双季稻连作体系氮素循环特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双季稻连作体系是华南和长江中下游地区的主要种植模式,在我国粮食生产中的地位举足轻重。氮素是生命元素,也是粮食增产的重要因素,目前该体系普遍存在着氮肥盲目施用,利用率低、环境风险高等问题,通过对农田化肥氮去向的定量化研究能够更科学全面地评价氮肥农学效应和环境效应,将为科学施用氮肥提供理论依据。为此本研究于2010年在双季稻主产区江西省开展氮肥用量田间试验及~(15)N微区试验,监测不同施氮水平下土壤氨挥发、N_2O排放、无机氮动态分布以及肥料~(15)N的去向。田间试验和~(15)N微区试验均设置6个处理,(1)N0(不施氮),(2)N60(施氮60kgN/hm~(2)),(3)N_(12)0(施氮120kgN/hm~(2)),(4)N180(施氮180kgN/hm~(2)),(5)N240(施氮240kgN/hm~(2)),(6)N300(施氮300kgN/hm~(2)),早晚稻施肥量一致,按5:2:3的比例于基肥期、分蘖期及孕穗期三次施用。采用田间原位密闭室间歇抽气法测定稻田土壤氨挥发、密闭箱-气相色谱法原位监测稻田N_2O排放,以及使用流动注射分析仪测定土壤无机氮含量,同时监测大气氮素干湿沉降及灌溉水输入的氮素。研究的主要进展如下:
     1.双季稻连作体系肥料氮的主要损失途径是氨挥发。早稻氨挥发损失主要发生在施肥后的15d内,第3-5d出现峰值,施氮处理肥料氮氨挥发损失总量为17.57-156.97kgN/hm~(2),损失率为29.29%-52.32%;晚稻氨挥发主要发生在施肥后的11d内,第3d出现峰值,肥料氮氨挥发损失总量为21.45-142.79kgN/hm~(2),损失率为35.75%-46.82%。早、晚稻及连作周期的氨挥发量均与施氮量呈显著线性正相关。
     2.双季稻连作体系土壤N_2O排放具有明显的季节性变化规律。早、晚稻季土壤N_2O排放峰值主要出现在施肥后3-7d以及生长期后期干湿交替之际。早稻季各处理N_2O平均排放通量为3.76-81.31μg/(m~(2)·h);晚稻季为3.46-81.74μg/(m~(2)·h)。早稻季各处理N_2O排放量为0.14-1.37kgN/hm~(2);晚稻季为0.04-1.57kgN/hm~(2)。早、晚稻季氮肥损失率分别为0.34%-1.02%、0.42%-0.86%。整个双季稻连作周期N_2O排放量为0.18-2.94kgN/hm~(2),氮肥损失率为0.46%-0.94%。早、晚稻土壤N_2O平均排放通量及排放量均与施氮量呈显著线性正相关。
     3.双季稻连作体系稻田土壤中氮素主要以铵态氮形式存在,硝态氮含量很少,随着施氮量的增加,0-40cm土壤中硝态氮和铵态氮的浓度及累积量明显提高。0-40cm土壤的表观平衡,早稻的表观回收率为35.38%-48.64%,晚稻为42.66%-58.57%,表观损失率分别为39.44%-48.72%、32.27%-49.15%。
     4.~(15)N微区试验结果表明,早、晚稻季及两季平均的作物回收率分别为34.27%-42.00%、36.93%-47.61%、35.60%-44.81%;早、晚稻肥料氮在土壤中残留量的70%以上主要分布于0-20cm,残留率分别为9.08%-16.69%、17.40%-35.54%,两季平均土壤残留率为13.97%-26.11%;早、晚及两季平均肥料~(15)N氨挥发损失率分别为20.33%-43.10%、20.30%-35.86%和20.31%-39.48%。作物回收率随着施氮量的增加而显著下降,呈显著的线性负相关;土壤残留量、氨挥发损失量均随施氮量的增加而升高,呈显著的线性正相关。
Double cropping rice system is the main planting patterns of China, it plays an important role ingrain production. Nitrogen is essential for life and is the most important plant nutrient for cropproduction. However, overuse of fertilizer N, low N recorery and high environmental risk werecommonly found in farmer’s practices in this area, so quantitative study on the fate of nitrogen will benecessary to evaluate the agronomic and environmental effect scientifically and comprehensively and toprovide scientific base for N management strategies. In this study, field experiments and~(15)N labeledmiro-plot experiments were set up in the double cropping rice field in Jiangxi province in2010toinvestigate ammonia volatilization, N_2O emission, distribution of inorganic nitrogen and the fate of~(15)Nlabeled under different fertilizer N application rates. The treatments of field experiments and~(15)N labeledexperiments included:(1)N0(no fertilizer N);(2) N60(60kg N/hm~(2));(3) N120(120kg N/hm~(2));(4)N180(180kg N/hm~(2));(5) N240(240kg N/hm~(2));(6) N300(300kg N/hm~(2)). The fertilizer applicationfor early rice and late rice were the same, with the ratio of5:2:3at basic, tillering stage and bootingstage. The enclosure intermittent vent method was adopted to measure the ammonia volatilization, staticchamber-GC method was used to measure N_2O emission and flow injection analyzer was used toanalyze ammonium and nitrate nitrogen, nitrogen deposition and N from irrigation water weremonitored and calculated in rice growing season. The main findings obtained are summed up asfollows:
     1. Field plot trials showed that the NH3-N volatilization (NV) mainly occured within15days offertilizer applied, and the peak appeared during3-5days after fertilization in the early rice season.However, in the late rice season, the NV loss occured within11days and the peak appeared in thethird days after the fertilization. The total NV losses varied from17.57-156.97kgN/hm~(2)and21.45-140.45kgN/hm~(2)in the early rice and late rice, accounted for29.29%-52.32%and35.75%-46.82%of the applied N amounts, respectively. The total NV losses and their percentagesin early rice and late rice were linearly increased with the urea application rates.
     2. There were significant seansonal variations of N_2O emission flux during the double cropping ricegrowing season. The peak occured mainly within3-7d after urea application and when the soil waschanged from wetting to drying in the late period of growing stage.The average N_2O fluxes was3.76-81.31μg/(m~(2)·h) and3.46-81.74μg/(m~(2)·h) in the early and late rice seasons, respectively. Thecumulative seasonal N_2O emission varied from0.14to1.37kgN/hm~(2)in the early rice season whichaccounted for0.34%to1.02%of applied N, and from0.04to1.57kgN/hm~(2)during the late riceseason which ranged from0.46%-0.94%of applied N. The average N_2O fluxes and cumulativeseasonal N_2O emission in the early and late rice seasons were linearly increased with the increaseof the urea application rates as well.
     3. The main inorganic nitrogen form in paddy soil was NH+4-N. The NH+4-N, NO-3-N content and thecumulative amounts increased with the urea application rates.The results of the nitrogen balancesheet within0-40cm soil layes indicated that the apparent nitrogen recovery were35.38%-48.64% and42.66%-58.57%in the early and late rice season, respectively; and the apparent of N loss were39.44%-48.72%、32.27%-49.15%,respectively.
     4. Micro-plot experiment with~(15)N tracing showed that N recovery for early,late rice and in the wholerotation season were34.27%-42.00%、36.93%-47.61%and35.60%-44.81%, respectively. Above70%of N residual existed in0-20cm soil layer, and the N residual rate were9.08-16.69%、17.40-35.54%in the early and late rice, respectively, and it was13.97%-26.11%in the wholerotation seaason; NV loss rate from fertilizer~(15)N under different N application ranged from20.33%-43.10%、20.30%-33.86%and20.31%-39.48%in the early, late rice and in whole rotationseason, respectively; the N recovery linearly decrased with the increase of N application. On thecontrary, the cumulative NV amounts and N residual from fertilizer~(15)N inceased with the increaseof the urea application rates.
引文
1.蔡贵信,朱兆良,朱宗武,等.水稻田中碳铵和尿素的氮素损失的研究[J].1985,05:225-259,256
    2.蔡祖聪,徐华,马静.稻田生态系统CH4和N2O排放[M].第一版.合肥:中国科学技术大学出版社,2009.
    3.陈书涛,黄耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子[J].中国农业科学.2005,38(10):2053-2060.
    4.陈义,唐旭,杨生茂,等.稻麦轮作稻田中N2O排放规律的研究[J].土壤通报.2011(02):342-350.
    5.程式华主编.中国水稻研究所,国家水稻产业技术研发中心.2011年中国水稻产业发展报告[M].第一版.北京:中国农业出版社,2011:129.
    6.崔键,周静,杨浩,等.大气氮沉降向典型红壤区农田生态系统定量输入研究[J].环境科学.2009(8):2221-2226.
    7.邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤.2006,38(3):263-269.
    8.丁洪,蔡贵信,王跃思,等.玉米-潮土系统中氮肥硝化反硝化损失与N2O排放[J].中国农业科学.2001(04):416-421.
    9.丁洪,王跃思,李卫华.玉米-潮土系统中不同氮肥品种的反硝化损失与N2O排放量[J].中国农业科学.2004,37(12):1886-1891.
    10.丁洪,王跃思,秦胜金,等.控释肥对土壤氮素反硝化损失和N2O排放的影响[J].农业环境科学学报.2010(05):1015-1019.
    11.董文旭,胡春胜,张玉铭.华北农田土壤氨挥发原位测定研究[J].中国生态农业学报.2006,14(3):46-48.
    12.方福平,程式华.论中国水稻生产能力[J].中国水稻科学.2009(06):559-566.
    13.管建新,王伯仁,李冬初.化肥有机肥配合对水稻产量和氮素利用的影响[J].中国农学通报.2009(11):88-92.
    14.国家统计局.中国统计年鉴2011[M].北京:中国统计出版社,2011.
    15.何春娥.华北平原大气氮素沉降的农田输入总量及其植物有效性研究:[博士学位论文]中国农业大学,2008.
    16.黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报.2004(06):579-583.
    17.黄满湘,章申,张国梁.北京地区冬小麦/夏玉米连作条件下NO-3N淋失[J].地理研究.2002(04):425-433.
    18.黄树辉,吕军,曾光辉.水稻烤田期间N2O排放及其影响因素[J].环境科学学报.2004,24(6):1084-1090.
    19.黄树辉,蒋文伟,吕军,等.氮肥和磷肥对稻田N2O排放的影响[J].中国环境科学.2005,25(5):540-543.
    20.纪雄辉,郑圣先,聂军,等.稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失[J].土壤通报.2007(03):467-471.
    21.焦雯珺,闵庆文,成升魁,等.太湖流域稻麦轮作系统实际施氮量及其多重效应—基于农户调研的实证分析[J].自然资源学报.2011(06):955-963.
    22.江西省统计局,国家统计局江西调查总队.江西省统计年鉴2011[M].北京:中国统计出版社,2011.
    23.巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学.2002(12):1493-1499.
    24.李方敏,樊小林,刘芳,等.控释肥料对稻田氧化亚氮排放的影响[J].应用生态学报.2004(11).
    25.李金文,钟声,王米,等.不同施氮水平下稻田铵态氮和硝态氮淋溶量的动态模拟[J].应用生态学报.2009(6):1369-1374.
    26.李菊梅,李冬初,徐明岗,等.红壤双季稻田不同施肥下的氨挥发损失及其影响因素[J].生态环境.2008,17(4):1610-1613.
    27.李老土,郑循华,王明星,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报.1996(03):273-279.
    28.李香兰,徐华,曹金留,等.水分管理对水稻生长期N2O排放的影响[J].土壤.2006(06):703-707.
    29.李香兰,徐华,曹金留,等.水分管理对水稻生长期CH4排放的影响[J].土壤.2007(02):238-242.
    30.李鑫,巨晓棠,张丽娟,等.不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J].应用生态学报.2008:99-104.
    31.李祖章,刘光荣,袁福生.江西省农业生产中化肥农药污染的状况及防治策略[J].江西农业学报.2004(01):49-54.
    32.梁国庆,周卫,夏文建,等.优化施氮下稻-麦轮作体系土壤N2O排放研究[J].植物营养与肥料学报.2010(02):304-311.
    33.刘德林,聂军,肖剑.15N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报.2002(02):87-92.
    34.刘顺飞.中国水稻布局变化研究:[博士学位论文].南京农业大学,2007.
    35.刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报.2002(7):1122-1128.
    36.刘新宇,巨晓棠,张丽娟,等.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响.植物营养与肥料学报.2010(2):296-303.
    37.刘昭兵,纪雄辉,彭华,等.施氮量及抑制剂配比对双季稻生长期温室气体排放的影响[J].生态环境学报.2010(04):919-925.
    38.陆敏,刘敏,茅国芳,等.大田条件下稻田土壤氮素淋失研究[J].华东师范大学学报(自然科学版).2006(04):71-77.
    39.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    40.陆星,巨晓棠,张福锁,等.硅胶管气样原位采集技术研究土壤N2O浓度及通量变化[J].植物营养与肥料学报.2010(2):457-464.
    41.罗奇祥,刘光荣,李祖章,等.江西省农田养分管理研究中需要重视的几个问题[A].见:李华栋等编.农业持续发展中的植物养分管理[C].南昌:江西人民出版社,2008:343-349.
    42.马二登,马静,徐华,等.稻秆还田方式对麦田N2O排放的影响[J].土壤.2007(06):870-873.
    43.彭少兵,黄见良,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学.2002,35(9):1095-1103.
    44.彭世彰,杨士红,徐俊增.节水灌溉稻田氨挥发损失及影响因素[J].农业工程学报.2009(08):35-39.
    45.秦晓波,李玉娥,刘克樱,等.不同施肥处理稻田甲烷和氧化亚氮排放特征[J].农业工程学报.2006,22(7):143-148.
    46.苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学报.2003,14(11):1884-1888.
    47.苏芳,黄彬香,丁新泉,等.不同氮肥形态的氨挥发损失比较[J].土壤.2006,38(6):682-686.
    48.苏祖芳,周培南,许乃霞,等.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学.2001(04):42-47.
    49.田玉华,尹斌,朱兆良.稻田氮素淋洗损失研究[J].安徽农业科学.2006(12):2792-2794.
    50.田玉华,贺发云,尹斌,等.太湖地区氮磷肥施用对稻田氨挥发的影响[J].土壤学报.2007,44(5):893-900.
    51.田玉华,尹斌,贺发云,等.太湖地区水稻季氮肥的作物回收和损失研究.植物营养与肥料学报,2009(1):55-61.
    52.汪军,王德建,张刚.秸秆还田下氮肥用量对稻田养分淋洗的影响[J].中国生态农业学报.2010(02):316-321.
    53.王淳,周卫,李祖章,等.不同施氮量下双季稻连作体系土壤氨挥发损失研究[J].植物营养与肥料学报.2012(02):349-358.
    54.王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报.2003(03):426-432.
    55.王改玲,郝明德,陈德立.秸秆还田对灌溉玉米田土壤反硝化及N2O排放的影响[J].植物营养与肥料学报.2006(06):840-844.
    56.王国强.典型红壤地区不同水肥组合下稻田氮素平衡的研究[硕士学位论文].南京农业大学,2007.
    57.王海云,邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报.2009,28(12):2631-2636.
    58.王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究[J].土壤学报.1996(01):28-36.
    59.王吉苹,曹文志,李大朋,等. GLEAMS模型在我国东南地区模拟硝氮淋失的检验[J].水土保持通报.2007(02):61-66.
    60.王米.施氮水平对水稻生育期氮素利用率及稻田氮淋失动态的研究[硕士学位论文].浙江大学,2008.
    61.王巧兰,吴礼树,赵竹青,等.氮水平对水稻植株氮素损失的影响[J].植物营养与肥料学报.2010(01):14-19.
    62.王霞,崔键,周静.典型红壤区稻田树脂包膜控释氮肥氨挥发研究[J].土壤.2011(01):56-59.
    63.王先挺.水肥优化管理降低氮素淋溶损失与提高双季稻氮肥利用率的研究[硕士学位论文].浙江大学,2011.
    64.王秀斌.优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[博士学位论文].中国农业科学院,2009.
    65.吴萍萍,刘金剑,杨秀霞,等.不同施肥制度对红壤地区双季稻田氨挥发的影响[J].中国水稻科学.2009:85-93.
    66.吴萍萍.不同施肥制度下红壤稻田氨挥发与氧化亚氮排放的研究:[硕士论文]南京农业大学.2008.
    67.吴小庆,徐阳春,沈其荣.植物叶片氨挥发研究进展[J].生态与农村环境学报.2006(02):80-84.
    68.夏文建.优化施氮下稻麦轮作农田氮素循环特征[博士学位论文].中国农业科学院,2011.
    69.夏文建,周卫,梁国庆,等.优化施氮下稻-麦轮作体系氮肥氨挥发损失研究[J].植物营养与肥料学报.2010:6-13.
    70.辛良杰,李秀彬.近年来我国南方双季稻区复种的变化及其政策启示[J].自然资源学报.2009(01):58-65.
    71.熊正琴,邢光熹,鹤田治雄,等.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究[J].土壤学报.2003,40(5):704-710.
    72.徐华,邢光熹,蔡祖聪,等.丘陵区稻田N2O排放的特点[J].土壤与环境.1999(04):266-270.
    73.徐华,邢光喜,蔡祖聪,等.土壤水分状况和质地对稻田N2O排放的影响[J].土壤学报.2000(04):499-505.
    74.徐文彬.箱技术测量土壤痕量气体释放通量中的误差因素—以N2O为例[J].地质地球化学.1999(03):111-117.
    75.徐阳春,吴小庆,郭世伟,等.水稻生育后期地上部氨挥发与氮素利用效率的研究[J].植物营养与肥料学报.2008(02):207-212.
    76.许露生,戴其根,张洪程等.太湖地区水稻优化施氮模式及其环境效应的研究:中国作物学会栽培专业委员会换届暨学术研讨会,中国山东泰安,2007.
    77.晏娟,尹斌,张绍林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报.2008(05):835-839.
    78.杨士红,彭世彰,徐俊增,等.不同水肥处理对稻田土壤中氮素剖面分布与氨挥发损失的影响[J].水利水电科技进展.2010,30(1):40-44.
    79.杨淑莉,朱安宁,张佳宝,等.不同施氮量和施氮方式下田间氨挥发损失及其影响因素[J].干旱区研究.2010,27(3):415-421.
    80.叶世超,林忠成,戴其根,等.施氮量对稻季氨挥发特点与氮素利用的影响[J].中国水稻科学.2011,25(1):71-78.
    81.陈新平,张福锁.可持续农业中的推荐施肥[J].化肥工业.1996(03):7-10
    82.张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报.2007(06):84-87.
    83.张强,巨晓棠,张福锁.应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J].中国生态农业学报.2010(01):7-13.
    84.张庆利,张民,杨越超,等.碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究[J].土壤通报.2002(01):32-34.
    85.张绍林,尹斌,于东升.水稻-小麦轮作系统中优化施氮及提高氮肥利用率的原理与方法[A].见:朱兆良,张福锁主编.主要农田生态系统氮素行为与氮肥高效利用的基础研究[C].北京:科学出版社,2010:269
    86.张四代,王激清,张卫峰,等.我国东北地区化肥消费与生产现状、问题及其调控策略[J].磷肥与复肥.2007(05):74-78.
    87.张四代,张卫峰,王激清,等.长江中下游地区化肥消费与供需特征及调控策略[J].农业现代化研究.2008(01):100-103.
    88.张四代,张卫峰,马林,等.我国河北、吉林、四川主要粮食作物化肥消费结构变化分析[J].磷肥与复肥.2009(01):89-91.
    89.张颖,刘学军,张福锁,等.华北平原大气氮素沉降的时空变异[J].生态学报.2006(06):1633-1639.
    90.张岳芳,郑建初,陈留根,等.麦秸还田与土壤耕作对稻季CH4和N2O排放的影响[J].生态环境学报.2009(06):2334-2338.
    91.郑循华,王明星,王跃思,等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996(3):273-279
    92.中国农业百科全书总编辑委员会农作物卷编辑委员会,中国农业百科全书编辑部编.中国农业百科全书农作物卷下[M].北京:农业出版社.,1991:500.
    93.周礼恺,Clee Ov.氢醌和双氰胺对种稻土壤N2O和CH4排放的影响[J].应用生态学报.1999,10(2):189-192.
    94.朱培立,黄东迈.土壤中残留氮矿化势研究[J].江苏农业科学.1983(11):1-6.
    95.朱仁君,梁春佩.双季混作稻的初步研究[J].中国农业科学.1963,04(06):26-30.
    96.朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    97.朱兆良.稻田土壤中氮素的转化与氮肥的合理施用[J].化学通报.1994(9).
    98.朱兆良.农田中氮肥的损失与对策[J].土壤与环境.2000,9(001):1-6.
    99.朱兆良.氮素管理与粮食生产和环境[J].土壤学报,2002,增刊(39):3-11.
    100.朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报.2006(01):1-4.
    101.朱兆良,孙波.中国农业面源污染控制对策研究[J].环境保护.2008(08):4-6.
    102.朱兆良,张福锁,等.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].第一版.北京:科学出版社,2010.
    103.邹长明,颜晓元,八木一行.淹水条件下的氨挥发研究[J].中国农学通报.2005,21(2):167-170.
    104. Anderson I.C., Levine J.S. Relative rates of nitric oxide and nitrous oxide production by nitrifiers,denitrifiers, and nitrate respirers [J]. Applied and Environmental Microbiology,1986,51(5):938-945.
    105. Bi L.D, Zhang B., Liu G.R et al. Long-term effects of organic amendments on the rice yields fordouble rice cropping systems in subtropical China [J]. Agriculture, ecosystems&environment,2009,129(4):534-541.
    106. Bremner J.M. Sources of nitrous oxide in soils [J]. Nutrient Cycling in Agroecosystems,1997,49(1):7-16.
    107. Brunekreef Bert, Holgate Stephen T. Air pollution and health [J]. The Lancet,2002,360(9341):1233-1242.
    108. Cai Z.C, Xing G.X., Yan X.Y et al. Methane and nitrous oxide emissions from rice paddy fieldsas affected by nitrogen fertilisers and water management [J]. Plant and Soil,1997,196(1):7-14.
    109. Cassman K.G., Dobermann A., Walters D.T. Agroecosystems, nitrogen-use efficiency, andnitrogen management [J]. AMBIO: A Journal of the Human Environment,2002,31(2):132-140.
    110. Dambreville C., Morvan T., Germon J.C. N2O emission in maize-crops fertilized with pig slurry,matured pig manure or ammonium nitrate in Brittany [J]. Agriculture, ecosystems&environment,2008,123(1-3):201-210.
    111. Fan M.S, Lu S.H, Jiang R.F et al. Nitrogen input,15N balance and mineral N dynamics in a rice–wheat rotation in southwest China [J]. Nutrient Cycling in Agroecosystems,2007,79(3):255-265.
    112. Fenilli T A B, Reichardt K, Trivelin P C O, et al. Volatilization of ammonia derived from fertilizerand its reabsorption by coffee plants[J]. Communications in Soil Science and Plant Analysis,2007,38:1741-1751
    113. Galloway J.N., Dentener F.J., Capone D.G. et al. Nitrogen cycles: past, present, and future [J].Biogeochemistry,2004,70(2):153-226.
    114. Gheysari M., Mirlatifi S.M., Homaee M. et al. Nitrate leaching in a silage maize field underdifferent irrigation and nitrogen fertilizer rates [J]. Agricultural Water Management,2009,96(6):946-954.
    115. Granli T, B ckman O C, Norway S F F L. Nitrous Oxide from Agriculture. AgriculturalUniversity of Norway, Advisory Service,1994.
    116. Haynes Rj, Cameron K.C., Goh Km et al. Mineral nitrogen in the plant-soil system [M].Academic Press, Inc.1986.132-140
    117. Heller H., Bar-Tal A., Tamir G. et al. Effects of Manure and Cultivation on Carbon Dioxide andNitrous Oxide Emissions from a Corn Field under Mediterranean Conditions [J].2010.
    118. Huang Y., Jiao Y., Zong L. et al. Nitrous oxide emissions from the wheat-growing season ineighteen Chinese paddy soils: an outdoor pot experiment [J]. Biology and fertility of soils,2002,36(6):411-417.
    119. IPCC. Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D.,Manning, M.(Eds.), Climate Change2007: the Physical Science Basis,Contribution of WorkingGroup I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.2007
    120. Jin J Y. Changes in the efficiency of fertiliser use in China[J]. Journal of the Science of Food andAgriculture,2012,92(5):1006-1009.
    121. Ju X.T., Liu X.J., Pan J.R. et al. Fate of15N-Labeled Urea Under a Winter Wheat-Summer MaizeRotation on the North China Plain [J]. Pedosphere,2007,17(1):52-61.
    122. Ju X.T., Xing G.X., Chen X.P. et al. Reducing environmental risk by improving N managementin intensive Chinese agricultural systems [J]. Proceedings of the National Academy of Sciences,2009,106(9):3041.
    123. Kirk Gjd, Kronzucker Hj. The potential for nitrification and nitrate uptake in the rhizosphere ofwetland plants: a modelling study [J]. Annals of Botany,2005,96(4):639-646.
    124. Li S.T, Lin B., Zhou W. Soil organic sulfur mineralization in the presence of growing plantsunder aerobic or waterlogged conditions [J]. Soil Biology and Biochemistry,2001,33(6):721-727.
    125. Li X.X, Hu C.S, Delgado J A. et al. Increased nitrogen use efficiencies as a key mitigationalternative to reduce nitrate leaching in north china plain [J]. Agricultural Water Management,2007,89(1):137-147.
    126. Liang X Q., Xu L., Li H. et al. Influence of N fertilization rates, rainfall, and temperature onnitrate leaching from a rainfed winter wheat field in Taihu watershed [J]. Physics and Chemistryof the Earth, Parts A/B/C,2011,36(9):395-400.
    127. Lin D.X., Fan X.H., Hu F. et al. Ammonia volatilization and nitrogen utilization efficiency inresponse to urea application in rice fields of the Taihu Lake Region, China [J]. Pedosphere,2007,17(5):639-645.
    128. Liu G D, Wu W L, Zhang J. Regional differentiation of non-point source pollution ofagriculture-derived nitrate nitrogen in groundwater in northern China [J]. Agriculture, ecosystems&environment,2005,107(2):211-220.
    129. Ma J., Li X L, Xu H. et al. Effects of nitrogen fertiliser and wheat straw application on CH4andN2O emissions from a paddy rice field [J]. Soil Research,2007,45(5):359-367.
    130. Mack U.D., Feger K.H., Gong Y. et al. Soil water balance and nitrate leaching in winter wheat–summer maize double‐cropping systems with different irrigation and N fertilization in the NorthChina Plain [J]. Journal of Plant Nutrition and Soil Science,2005,168(4):454-460.
    131. Mosier Ar. Nitrous oxide emissions from agricultural soils [J]. Nutrient Cycling inAgroecosystems,1994,37(3):191-200.
    132. Mutegi J.K., Munkholm L.J., Petersen B.M. et al. Nitrous oxide emissions and controls asinfluenced by tillage and crop residue management strategy [J]. Soil Biology and Biochemistry,2010,42(10):1701-1711.
    133. Page Al, Miller Rh, Keeney Dr. Nitrogen-inorganic forms [J]. Methods of soil analysis,1982(9part2):643-698.
    134. Pedersen H., Dunkin K.A., Firestone M.K. The relative importance of autotrophic andheterotrophic nitrification in a conifer forest soil as measured by15N tracer and pool dilutiontechniques [J]. Biogeochemistry,1999,44(2):135-150.
    135. Phillips R.L., Podrebarac F. Net fluxes of CO2or CH4are affected following agronomic-scaleadditions of urea to prairie and arable soils [J]. Soil Biology and Biochemistry,2009,41(9):2011-2013.
    136. Ping J, Bremer E, Janzen H H. Foliar uptake of volatilized ammonia from surface applied urea byspring wheat[J]. Communications in Soil Science and Plant Analysis,2000,31(1&2):165-172
    137. Robertson G.P., Paul E.A., Harwood R.R. Greenhouse gases in intensive agriculture:contributions of individual gases to the radiative forcing of the atmosphere [J]. Science,2000,289(5486):1922-1925.
    138. Schjoerring Jan, Husted S ren, M ck Gisela et al. Physiological regulation of plant-atmosphereammonia exchange [J]. Plant and Soil,2000,221(1):95-102.
    139. Scudlark Joseph R., Jennings Jennifer A., Roadman Megan J. et al. Atmospheric nitrogen inputsto the Delaware Inland Bays: the role of ammonia [J]. Environmental Pollution,2005,135(3):433-443.
    140. Silva R G, Holub Sm, Jorgensen Ee et al. Indicators of nitrate leaching loss under different landuse of clayey and sandy soils in southeastern Oklahoma [J]. Agriculture, ecosystems&environment,2005,109(3):346-359.
    141. Sirois A., Barrie La. An estimate of the importance of dry deposition as a pathway of acidicsubstances from the atmosphere to the biosphere in eastern Canada [J]. Tellus B,1988,40(1):59-80.
    142. Smith K A, Mctaggart I P, Tsuruta H. Emissions of N2O and NO associated with nitrogenfertilization in intensive agriculture, and the potential for mitigation [J]. Soil Use andManagement,1997,13:296-304.
    143. Spokes Lucinda J., Jickells Tim D. Is the atmosphere really an important source of reactivenitrogen to coastal waters?[J]. Continental Shelf Research,2005,25(16):2022-2035.
    144. Stevenson F.J. Nitrogen in agricultural soils [M]. American Society of Agronomy.1982.300
    145. Sutton M A, Erisman J W, Dentener F, et al. Ammonia in the environment: from ancient times tothe present. Environmental Pollution,2008,156:583-604
    146. Sutton M A, Reis S, Baker S M H. Atmospheric Ammonia. Springer Netherlands,2009
    147. Takahashi Shigeru, Yagi Asako. Losses of fertilizer-derived N from transplanted rice afterheading [J]. Plant and Soil,2002,242(2):245-250.
    148. Thompson Rb, Martinez-Gaitan C., Gallardo M. et al. Identification of irrigation and Nmanagement practices that contribute to nitrate leaching loss from an intensive vegetableproduction system by use of a comprehensive survey [J]. Agricultural Water Management,2007,89(3):261-274.
    149. Tian Y H., Yin B., Yang L.Z. et al. Nitrogen runoff and leaching losses during rice-wheatrotations in Taihu Lake region, China [J]. Pedosphere,2007,17(4):445-456.
    150. Van Egmond K., Bresser T., Bouwman L. The European nitrogen case [J]. AMBIO: A Journal ofthe Human Environment,2002,31(2):72-78.
    151. Wang J Y, Jia J X, Xiong Z Q et al. Water regime-nitrogen fertilizer-straw incorporationinteraction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China[J]. Agriculture, ecosystems&environment,2011.
    152. Wrage N., Velthof Gl, Van Beusichem Ml et al. Role of nitrifier denitrification in the productionof nitrous oxide [J]. Soil Biology and Biochemistry,2001,33(12-13):1723-1732.
    153. Xing G X, Zhu Z L. Preliminary studies on N2O emission fluxes from upland soils and paddysoils in China [J]. Nutrient Cycling in Agroecosystems,1997,49(1):17-22.
    154. Xing G X. N2O emission from cropland in China [J]. Nutrient Cycling in Agroecosystems,1998,52(2):249-254.
    155. Xing G X, Zhao X, Xiong Z Q et al. Nitrous oxide emission from paddy fields in China [J]. ActaEcologica Sinica,2009,29(1):45-50.
    156. Xiong Z.Q., Huang T.Q., Ma Y.C. et al. Nitrate and ammonium leaching in variable-andpermanent-charge paddy soils [J]. Pedosphere,2010,20(2):209-216.
    157. Xu X K., Boeckx P., Van Cleemput O. et al. Urease and nitrification inhibitors to reduceemissions of CH4and N2O in rice production [J]. Nutrient Cycling in Agroecosystems,2002,64(1):203-211.
    158. Xu J Z, Peng S Z, Yang S H. Nitrogen wet deposition and its correlation with ammoniavolatilization losses fromrice paddy during crop period: A case study in Taihu Lake region.2009International Conference on Energy and Environment Technology.2009:633-636
    159. Yan X., Shi S., Du L. et al. Pathways of N2O emission from rice paddy soil [J]. Soil Biology andBiochemistry,2000a,32(3):437-440.
    160. Yan X, Du L, Shi S, et al. Nitrous oxide emission from wetland rice soil as affected by theapplication of controlled-availability fertilizers and mid-season aeration. Biology and Fertility ofSoils,2000b,32(1):60-66.
    161. Zhang Y., Liu X J, Fangmeier A. et al. Nitrogen inputs and isotopes in precipitation in the NorthChina Plain [J]. Atmospheric Environment,2008,42(7):1436-1448.
    162. Zhu Z L, Wen Q X, Freney J R. Fate and management of fertilizer nitrogen in agro-ecosystems[J]. Nitrogen in soils of China.,1997:239-279.
    163. Zhu Z L, Chen D L. Nitrogen fertilizer use in China–Contributions to food production, impactson the environment and best management strategies [J]. Nutrient Cycling in Agroecosystems,2002,63(2):117-127.
    164. Zheng X H, Fu C B, Xu X K et al. The Asian nitrogen cycle case study [J]. AMBIO: A Journal ofthe Human Environment,2002,31(2):79-87.
    165. Zhou S., Hou H., Hosomi M. Nitrogen Removal, N2O Emission, and NH3Volatilization UnderDifferent Water Levels in a Vertical Flow Treatment System [J]. Water, Air&Soil Pollution,2008,191(1):171-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700