施用有机肥农田氮磷流失模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国畜禽养殖量迅速增加,仅北京、河北、河南、山东四省畜禽粪便产生氮磷纯养分量达到974和267万吨/年,农户调查显示:目前养殖农户农田施用有机肥用量、方法、品种差异很大,这一地区夏季雨量丰富,暴雨和大暴雨时有发生,施用有机肥后如遇降雨,特别是大雨,就会造成有机肥养分的流失。至目前为止,华北地区关于不同流失方式下,有机肥用量、方法、品种对农田氮磷流失影响的研究尚为缺少。为了解华北地区施用有机肥对农田N、P流失的影响,2008年在河北廊坊布置了原位人工模拟降雨实验,实验设置了26个处理,包括表施和翻耕施2种施肥方法、3个磷水平的有机肥用量、4种有机肥品种等,研究了种植春玉米的条件下,地表径流和渗漏2种流失方式下的氮磷流失特征。主要结论如下:
     1.农田人工模拟降雨实验在降雨量为160 mm条件下,地表径流水量和渗漏水量差异不显著,分别为降雨量的48.64%、44.90%。13个试验处理结果显示地表径流方式下降雨结束后产流延续时间仅为渗漏方式的1/5,两者平均分别为3.36 min、16.75 min,而地表径流方式下产流速率是渗漏方式的1.5倍,两者平均分别为71.97mL/min、48.43 mL/min。
     2.在三个磷水平的有机肥用量条件下(0、75、225 kg P/hm~2),地表径流方式农田总磷流失量分别为1.02、3.86和6.66 kg P/hm~2,差异显著,径流液总磷流失浓度差异不显著,3个磷水平的浓度分别为0.17、0.73、1.92 mgP/L;渗漏方式下3个磷水平的农田总磷流失量分别为0.77、3.03和12.12 kg P/hm~2,差异显著,渗漏液总磷流失浓度差异显著,分别为0.30、1.03和2.75 mg/L。三个磷水平的有机肥用量条件下N量可归并为3个等级,分别为0、<500 kg N/hm~2(220~440 kg N/hm~2)、>500kg N/hm~2(660~1320 kg N/hm~2),其农田径流总氮流失量分别4.89、12.75和23.6 kgN/hm~2,差异不显著,径流液水溶性氮浓度分别为0.81、2.3、5.62 mgN/L,差异显著,农田渗漏总氮流失量平均分别为20.99、38.56和51.02 kg N/hm~2,差异不显著。
     3.在有机肥用量为0~320 Tg·鲜重/hm~2范围内,表施和翻耕施两种施肥方式的地表径流总磷流失量分别为7.92 kg P/hm~2和2.6 kg P/hm~2,差异显著;两种施肥方式下,渗漏总磷流失量分别为11.97 P/hm~2和5.19 P/hm~2,差异显著;两种施肥方式下,地表径流总氮流失量分别为22.58和13.77 kg N/hm~2,差异不显著,渗漏总氮流失量分别为45.42和44.16 kg N/hm~2,差异不显著。
     4.在磷量为75 kg P/hm~2有机肥用量条件下,牛粪、猪粪、鸡粪三种有机肥表施的农田径流总磷流失量分别为5.20、3.41、5.43 kg P/hm~2,总氮流失量分别为11.02、47.19、13.79 kg P/hm~2;渗漏总磷流失量分别为7.03、2.70、2.92 kg P/hm~2,总氮流失量分别为23.6、56.88、34.99 kg P/hm~2;三种有机肥翻耕施条件下农田径流总磷流失量分别为2.18、1.89、2.43 kg P/hm~2,总氮流失量分别为3.74、15.34、10.83 kg P/hm~2;渗漏总磷流失量分别为6.48、3.03、3.14 kg P/hm~2,总氮流失量分别为35.57、45.37、64.66 kg P/hm~2。
     在磷量为225 kg P/hm~2有机肥用量条件下,猪粪、鸡粪、鸭粪三种有机肥表施的农田径流总磷流失量分别为13.28、8.28、9.17 kg P/hm~2,总氮流失量分别为18.05、22.47、22.95 kg P/hm~2;渗漏总磷流失量分别为18.51、13.55、22.17 kg P/hm~2,总氮流失量分别为42.84、54.52、59.71 kg P/hm~2;三种有机肥翻耕施条件下农田径流总磷流失量分别为3.91、2.47、2.86 kg P/hm~2,总氮流失量分别为14.17、20.71、17.81kg P/hm~2;渗漏总磷流失量分别为6.27、5.12、7.08 kg P/hm~2,总氮流失量分别为29.71、58.50、31.17 kg P/hm~2。
     上述结果表明,表施有机肥的环境风险要高于翻耕施肥方式,有机肥用量为0~320 Tg·鲜重/hm~2条件下,有机肥表施后农田无论径流还是渗漏引起的总磷流失量均比翻耕施平均高近一倍。高有机肥用量条件下,农田渗漏总磷流失量极高,可达到12.12 kg P/hm~2,是地表径流方式的2倍。研究结果还表明,在华北地区,大雨引起的地表径流或持续降雨形成的侧渗两种流失过程都会引起农田氮磷养分流失,造成农业面源污染。
Recently,livestock and poultry breeding in China have increased rapidly.The nutrient amount from livestock and poultry manures had reached 9.74×10~7 kg N/a and 2.67×10~7 kg P/a in Beijing,Hebei,Henan,Shandong.It has been showed in farmers' investigation that manure types,amount and application measurements for crops differed greatly by different farmers.In North China in summer there is rich rainfall,frequently heavy rain. When manure application succeeded with heavy rain,it might induce nutrient loses.Up to now,however,few works were done about impacts of manure types,amount and application measurements on nitrogen and phosphorus losses of cropland in the region.In order to understand N and P losses from manure application of crop land,experiments were carried out in Langfang research station in 2008.Methods of artificial rainfall simulation was involved.With 26 treatments,N and P losses through runoff and leach procedures from crop growing field were studied.The treatments included two manure application measurements(surface application and plowing application),manure amounts in 3 P-levels and 4 manure sorts.The main results were as follows:
     1.Under 160 mm rainfall simulation,the amount of surface runoff water and leakage water were not different significant,with 48.64%and 44.90%of the rainfall respectively. The results of 13 experiments showed for runoff,the outflow lasting time after rainfall stopping is only 1/5 of that of leakage,with the average of 3.36 minutes and 16.75 minutes respectively,but the velocity of runoff is 1.5 times faster than of that of leakage, with the average of 71.97 mL/min and 48.43 mL/min respectively.
     2.Under 3 manure amounts application judged by P -level,for surface runoff,the total P losses were different significant with 1.02,3.86 and 6.66 kg P/hm~2 respectively,the total P concentrations of runoff water were not different significant,with 0.17,0.73,1.92 mg P/L respectively;for leakage the total P losses were different significant with 0.77,3.03 and 12.12 kg P/hm~2 respectively,the total P concentration of leakage water were different significant,with 0.30,1.03,2.73 mg P/L respectively.
     The N amount of the three application could be classed to 3 level,with 0,<500 kgN/hm~2 (220~440 kg N/hm~2) and>500 kg N/hm~2(660~1320 kg N/hm~2),for surface runoff, the total N losses were not different significant with 4.89,12.75 and 23.6 kg N/hm~2 respectively,the total dissolved nitrogen concentration of runoff water were different significant,with 0.81,2.3 and 5.62 mg N/L respectively;for leakage the average total N lose were not different significant with 20.99,38.56 and 51.02 kg N/hm~2 respectively.
     3.Under the manure application amounts 0~320 Tg·/hm~2,with two application measurements:surface application and plowing application,the runoff total P losing were different significant,with 7.92 kg P/hm~2和2.6 kg P/hm~2 respectively,the leakage total P losing were different significant,with 11.97 kg P/hm~2和5.19 kg P/hm~2 respectively, the total N lose were not different significant,the runoff lose were 45.42 kg N/hm~2 respectively,the leakage lose were 44.16 kg N/hm~2 respectively.
     4.Under the condition of P amounts 75 kg P/hm~2,for surface application,the total P losses of runoff with cattle manure,pig manure,chicken manure were 5.20,3.41 and 5.43 kg P/hm~2 respectively,total N losses were 11.02,47.19 and13.79 kg P/hm~2 respectively, the total P losses of leakage were 7.03,2.70 and 2.92 kg P/hm~2 respectively,total N losses were 23.6,56.88 and 34.99 kg N/hm~2 respectively;for plowing application,the total P lose of runoff with cattle manure,pig manure,chicken manure were 2.18,1.89 and 2.43 kg P/hm~2 respectively,total N lose were 3.74,15.34 and 10.83 kg N/hm~2 respectively,the total P lose of leakage were 6.48,3.03 and 3.14 kg P/hm~2 respectively,total N lose were 35.57,45.37 and 64.66 kg N/hm~2 respectively.
     Under the condition of P amounts 225 kg P/hm~2,for surface application,the total P losses of runoff with cattle manure,pig manure,chicken manure were 13.28,8.28 and9.17 kg P/hm~2 respectively,total N losses were 18.05,22.47 and 22.95 kg N/hm~2 respectively,the total P losses of leakage were 18.51,13.55 and 22.17 kg P/hm~2 respectively,total N losses were 42.84,54.52 and 59.71 kg N/hm~2 respectively;for plowing application,the total P losses of runoff with cattle manure,pig manure,chicken manure were 3.91,2.47 and 2.86 kg P/hm~2 respectively,total N losses were 14.17,20.71 and 17.81 kg N/hm~2 respectively, the total P losses of leakage were 6.27,5.12 and 7.08 kg P/hm~2 respectively,total N losses were 29.71,58.50 and 31.17 kg N/hm~2 respectively.
     Based on the results obtained,for organic fertilizer there is more environmental risk by surface application compare with plowing application.With the organic fertilizer application amount 0~320 Tg/hm~2,there would be twice total P losses for surface application compared with plowing application in despite of runoff or leakage.Under the condition of big amount manure application,the leakage P losses were very heavy,it could be as high as 12.12 kg P/hm~2 twice that of runoff losses.This study also show that, in North China,the runoff by heavy rain or the leakage by continuous rainfall both cause the nitrogen and phosphorus lose of farm field,result in agricultural non-point source pollution.
引文
1.卞有生,金冬霞.规模化畜禽养殖场污染防治技术研究.中国工程科学,2004,6(3):53-57.
    2.曹林奎,朱江,陈国军,陆贻通.黄浦江上游蔬菜田氮素流失规律测坑研究.2005,27(1):34-38.
    3.陈斌,胥学新,代运全.城市郊区畜牧场的污染与被污染.家畜生态,1997,18(2):31-34.
    4.陈国军,曹林奎,陆贻通,张大弟.稻田氮素流失规律测坑研究.上海交通大学学报(农业科学版),2003,21(4):321-324.
    5.陈洪深.养猪业粪尿处理技术及研究进展.湖北畜牡兽医,1997(1):25-27.
    6.陈利顶,傅伯杰,张淑荣,丘君,杨福林.于桥水库流域地表水中水溶性氮季节变化特征.中国环境科学,2003,23(2):210-214.
    7.陈西平,黄时达.涪陵地区农田径流污染负荷定量化研究.环境科学,1991,12(3):75-79.
    8.陈欣,常志州,袁生,叶小梅,费辉盈,朱红.畜禽粪便中人畜共患病原菌对蔬菜污染的研究.江苏农业科学,2007(5):238-241.
    9.程全国.面源污染物对环境的影响及趋势分析.辽宁城乡环境科技,2000,20(5):4-6.
    10.董克虞.畜禽粪便对环境的污染及资源化途径.农业环境保护,1998,17(6):281-283.
    11.F.J.史蒂文森等著,闵九康等译.农业土壤中氮.北京:科学出版社,1989:135-147.
    12.付时丰.沈阳市农业污染现状的初步调查.环境保护科学,2002,28(11):31-32
    13.傅涛,倪九派,魏朝富,谢德体.不同雨强和坡度条件下紫色土养分流失规律研究.植物营养与肥料学报,2003,9(1):71-74.
    14.高超,朱继业,窦贻俭,张桃林.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004,24(1):109-116.
    15.高超,朱继业,朱建国.不同土地利用方式下的地表径流磷输出及其季节性分布特征.环境科学学报,2005,25(11):1543-1549.
    16.辜来章,郝淑英.农田径流污染特征及模型化研究.中国农村水利水电,1996(09):32-35.
    17.贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制.环境科学,1998,96(19):87-91.
    18.胡雪峰,许世远,陈振楼,高效江.上海市郊中小河流水污染现状及对策.农业环境保护,2002,21(3):204-207,231.
    19.黄满湘,章申,唐以剑,陈喜保.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(1):6-10.
    20.黄沈发,陆贻通,沈根祥,唐浩.上海郊区旱作农田氮素流失研究.农村生态环境,2005,21(2):50-53.
    21.黄炎坤,郭良星,王宝周.河南省养殖业可持续发展探讨.河南农业科学,2001(9):29-30.
    22.黄宗楚.上海旱地农田氮磷流失过程及环境效应研究[硕士学位论文].上海:华东师范大学,2005.
    23.冀宏杰,张维理,张怀志.人工湿地对保护水环境的影响.农业资源与环境科学,2008,24(10):512-514.
    24.焦荔.USLE模型及营养物流失方程在西湖非点源污染调查中的应用.环境污染与防治,1991,13(6):5-8.
    25.井艳文.养鸡场粪污资源化利用.北京水利,1998,(5):22-26.
    26.金相灿.中国湖泊富营养化.北京:中国环境科学出版社,1992.
    27.康玲玲,朱小勇,王云璋.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,1999,36(4):536-543.
    28.雷秋良.上海水网地区平方公里尺度下农田氮磷流失特征研究[博士学位论文].北京:中国农业科学研究院,2007.
    29.李恒鹏,金洋,李燕.模拟降雨条件下农田地表径流与壤中流氮素流失比较.水土保持学报,2008,22(2):6-9,46.
    30.李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,1996(4):14-18.
    31.李佩武.降雨径流过程中氮磷输出趋势分析.天津农业科学,1994(1):7-10.
    32.李荣刚,复源陵,吴安之,钱一声.太湖地区水稻节水灌溉与氮素淋失.河海大学学报,2001,29(2):21-25.
    33.李世清,李生秀.半干旱地区农田生态系统中的硝态氮的淋失.应用生态学报.2000,11(2):240-242.
    34.李卫正,王改萍,张焕朝,曹志洪,艾畅.两种水稻土磷素渗漏流失及其与Olsen磷的关系.南京农业大学学报(自然科学版),2007,31(3):52-56.
    35.李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响.应用生态学报,2002,13(11):1421-1424.
    36.连纲,王德建.太湖地区麦季氮素淋失特征.土壤通报,2004,35(2):163-165.
    37.梁新强,田光明,李华,陈英旭,朱松.天然降雨条件下水稻田氮磷径流流失特征研究.水土保持学报,2005,19(1):59-63.
    38.凌云霄.影响水稻土磷素扩散的某些因素.土壤学报,1981,18(2):194-198.
    39.刘宏斌,李志宏,张云贵,张维理,林葆.北京平原农区地下水硝态氮污染状况及其影响因素研究.土壤学报,2006,43(3):405-413.
    40.刘经荣,张德远,周卫,沈润平,吴建富.不同肥料结构对稻田水流中养分平衡的影响.江西农业大学学报,1994,16(4):328-332.
    41.陆敏.水早轮作农田系统氮素循环与水环境效应.华东示范大学[博士论文],2007
    42.罗春燕.我国东南水网平原地区不同土地利用方式氮磷流失特征[博士学位论文].北京:中国农业科学院,2008.
    43.罗良国,闻大中,沈善敏.北方稻田生态系统养分平衡研究.应用生态学报,1999,10(3):301-304.
    44.吕家珑,Fortune S,Brookes P C.土壤磷淋溶状况及其Olsen磷“突变点”研究.农业环境科学学报,2003,22(2):142-146.
    45.吕家珑,Fortune,Brookes P C.土壤磷淋溶状况及其Olsen磷“突变点”研究.农业环境科学学报,2003,22(2):142-146.
    46.吕家珑,李祖荫.石灰性土壤中固磷基质的研讨.土壤通报,1991,22(5):204-206.
    47.吕家珑,刘文革,王旭东,李组荫.长期施肥对土壤无机磷形态组成的影响.陕西农业大学学报,1995,23(3):51-54.
    48.吕家珑,张一平,张君常,苏仕平.土壤磷运移研究.土壤学报,1999,36(1):75-82.
    49.吕耀.苏南太湖地区水稻土中硝态氮淋溶的定位研究.土壤通报,1999,30(3):113-114.
    50.马琨,陈欣,王兆骞.模拟暴雨下红壤坡面产流产沙及养分流失特征研究.宁夏大学学报(农业科学版),2004,(01):1-4.
    51.马琨,王兆骞,陈欣,尤力.不同雨强条件下红壤坡地养分流失特征研究.水土保持学报。2002,16(3):16-19.
    52.李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响.应用生态学报,2002(11):1421-1424.
    53.马立珊,汪祖强,张水铭,马杏法,张桂英.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47.
    54.马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究.应用生态报,1992,3(4):346-354.
    55.马强,刘付玖,周华林.畜禽粪尿污染与营养调控措施刍议.河南农业科学,2003(4):40-42.
    56.邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究.农业环境科学学报,2004,23(4):740-744.
    57.单保庆,尹澄清,于静.降雨-径流过程土壤表层磷迁移过程的模拟研究.环境科学学报,2001,21(1):7-12.
    58.单艳红,杨林章,颜廷梅,王建国.水田土壤溶液磷氮的动态变化及潜在的环境影响.生态学报,2005,25(1):115-121.
    59.王道涵,梁成华.农业磷素流失途径及控制方法研究进展.土壤与环境,2002,11(2):183-188.
    60.王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点.中国生态农业学报,2001,9(1):16-18.
    61.王继增,万洪富,吴志峰,卓慕宁.小流域非点源污染负荷流失特征监测研究.水土保持通报,2003,16(1):16-19.
    62.王家玉.王胜佳,陈义.稻田土壤中氦素淋失的研究.土壤学报,1996,33(1):28-35.
    63.王少丽,许迪,Prasher s O,Ali Madani.施用有机氮肥条件下地下排水中硝态氮流失的模拟研究.水利学报,2006,37(1):89-96.
    64.王少平,高效江,胡雪峰,俞立中,许世远.上海西郊麦期氮素淋溶定位研究.环境污染与防治,2002,24(2):68-70.
    65.王涛.滇池流域施用有机肥农田氮磷流失模拟研究[硕士学位论文].北京:中国农业科学院,2007.
    66.武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响.中国农业科学院,2005.
    67.邬伦,李佩武.降雨-产流过程与氮、磷流失特征研究.环境科学学报,1996,16(1):111-116.
    68.肖强,张维理,王秋兵,武淑霞.太湖流域麦田土壤氮素流失过程的模拟研究.植物营养与肥料学报,2005,11(6):731-736.
    69.肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究[硕士学位论文].沈阳:沈阳农业大学,2004.
    70.谢蓉.上海市畜牧业污染控制与黄浦江上游水源保护.农村生态环境,1999,15(1):41-44.
    71.谢学俭,陈晶中,宋玉芝.磷肥施用量对稻麦轮作土壤中麦季磷素及氮素径流损失的影响.农业环境科学学报,2007,26(6):2156-2161.
    72.徐谦.我国化肥和农药非点源污染状况综述.农村生态环境,1996,12(2):39-43.
    73.杨丽霞,杨桂山,苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响.中国环境科学2007,27(4):518-523.
    74.于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响.农业环境保护,2002,21(5):424-427.
    75.张福珠,熊先哲,戴同顺.应用~(15)N究土壤-植物系统中氦素淋失动态.环境科学,1984,5(1):21-24.
    76.张国梁,章中.农田氮素淋失研究进展.土壤,1998,6:291-297.
    77.张红爱.太湖地区典型水稻土磷素的径流流失及其机理[硕士学位论文],南京:南京农业大学,2003.
    78.张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen-P的“突变点”.南京林业大学学报(自然科学版),2004,28(5):6-10.
    79.张继宗.太湖平原地区稻麦轮作方式下农田径流氮素流失研究[硕士学位论文].沈阳:沈阳农业大学,2003.
    80.张继宗.太湖河网地区不同类型农田氮磷流失特征[博士学位论文].北京:中国农业科学院,2006.
    81.张认连.模拟降雨研究水网地区农田氮磷的流失[硕士学位论文].北京:中国农业科学院,2004.
    82.张美良,吴建富,郭成志,刘经荣.应用N~(15)N对稻田生态系中氮素淋失和去向的研究.江西农业大学学报,1998,20(2):153-157.
    83.张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-30.
    84.张维理,徐爱国,冀宏杰,Kolbe H.中国农业面源污染形式估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004,37(7),1018-1025.
    85.张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    86.张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形式估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形式估计.中国农业科学,2004,37(7):1008-1017.
    87.张兴昌,邵明安.坡地土壤氮素与降雨、径流的相互作用机理及模型.地理科学进展,2000,19(2):128-135.
    88.张学军,孙权,陈晓群,程淑华,张艳,王黎明.不同类型菜田和农田土壤磷素状况研究.土壤,2005,37(6):549-654.
    89.张志剑,王光火,王柯,朱荫湄.模拟水田的土壤磷素溶解特征及其流失机制.土壤学报,2001,38(1):139-143.
    90.张志剑,王坷,朱荫湄,郭敏红,周顺根.浙北水稻主产区田间土-水磷素流失潜能.环境科学,2001,22(1):98-101.
    91.张志剑,王光火.嘉兴地区水稻土磷素状况与环境效应评估,科技通报,1999,15(5):377-381.
    92.赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失.农村生态环境,2005,21(3):29-33.
    93.朱铁群.我国水环境农业非点源污染防治研究简述.农村生态环境,2000,16(3):55-57.
    94.朱新开,盛海君,夏小燕,王亚飞.稻麦轮作田氮素径流流失特征初步研究.生态与农村环境学报,2006,22(1):38-41,66.
    95.朱兆良,孙波.中国农业面源污染控制对策研究.污染减排,2008,4(B):4-6.
    96.朱兆良.关于土壤氮素研究中的几个问题.迈向21世纪的土壤科学.南京中国土壤学会编,1999:58-61.
    97.朱兆良.我国氮肥的施用现状、存在问题和对策.见:李庆逵,朱兆良,于天仁,编.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社,1998.
    98.朱兆良.中国土壤氮素.南京:江苏科学技术出版社,1992.37-59.
    99.朱立安,王继增,胡耀国,程炯,魏秀国,张会化.畜禽养殖非点源污染及其生态控制.水土保持通报,2005,25(2):404-443.
    100.Adeola.Nutrient management procedures to enhance environmental conditions:an introduction,J.Anim Sci.1999,77:427-429.
    101.Andrew N,Sharpley.Rainfall frequency and nitrogen and phosphorus runoff from soil amended with poultry little.Journal of Environmental Quality,1997,26(4):1127-1132.
    102. Andraski T W, Bundy L G. Relationships between phosphorus levels in soil and in runoff from corn production systems. Environ. Qual, 2003, 32: 310-316.
    
    103. Anstin N R, Prendergast J B, Collins M D. Phosphorus losses in irrigation runoff from fertilized pasture.J.Environ.Qqsl, 1996, 25: 63-68
    
    104. Boers P C M. Nutrient emissions from agriculture in the Netherlands, causes and remedies. Water Sci. Technol, 1996,33: 183-189.
    
    105. Barberis E, Ajmone M F, Scalenghe R, Lammers A, Schwermann U, Edwards, Maguire, Wilson R. European soils overfertilized with phosphorus: Part 1. Basic properties. Fertilizer Research, 1995,45: 199-207.
    
    106. Behrendt H, Gelbrecht J, Huber P, Ley R, Uebe, Fait M. Geogen bedingte Grundbelastung der Flieβgewa¨ sser Spree und Schwarze Elster und ihrer Einzugsgebiete, In: Landesumweltamt Brandenburg (Ed.), Studien und Tagungsberichte, 1999, 23, pp. 1-32. ISSN 0948-0838.
    
    107. Behrendt H, Huber P, Ley M, Opitz D, Schmoll O, Scholz G, Uebe R. Nahrstoffbilanzierung der Flussgebiete Deutschlands. 1999, UBA-Texte 75/99, 1-288.
    
    108. Beauchemin S R R, Simard D, Cluis. Forms and concentration of phosphorus in drainage waters of twenty-seven tile-drained soils. Environ. Qual, 1998, 27: 721-728.
    
    109. Butler Jennifer S, Coale Frank J. Phosphorus leaching in manure-amended coastal plain soils. Journal of Environmental Quality, 2005, 34 (1): 370-381.
    
    110. Carpenter S R, Caraco N F, Correll D L, Howarth R W. Non point pollution of surface waters with phosphorus and nitrogen. Ecological Application, 1998, 8: 559-568.
    
    111. Caruso B S. Integrated assessment of phosphorus in the lake hayes catchment, South Island, New Zealand. Journal of Hydrology, 2000, 229: 168-189.
    
    112. Catt J A, Howse K R, Farina R, Brockie D, Todd B J, Chambers. Phosphorus losses from arable land in England. Soil Use Manage 1998, 14: 168-174.
    
    113. Choudhary M, Lal R, Dick W. Long-term tillage effects on runoff and soil erosion under simulated rainoff for a central Ohio soil.Soil &Tillage Research, 1997,42: 175-184.
    
    114. Cox F R, Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality. J.Environ.Qual, 2000, 29: 1582-1586.
    
    115.Dag O, Hessen. 氮流失对淡水和海和海洋受体富营养化的重要意义. AMBIO-人类环境杂志.1997, 26(5): 306-313.
    
    116. Daniel T C, Sharpley D R, Edwards R, Wedepohl, Lemunyon J L. Minimizing surface water eutrophication from agriculture by Phosphorus management. Soil Water Conserv, 1994, 49: 30-35.
    
    117. Dennis L, Gorwin. Non-point pollution modeling based on GIS. Soil and Water Conservation, 1998, 1:75-88.
    118. De Smet J, Hofrnan, Vanderdeelen J, Van Meirvenne M, Baert L. Phosphate enrichment in the sandy loam soils of West-Flanders, Belgium. Fertilizer Research, 1995,45: 209-215.
    
    119. Dils R M, Heathwaite A L.The controversial role of tile drainage in phosphorus export from agricultural land. Water Sci.Technol, 1999,39: 55-61.
    
    120. Djodjic F, Bergstrom L, Grant C. Phosphorus management in balanced agricultural systems. Soil Use and Management, 2005,21: 94-101.
    
    121. Dobermann A, Cassman K G, Sta. Cruz P C, Adviento M A. Fertilizer inputs, nutrient balance, and soil nutrient-supplying power in intensive, irrigated rice systems. III. Phosphorus. Nutrient Cycling in Agroecosystems, 46: 111-125.
    
    122. Edwards D R, Daniel T C. Quality impacts of swine manure applied to fescue plots. Transactions of the American Society of Agricultural 1993a, 36: 81-86.
    
    123. Edwards D R, Daniel T C. Runoff quality impacts of swine manure applied to fescue plots.Transactions of the American Society of Agricultural 1993b, 36: 81-86.
    
    124. Environment Agency, 1997. Water Pollution Incidents in England and Wales 1996. HMSO, London.
    
    125. Foy R H, Withers P J A. The contribution of agricultural phosphorus to eutrophication. proceedings of fertiliser society, No 365, 1995. Archer J R, M arks M J. Control of nutrient losses to water from agriculture in Europe. Proceedings of Fertiliser Society No 405, 1997.
    
    126. Fraser A I, Harrod T R, Haygarth P M. The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils. Water Science and Technology, 1999, 39(12): 41-45.
    
    127. Gaynor J D, Findlay W I. Soil and phosphorus loss from conservation and conventional tillage in corn production.Environ Qual, 1995,24 : 734-741.
    
    128. Grigg B C, Southwick L M, Fouss J L, Kornecki T S. Climate impact on nitrate loss in drainage waters from a southern alluvial soil transactions of the ASAE, 2004,47(2): 445-451.
    
    129. Haygarth P M, Jarvis S C. Transfer of phosphorus from agricultural soils. Advances in Agronomy, 1999 (66): 195-249.
    
    130. Haygrath P M, Sharpley A N. Terminology for phosphorus transfer. Environ Qual, 2000, 29: 10-15.
    
    131. Haygarth P M, Condron L M, Heathwaite A L.The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and mult-scaled approach. Science of the Total Environment, 2005,344: 5-14.
    
    132. Haygarth P M, Heathwaite A L, Jarvis S C, Harrod T R. Hydrological factors for phosphorus transfer from agricutlure soils. Advances in Agronomy, 2000, 69: 153-178.
    
    133. Heathwaite A L, Griffiths P, Parkinson R J. Nitrogen and phosphorus in runoff from grassland with buffer strips following application of fertilizers and manures. Soil Use and Management. 1998, 14: 142-148.
    
    134. Heckrath G. Brookes P C, Poulton P R, Goulding K W T. Phosphorus leaching from containing different phosphorus concentrations in the Broadbalk experiment. Environ Qual, 1995, 24: 904-910.
    
    135. Hedley M J, Stewart J W, Chauhan B S. Changes in inorganic and organic soil phosphorus fracetions induced by cultivation practices and by laboratory incubation. Soil Science Society of America Journal, 1982, 46: 970-976.
    
    136. Hesheth N, Brookes P C. Development of indicator for risk of phosphorus leaching. J. Environ. Qual., 2000, 29(1): 105-110.
    
    137. Houtin J A, Karam A, Couillard D, Cescas M P. Use of a fractionation proceedure to assess the potential for P movement in a soil profile after 14 years of liquid pig manure fertilization. Ag Ecosyst Environ, 2000, 78: 77-84.
    
    138. Hossain M F, White S K, Elahi S F, Sultana N, Choudhury. The efficiency of nitrogen fertilizer for rice in Bangladeshi farmers' fields. Field Crops Research, 2005, 93: 94-107.
    
    139. Hubbard R K, Thomas D L, Leonard R A, Butler. Surface run-off.and shallow ground water quality as affected by centre pivot applied dairy cattle wastes. Transactions ASAE.1987, 30 (2),430-437.
    
    140. Jarvis S C, Sherwood M, Steenvoorden J H. Nitrogen losses from animal manures: from grazed pastures and from applied slurry. In: van der Meer, H G et al. (Eds.), Animal Manure on Grassland and Fodder Crops. Martinus Nijho. Publishers, The Netherlands, 1987: 195-212.
    
    141. Jordan C, McGuckin S O, Smith R V. Increased predicted losses of phosphorus to surface water from soils with high Olsen-P concentration. Soil Use and management, 2000, 16 : 27- 35.
    
    142. Kohl D H, Shear G B, Bcommoner. Fertilizer nitrogen: contribution to nitrate in surface water in a corn belt watershed. Science.174: 1331-1334.
    
    143. Koopmans G F, Chardon W J, McDowell R W. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications. J. Environ.Qual. 2007, 36: 305-315.
    
    144. Kronvang B, Grant R, Larsen S E, Svendsen L M, Kristensen P. Non-Point source nutrient losses to the aquatic environment in Denmark: impact of agriculture. Mar. Freshwater Re,1995, 46:167-177.
    
    145. Lehmann L, Lan Z, Hyland C, Sato S, Solomon D, Ketterings Q. Ketterings. Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environ. Sci. Technol. 2005, 39:6672-6680.
    
    146. Lena B V. Nutrient preserving in riverine transitional strip. Journal of Human Environment, 1994, 3 (6): 342-347.
    147. Line D E. Nonpoint soueres pollution. Water Enviorn Res, 1998, 70 (4): 895-911.
    
    148. McDowell R W, Sharpley A N. Variation of phosphorus leached from pennsylvanian soils amended with manures, composts or inorganic fertilizer. Agriculture. Ecosystem and Environment, 2004,102: 17-27.
    
    149. Miller D H, Wendt R C, Daniel T C. Phosphorus losses as affected by tillage and manure application. Soil Sci: Soc. Am. J.1984,48: 901-905.
    
    150. Neilsen G H, Culley J L B, Cameron. Agriculture and water quality in the Canadian Great Lakes Basin: IV. Nitrogen, Journal of Environment Quality, 1982, 11: 3-7.
    
    151. Nelson N O, Parsons J E, Mikkelsen R L. Field-scale evaluation of phosphorus leaching in acid sandy soils receiving swine waste. J. Environ. Qual. 2005, 34: 2024-2035.
    
    152. Novotny, Olemh. Water quality: prevention, identification, and management of diffuse pollution. New York: Van Nostrand Reinhold Compend, 1994.
    
    153. Oenema O. Nitrogen and phosphorus losses from agriculture into surface waters: the effects on policies and measuers in the Netherlands. Water Sie.Teeh., 1998,37 (2): 456-463.
    
    154. Pote D H, Daniel T C, Nichols D J, Sharpley A N, Moore P A, Edwards D R. Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff. Environ. Qual., 1999,28: 170-175.
    
    155. Page T, Haygarth P M, Beven K, Joynes T, Butler C, Keeler J, Freer. Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: Sampling for assessing risk to water quality. J. Environ. Qual. 2005, 34: 2263-2277.
    
    156. Randall L D, Hailin Z, Jackie L S, Jim J W. Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Environ.Qual, 2005 (34): 1640-1650.
    
    157. Romkens M J M, Nelson D W. Phosphorus relationships in runoff from fertilized soils. Enciron.Qual.,1974,3:10-13.
    
    158. Schlesinger W H, Ward T J, Anderson J. Nutrient losses in runoff from grassland and shrubland habits in Southern New Mexico: I . Rainfall simulation experiments. Biogeochemistr, 1999, 45: 21-34.
    
    159. Schuman G E, Spomer R G, Piest R F. Phosphorus losses from four agricultural watersheds on Missouri Valley Loess. Soil Science Society of American Proceeding, 1973, 37: 424-427.
    
    160. Schoumans, Groendijk P. Modeling soil phosphorus levels and phosphorus leaching from agricultural land in the Netherlands. J Environ. Qual., 2000, 29: 111-116.
    
    161. Sharpley A N, Daniel T C, Edwards D R. Phosphorus movement in the landscape. Prod. Agric, 1993,6:492-500.
    
    162. Sharpley A V. Phosphorus cycling in unfertilized abd fertilized agricultural soil. Soil Sci. Soc. Am.J, 1985,49:905-911.
    163. Sharpley A N, Chapra S C, Wedepohl R, Sims J T, Daniel T C, Reddy K R. Managing agricultural phosphorus for protection of surface waters. Issues and options J Environ Qual, 1994, 23: 437-451.
    
    164. Sharpley A N. Dependence of runoff Phosphorus on extractable soil Phosphorus. Environ. Qual., 1995,24:920-926.
    
    165. Sharpley A N and P. Kleinman. Effect of rainfall simulator and plot scale on overland flow and phosphorus transport. Journal of Environmental Quality, 2003, 32: 2172-2179.
    
    166. Sherwood M, Fanning A. Nutrient content of surface run-off water from land treated with animal wastes. In: Brogan J C (Ed), Nitrogen Losses and Surface Run-o. from Land Spreading of Manures. 1981:5-17.
    
    167. Shreve B R, Moore Jr P A, Daniel T C, Edwards D R. Reduction of phosphorus in runoff from fieldapplied poultry litter using chemical amendments. J. Environ. 1995, 11: 555-563.
    
    168. Shuman L M. Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass. Environ. Qual, 2002, 31: 1710-1715.
    
    169. Singh B B, Jones J P. Phosphorus sorption and desorption characteristics of soil as affected by organic residues. Soil Sci.Soc.Am.,1976,40: 389-394.
    
    170. Sigua G C, Setward J S, Tweedale W A. Water quality monitoring and biological integrity assessment in the Indian River Lagoon, Florida:status, trends, andloadings. Enviorn.Mangae, 2000,25: 199-209.
    
    171. Sims J T, Simard R R, Joern B C. Phosphorus loss in agriculture drainage: historical perspective and current research. Environ. Qual., 1998, 27: 227-293.
    
    172. Smith D R, Moore P A, Maxwell C V, Haggard B E, Daniel T C. Reducing phosphorus runoff from swine manure with dietary phytase and aluminum chloride. J. Environ. 2004, 33, 1048-1054.
    
    173. Tim U S, Jolly R. Evaluating agriculture non-point source pollution using integrated geographic information systems and hydrologic/water quality model. Journal of Environment Quality, 1994, 23:25-35
    
    174. Tanji K K, Nour E D. Nitrogen Solute Transport. In: Kanks R J, Ritchie J T. ed. Modeling Plant and soil systems. Agron. Monograph. 31 ASA. CSSA. SSSA. Madison.WI, 1991, 341-364.
    
    175. Torbert H A, Daniel T C, Lemunyon J L. Relationship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous and noncalcareous Soils. Journal of Environmental Quality, 2002,31: 1380-1387.
    
    176. USEPA. Environmental indicators of water quality in the United States. EPA 841-R-96-002. USEPA, 1996. Office of Water. U.S.Gov. Printing Office, Washington, DC.
    177. Vadas P A, Kleinman P J, Sharpley A N, Turner B L. Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling. Jonrnal of Environmental Quality, 2005,34 (2): 572-80.
    
    178. Vander Molen D T, Breeuwsma A, Boers P C M. Agricultural nutrient losses to surface water in the Netherlands:impact, strategies, and perspectives. J Environ Qual. 1998, 27: 4-11.
    
    179. Vighi M, Chiaudani G. Eutrophication in Europe: the role of agricultural activities. In: Hodgson Eed. Rev Environ Toxicol # 3. Amsterdam: Elsevier, 1987, 213-257.
    
    180. Walter M T, Brooks E S, Walter M F, Steenhuis C A, Scott J, Boll. Evaluation of soluble phosphorus loading from manure-applied fields under various spreading strategies. Journal of soil and water conservation, 2001, 56 (4): 329-335.
    
    181. Wendt R C, Alberts E E. Estimating labile and dissolved inorganic phosphate concentrations in surface runoff. J.Environ.Qual.,1984,13: 613-618.
    
    182. William F, Ritter, Adel Shirmohammadi. Agricultural nonpoint source pollution.U.S.CRC Press LLC, 2001,1-2.
    
    183. Zaimes C N, Schultz R C. Phosphorus in agricultural watersheds: A literature review. Dep of For. Iowa State Univ. Ames, 2002.
    
    184. Zhang W L, Tian Z W, Zhang N. Surface water quality of factory-based and vegetable-based peri-urban areas in the Yangtze River Delta region. China. Gatena, 1995, 69: 57-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700