangdong, western Hainan, northern Vietnam. It is one of the most significant areas by Asian monsoon, so palaeoclimate research helps to understand climate change process in monsoon area, and rapid climate change events and their driving mechanism.
     At present, the research about palaeoclimate of Northern Beibu gulf is very few, and the dating precision is also very low. Besides, high sedimentation rate of Beibu gulf during the Holoeene has been shown in previous studies, which makes it possible to exact information from sea sedimenis.,so it has certain theoretical value to study palaeoclimate here.
     This paper studied particle size, pollen and 210Pb of surface sediment adequately, as a basis for explaining the palaeoclimate characteristic in core. Then we chose two samples of surface sediments from core Q24 (6.25 m) and core Q43 (5.13 m) to 210Pb date, and nine samples to AMS14C date, in order to build the sedimentary-date framework. Then according to the significance of climate proxies pollen, grain size, charcoal, C/N,δ13C, XRF, the history of the environmental changes of Northern Beibu gulf in the past 8.50 cal. kyr BP was reconstructed. The main results of this study include the followings:
     1.The surface pollen regularities of distribution in Northern Beibu gulf
     The sea area,where drilling is located, is affected by monsoon, land stream, tidal, the residual current, so the environmental condition is relatively complicated, and makes pollen distribution rule is very complex. When sediment particle size is small, pollen concentration generally is high; the content of fern spores and pinus become higher and herb lower as farther from the offshore.
     2.The climate change process and model
     This research use particle size as the proxy of the hydrodynamic of sedimentary environment, and C/N、813C、Al/Ti as the proxies of the land-originchange, and pollen and charcoal as the main proxy of the climate change. We extract information about climate change by correcting the influence of sedimentary environmental and land-originc changes on terrestrial pollen distribution.
     Qiongzhou Strait was opened fully about 8.50 cal. kyr BP and modern Beibu Bay was formated. Study area was in the stable shallow marine environment, so environmental impacted the climate proxies weakly.
     According to sedimentary facies and AMS14C age framework, we can found that the deposition of Q24 core during 8.5-4.0 cal. kyr BP was continuous, and Q43 core recorded mainly 4.0 cal. kyr BP deposition, so comprehensive this two cores about the climate and sedimentary environment, we recoveried the climate change process since 8.50 cal. kyr BP:
     In the study area of core Q24, before 7.84 cal. kyr BP, the climate is humid and warm; during 7.84~7.36 cal. kyr BP, the temperature and humidity are declined; and during 7.36~6.51 cal. kyr BP, the temperature gradually increased, at the same time the humidity is down, but the Sediment grain sizeand other changes inenvironmental indicators,three sub-stages can be identified:6.51-6.00 cal. kyr BP, the climate was a little cooler and wetter,6.00-5.80 cal. kyr BP, it need further information to separate of climate change,5.80-4.09 cal. kyr BP, the climate was warmer; during 4.09-1.84 cal. kyr BP, Because there was only one undisturbed samples in this stage sampling, so we cannot achieve high resolution research. the climate characteristics is cool and dry; during 2.20-1.84 cal. kyr BP the climate was cooler and drier; during 1.84-1.40 cal. kyr BP, the temperature is still low, but humidity gradually increased; during 1.40 -0.33 cal. kyr BP, the climate characteristics is warm and humid.
     3. The Northern Beibu gulf recorded rapid climate change events and its driving mechanism
     According to partical size, Al/Ti,δ13C, pollen volume concentration, pollen flux, RCC events 7.8-8.0 cal. kyr BP、5.8-6.0 cal. kyr BP、1.4-1.8 cal. kyr BP was recorded in Northern Beibu gulf, Global RCC events of 7.8-8.0 cal. kyr BP、5.8-6.0 cal. kyr BP、1.4-1.8 cal. kyr BP are associated with the solar radiation and Thermohaline Current(THC). Besides,1.4-1.8 cal. kyr BP event may be the main reason that couse continuous wars and regime change frequently in Wei, Chin and the South and North Dynasties.
引文
1. 陈发虎,朱艳等.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化[J].科学通报,2001,46:1414-1419.
    2. 陈发虎,黄小忠等.亚洲中部干早区全新世气候变化的西风模式—以新疆博斯腾湖记录为例[J].第四纪研究,2006,26(6):881-887.
    3. 陈永利,胡敦欣等.南海夏季风爆发与西太平洋暖池区[J].海洋学报,2003,25(3):20-31.
    4. 陈吉余,沈焕庭等.长江河口动力过程和地貌演变[M].上海科学技术出版社[M].1988:102-107.
    5. 崔海亭,胡金明等.利用炭屑的显微结构复原青铜时代的植被[J].科学通报,2002.47(19):1504-1507.
    6. 广西壮族自治区海岸带和海涂资源综合调查领导小组.广西壮族自治区海岸带和海涂资源综合调查报告(第七卷)[M].1986.5-91.
    7. 郭妮,张杰等.西北地区近年来内陆湖泊变化反映的气候问题[J].冰川冻土,2003,25(2):211-214.
    8. 郭正堂,Petit-Maire Nv等.1999.全新世期间亚洲和非洲环境的短尺度变化[J].古地理学报,1:68~74.
    9. 葛晨东,王颖等.海南岛万泉河口沉积物有机碳、氮同位素的特征及其环境意义[J].第四纪研究,2007,27(5):845-852.
    10.洪业汤,姜洪波等.近5ka温度的金川泥炭δ18O记录中国科学(D辑),1997,27(6):525-530.
    11.洪冰,刘丛强等.哈尼泥炭δ180记录的过去14000年温度演变[J].中国科学(D辑).地球科学,2009,39(5):626-637.
    12. 陈树培.海南岛的植被概要[J].生态科学,1982:29-37.
    13.柯曼红.黄土孢粉分析方法的研究[J].植物学报,1994.36(2):144-147.
    14. 吕静,王宇飞等.古炭屑与古森林火[J].古地理学报,2002,4(2):71-76.
    15.李学杰,韩建修等.南海北部全新世以来的古气候演变[J].南海地质研究(九).
    16.李杰,李珍等.海洋泥质沉积物的孢粉实验室处理方法研究[J].海洋科学进展.2008,26(2):184-189.
    17.陆岸青,李珍等.越南红河流域沉积物的镜下碳屑分析实验室处理方法对比研究[J],第四纪研究.2009(04):825-831.
    18.李小强,周杰等.黄土孢粉分析的新途径-筛滤分析法[J].中国沙漠,1999.9(4):399-402.
    19.李小强,周新郑等.黄土炭屑分级统计方法及其在火演化研究中的意义[J].湖泊科学,2006.18(5):540-544.
    20.李春海,何翠玲等.黄土孢粉HF处理方法[J].微体古生物学报,2004.21(3):346-348.
    21.黎广钊,梁文等.广西沿海全新世以来气候变化[J].海洋地质与第四纪地质,1996,16(3):49-60.
    22.黎广钊,卞云华等.北部湾东北部全新世海怪地层及其微体古生物特征[J].热带海洋.1988,5(2):63-70.
    23.黎广钊,梁文等.钦州湾水下动力地貌特征[J].地理学与国土研究,2001,17(4):70-75.
    24.莫永杰.北部湾北部浅海沉积物的粒度类型[J].热带海洋,1990,9(1):87-93.
    25.邱绍芳,侍茂崇等.钦州湾潮流特征分析[J].海洋通报,2003,22(3):9-14.
    26.刘敬合,叶维强.广西钦州湾地貌及其沉积特征的初步研究[J],海洋通报1989,8(2)49-57.
    27.李从先,陈刚等.冰后期海岸层序的初步研究[J].石油与天然气地质,1989,10(4):355-366.
    28.刘秀菊.柴达木盆地晚全新世湖泊抱粉记录与气候变化[J].2007,硕士论文.
    29.李贞,李珍等.广西钦州湾海岸带孢粉组合和沉积环境演变.第四纪研究,2010,30(3):598-608.30.李珍,臧家业等.越南红河三角洲近五千年来的几个降温事件[J].海洋科学进展,2005,1(23):43-52.31.马金,周永红等.2007.1992-2007全球海平面变化[J].中国科学院上海天文台年刊,NO.2,37-4132.孙千里,周杰等.北方环境敏感带岱海湖泊沉积所记录的全新世中期环境特征[J].中国科学(B辑),2006,36(9):838-849.33.施雅风,孔昭袁等.中国全新世大暖期的气候波动与重要事件[J],中国科学(D 辑),1992,(12):1300-1307.
    34.施雅风,孔昭袁等.中国全新世大暖期鼎盛阶段的气候与环境[J].中国科学(B辑),1993,23(8):865-872.
    35.史小军,余克服等.南海周边中全新世以来的海平面变化研究进展[J].海洋地质与第四纪地质.2007,27(5):121-133.
    36.苏宗明.广西天然植被类型及分类系统[J],广西植物.1998,18(3):237-246.
    37. 谭嘉铭,袁道先等.新仙女木及全新世早中期气候突变事件:贵州茂兰石笋氧同位素记录[J].中国科学(D辑),2004,31(1):69-74.
    38.王成,龚庆杰等.从南海沉积物中的主量元素比值变化看沉积物源区化学侵蚀变化[J].海洋地质动态.2007,23(1):1-5.
    39.吴文祥,刘东生等.4000 a BP前后降温事件与中华文明的诞生[J],第四纪研究.2001,21(5):443-451.
    40.吴文样,刘东生等.5000 a BP气候事件在三大文明古国古文明和古文化演化中的作用[J],地学前缘,2002,9(1):155-162.
    41.卫克勤,林瑞芬.连山敦德冰芯氧同位素剖面的古气候信息探究[J].地球化学,1994,23(4):311320.
    42.徐海.中国全新世气候变化研究进展[J],地质地球化学.2001,29(2):09-17.
    43.谢昕.2007,博士后研究工作报告[R].
    44.王开发,张玉兰等.上海地区全新世植被环境演替与古人类活动关系探讨[J].海洋地质与第四纪地质,1996,16(1):1-4.
    45.王杰等.'8.2ka BP冷事件”的研究现状展望[J],冰川冻土.2005,27(4):520-527.
    46.王宁练,姚檀栋等.全新世早期强降温事件的古里雅冰心记录证据[J].科学通报,47:818~823.
    47. 王绍武,叶谨琳等.中国小冰期的气候[J].第四纪研究,1998(1):54-64.
    48.王绍武,龚道溢等.全新世几个特征时期的中国气温[J].自然科学进展,2000,10(4):325-332.
    49.万国江等.现代沉积年分辨的137Cs计年—以云南洱海和贵州红枫湖为例[J].第四纪研究.1999(1):73-80.
    50.姚檀栋,ThompsonL等.古里雅冰芯中末次间冰期以来气候变化记录研究中国科学D辑[J].1997,27(3):247-252.
    51.姚檀栋,ThompsonL等.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学(D辑),1997,27(5):447-452.
    52.姚檀栋.末次冰期青藏高原的气候突变中国科学[J],D辑.1999,29(2):175-184.
    53.杨美临.博斯腾湖多代用指标(侧重硅藻)记录的全新世气候变化模式.2008,博士论文.
    54.中越合作北部湾海洋综合调查报告,第一册,1964.
    55.张玉兰等.南海东北部表层沉积的孢粉与陆源植被关系的研究[J],2002,21(4)28-37.
    56.赵焕庭等.琼州海峡成因与时代[J].海洋地质与第四纪地质.2007,27(2):33-41.
    57.中国海湾志编纂委员会.中国海湾志(广西海湾)[M].北京:海洋出版社,1993.
    58.章典等.气候变化与中国的战争、社会动乱和朝代变迁[J],科学通报.2004,49(23):2468-2474.
    59. 张宏建等,雷州半岛植被[M],1957.
    60. 张伯虎,广西重点港湾沉积动力特征及其冲淤演变,硕士论文.
    61.朱华等,越南植物区系的组成与特征.中山大学学报[J],2003,4(26):98-102.
    62. Alfaro S., Gaudichet A. et al.1998. Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies. Geophysical Research Letters,25 (7): 991-994.
    63. Alley R., Mayewski P. et al. Holocene climatic instability:a prominent, widespread event 8200 yr ago [J].Geology,1997,25:483-486.
    64. Allen G.1971. Relationship between size parameter distribution and current patterns in the Gironde Estuary (France). Journal of Sedimentary Petrology,41:74-88.
    65. Anderson L., Abbott M. et al..Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quaternary Research,2005,64 (1):21-35.
    66. Appleby P., Oldfield F. et al..1992. Application of lead-210 to sedimentation studies. In:Ivanovich, M., Harmon, R.S. (Eds.), Uranium-series Disequilibrium:Application to Earth, Marine, and Environmental Sciences. Clarendon Press, Oxford, pp 731-778.
    67. Ashley G.1978. Interpretation of polymodal sediments. Journal of Geology,86: 411-421.
    68. Brooks G. et al. Patterns and controls of surface sediment distribution:west-central Florida inner shelf[J]. Marine Geology,2003,200:307-324.
    69. Beget J. Radiocarbon-dated evidence of worldwide early Holocene climate change [J]. Geology,1983,11:389-393.
    70. Birks C. et al. A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea, Boreas, 2002(31):323-344.
    71. Bond G., Broecker W. et al. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature,1993(365):143-147.
    72. Bond G, Showers W et al. A pervasive millennial-scalecycle in North Atlantic Holocene and glacial climates[J].Science,1997,278:1257-1266.
    73. Bond G, Kromer B. et al.Persistent solar influence on North Atlantic climate during the Holocene. Science,2001(294):2310-2316.
    74. Bordovsky O. Accumulation and transformation of organic substances inmarine sediments. Marine Geology,1965,3:3-114.
    75. Chase M., Bleskie Cet al.2007, Midge-inferred Holocene summer temperatures in Southeastern British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, doi:10.1016/j.palaeo.2007.10.020.
    76. Dansgaard W. Ice core evidence of abrupt climatic changes[A]. Abrupt Climatic Change:Evidence and Implications[C]. Dordrecht:Reidel,1987.223-233.
    77. Dahl-Jensen D., Mosegaard K. et al. Past temperatures directly from the Greenland ice sheet. Science,1998(282):268-271.
    78. Denton G. et al. Holocene climatic variations:their pattern and possible cause [J]. Quaternary Research,1973,3(2):155-205.
    79. Defines P. The isotopic cornposilion olreduced organic carbon[A].Frill P, Fonles J Ch. Handhook of Environrnenlal Isolopic Ceochemislry (vol.1)[C].Amsterdam:Elsevier, 1980.329-406.
    80. Demon G., Karlen W et al. climatic variations-their patterns and possible causes.Quaternary Research,1973 (3):155-205.
    81. Dorsey K. Reconstruction of Caribbean climate change over the past 10,500 years. Nature,1991(352),790-793.
    82. Duplessy J. Labeyrie Letal. Changes in surface salinity of the North Atlantic Ocean during the last deglaciation [J]. Nature,1992,358:485-488.
    83. Dykoski C. Edwards Retal.A high-resolution,absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters,2005,233(1-2):71-86.
    84. Ertel J., Hedges J et al.. Sources of sedimentary humic substance:Vascular plant debris.Geochimica et Cosmochimica Acta,1985,49:2097-2107.
    85. Emerson S., Hedges J et al. Processes controlling the organic carboncontent of open ocean sediments. Paleoceanography,1988,3:621-634.
    86. Fontugne M., Jouanneau J et al. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary:Evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuarine, Coastal and Shelf Science, 1987,24(3):377-387
    87. Folk R.1966. A review of grain-size parameters. Sedimentology,6(2):73-93.
    88. Grochowski N., Collins M. et al.1993. Sediment transport predictions for the England Channel, using numerical models. Journal of the Geollgial Society (London),150: 683-695.
    89. Hughen K, Overpeck. et al. Rapid climate changes in the tropical Atlantic region during the last deglaciation [J]. Nature,1996,380:51-54.
    90. Hu F., Slawinski D. et al. Abrupt changes in North American climate during early Holocene times [J]. Nature,1999,400:437-440.
    91. Hong Y, Hong B.et al.2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters,211: 371-380.
    92. Hillaire-Marcel C., De Vernal A. et al. Productiviteet flux de carbon danslamerdu Labradoraucours desderniers 40000 years [J]. Canadian J. Earth Science,1994,31: 139-158.
    93. Jian, Z., Wang, L. et al. Benthic for a miniferal paleoceanography of the South China Sea over the last 40,000 years. Marine Geology 1999(156):159-186.
    94. Jouzel J., Lorius C. et al. Vostok ice core:a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature,1987(329):403-408.
    95. Krishnaswami, S., Lal D. et al.1971. Geochronology of lake sediments. Earth and Planetary Science Letters,11:407-414.
    96. Karien W. Scandinavian glacial and climate fluctuations during the Holocene [J]. Quaternary Science Reviews,1988,7(2):199-209.
    97. Klitgaard-Kristensen D., Sejrup Het al. Aregional 8200 cal. yr BP cooling event in northwest Europe induced by final stages of the Laurentide ice-sheet deglaciation [J]. Journal of Quaternary Science,1998,13(2):165-169. 98. Lamb H., Gasse F et al. Relation between century-scale Holocene arid intervals in tropical and temperate zones [J]. Nature,1995,373:134-137.
    99. Lachniet. Speleothem paleoclimate records from the Isthmus of Panama [J]. Geology, 2004, in press.
    100. Long C. Whitlock C. et al.. 2002. Fire and Vegetation History from the Coastal Rain Forest of the Western Oregon Coast Range. Quaternary Research,58:215-225.
    101. Lario, J., Spancer C et al.2002. Particle size characterization of Holocenc back-barrier sequences from North Atlantic coasts (SW Spain and SE England). Geomorphology,42:25-42.
    102. Louchouarn P., Lucotte Met al. Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment. Organic Geochemistry,1999,30:675-699.
    103. Murray R., Knowlton C. et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope stagell[J].Glob.Planet.Change,2000,24:59-78.
    104. Mayewski P., Rohling Eet al. Holocene climate variability. Quaternary Research, 2004(62):243-255.
    105. Moros M, Emeis K et al. Sea surface temperatures and ice rafting in the Holocene North Atlantic:climate influences on northern Europe and Greenland[J].Quat Sci Rev,2004,23:2113-2126
    106. Muller A., Voss M. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, Ⅱ.δ 13C and δ 15N ratios of organic matter sources and sediments. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,145:17-32.
    107. Meyers P. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology,1994,114:289-302.
    108. Mason C., Folk, R et al.1958. Differentiation of beach, dune and aeolian flat environment by size analysis. Journal of Sedimentary Petrology,28:211-216.
    109. Meyers P. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processe. Organic Geochemistry,1997,27(5-6):213-250.
    110. McDermott F., Mattery D et al. Centennial scale Holocene climate variability reveal by a high-resolution speleothemδ180 record from SW Ireland [J]. Science,2001,294: 1328-1331.
    111. Menocal P., Ortiz J et al. Coherent high and low-latitude climate variability during the Holocene warm period [J]. Science,2000,288:2198-2202.
    112. Mulitza S., Ruhlemann C. et al. African monsoonal precipitation modulated by interhemispheric temperature gradients [J].Quaternary Research,2000,53:270-274.
    113. Magny M. Successive oceanic and solar forcing indicated by Younger Dryas and early Holocene climatic oscillations in the Jura [J]. Quaternary Research,1995,43:279-285.
    114. Nesbitt H., Markovics Get al. Weathering of grandioriticcrust, long-term storage of elements in weathering profiles and petrogenesis of siliciclastic sediments [J].Geochim.Cosmochim.Acta,1997,61(8):1653-1670.
    115. Ogrinc N., Fontolan G, et al. Carbon and nitrogen isotope compositions oforganic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea):Indicators of sources and preservation. Marine Chemistry,2005,95:163-181.
    116. Leary M. et al. Carbon isotopes in photosynthesis. Bioscience,1988,38:328-336
    117. O'Brien S., Mayewski P. et al. Complexity of Holocene climate as reconstructed from a Greenland Ice core. Science 1995(270):1962-1964.
    118. Prahl F., Bennett J. et al. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochimica et Cosmochimica Acta,1980,44:1967-1976
    119. Patterson W, Edwards K. et al. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews,1987,6,3-23.
    120. Robins J., Edginton D. et al.1975. Determination of resent sedimentation rates in Lake Michgan using 210Pb and137Cs. Geochimicaet Cosmochimica Acta,39:285-304.
    121. Rossignol-Strick M. Sea-land correlation of pollen records in the eastern Mediterranean for the glacial-interglacial transition:biostratigraphy versus radiometric time-scale. Quaternary Science Reviews,1995(14):893-915.
    122. Risebrobakken B, Jansen E,Andersson C et al. A high-resolution study of Holocene paleo climatic and paleocenographic changes in the Nordicseas [J]. Paleoceanography,2003,18(1),1017,doi:10.1029/2002PA000764.
    123. Stager J., Mayewski P. et al. Abrupt early to mid-Holocene climate transition registered at the equator and the poles [J]. Science,1997,276:1834-1836.
    124. Stuiver M., Brauzanias T. et al. Atmospheric14C and century-scale solar oscillations [J]. Nature,1989,338:405-408.
    125. Sun X. et al. A pollen record of the last 37 ka in deep sea core 17940 from the northern slope of the South China Sea. Marin Geology,1999 (56):227-244.
    126. Sun X., Li X. et al.. A pollen record of the last 37 ka in deep sea core 17940 from the northern slope of the South China Sea[J].Mar.Geol.,1999,156:227-244.
    127. Sun X. Luo Y. et al. Deep sea pollen from the South China Sea:Pleistocene indicators of East Asian monsoon[J].Mar.Geol.,2003,201:97-118.
    128. Stuiver M, Peiner P et al. Intca198 radiocarbon age calibration,24000-0 cal BP[J].Radiocarbon,1998,40:1041-1083.
    129. Thornton S., McManus J. et al. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems:Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science,1994,38:219-233.
    130. Thompson L. Ice core evidence for climate change in the tropics:Implications for our future. Quaternary Science Reviews,2000,19:19-35.
    131. Thompson L. Mosley-Thompson E. Kilimanjaro ice core records:evidence of Holocene climate change in Tropical Africa [J]. Science,2002,298:589-593.
    132. Thompson B. Huascaran Mosley-Thompson E et al. Late glacial stage and Holocene tropical ice core records from Huascaran Peru. Science,1995(269):46-50.
    133. Veski S., Seppa H et al. Cold event at 8200 yr B.P.recorded in annually laminated lake sediments in eastern Europe [J]. Geology,2004,32(8):681-684.
    134. Windom H. Lithogenous materials in marine sediments[C]//Chemical Oceanography. London:Academic Press,1976,5:103-135.
    135. Wei G, Shao L., et al. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site1144 South China Sea[J]. Geochem. J.,2003a,37 (5):593-602.
    136. Wei G., Liu Y. et al. High resolution elemental records from the South China Sea and their paleoproductivity implications [J]. Paleoceanography,2003b,18:1054-1065.
    137. Wenzens G.. Fluctuations of outlet and valley glaciers in the Southern Andes (Argentina) during the past 13000 years [J].Quaternary Research,1999,51(2): 238-247.
    138. Winkler M. Charcoal analysis for paleoenvironmental interpretation:A chemical assay. Quaternary Research,1985,23:313-326.
    139. Yang S., Li C. et al. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,229:287-302.
    140. Yue H., Jiang H. et al. Diatom response to changes in palaeoenvironments of the northern South China Sea during the last 15000 years. Marine Micropaleontology,2009(72):99-109.
    141. Yi S., Saito Y, et al. Vegetation and climate changes in the Changjiang (Yangtze River) delta, China, during the past 13000 years inferred from pollen records. Quaternary Science Reviews,2003,22:1501-1519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700