不同品质类型小麦籽粒淀粉和蛋白质形成的生理机理与调控途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国小麦产量不断提高,但品质未能同步改良,以致普通小麦生产过剩,而优质专用小麦需求迫切。因此深入研究不同品质类型小麦籽粒品质形成的生理机制及调控途径,对于深化小麦品质生理,促进小麦调优栽培具有重要意义。本文选用不同品质类型小麦品种为材料,综合研究了小麦碳氮物质运转和关键酶活性对小麦籽粒淀粉和蛋白质合成的影响,以及淀粉和蛋白质含量与品质指标的相互关系;并研究了源库平衡、供应源的碳氮比、以及外源糖氮物质供应对籽粒淀粉和蛋白质形成的调控作用,进一步明确了小麦籽粒品质形成的生理机制及调控途径。主要研究结果如下:
     1.池栽条件下,以豫麦34、徐州26、扬麦10和扬麦9号四个不同专用小麦为材料,研究不同品质类型小麦籽粒淀粉和蛋白质积累动态及成熟期主要品质性状的相互关系。结果表明,小麦籽粒蛋白质含量表现为徐州26>豫麦34>扬麦10号>扬麦9号,而淀粉含量則相反。清蛋白含量灌浆前期迅速下降,后期变化平缓,球蛋白灌浆前期下降,中后期逐渐回升,醇溶蛋白和麦谷蛋白则逐渐增加。灌浆中期开始,品种间清蛋白、球蛋白、醇溶蛋白和麦谷蛋白含量均与总蛋白含量变化趋势一致。直链淀粉含量逐渐上升,而支链淀粉含量与总淀粉变化趋势一致,前期上升迅速,后期增长缓慢。成熟期籽粒直链淀粉和支链淀粉含量均表现为扬麦9号>扬麦10号>豫麦34>徐州26。相关分析表明,蛋白质含量与干面筋和湿面筋极显著正相关,而与其他品质指标相关不显著。谷蛋白/醇溶蛋白与面筋指数、沉淀值、降落值正相关,而与容重负相关。
     2.以徐州26、扬麦10号和扬麦9号3个不同蛋白质含量的小麦基因型为材料,研究不同品质类型小麦籽粒蛋白质和淀粉积累特征与淀粉和蛋白质合成的关键酶活性关系。结果显示,光合作用强、旗叶磷酸蔗糖合成酶(SPS)活性高是扬麦9号籽粒淀粉含量高和产量高的重要原因之一。旗叶SPS活性和蔗糖含量变化趋势一致。籽粒中蔗糖合成酶(SS)活性高而蔗糖含量低,有利于蔗糖的迅速转化。籽粒淀粉合成酶活性高,淀粉含量也高。表明高淀粉含量品种不仅源供应能力强,库合成转化能力也强。旗叶和籽粒GS活性高有利于籽粒蛋白质合成。由此推测,籽粒淀粉和蛋白质合成途径中代谢关键酶的活性变化是籽粒淀粉和蛋白质含量差异的重要生理原因。营养器官中氮素转运量和蛋白质产量呈正相关,
    
    不同品质类型小麦籽粒淀粉和蛋白质形成的生理机理和调控途径
    而与蛋白质含量不相关,营养器官可溶性糖与氮素转运量的比值与籽粒蛋白质含
    量呈负相关,与淀粉含量呈正相关。因此,营养器官C、N积累与分配的相对差
    异可能是小麦籽粒蛋白质含量差异的重要原因之一。
     3.池栽条件下,选用两个蛋白质含量不同的小麦品种,研究了剪叶剪彼来改
    变源库大小对小麦籽粒淀粉和蛋白质积累以及面粉品质的影响。结果表明,去穗
    和去旗叶处理降低了营养器官氮素和干物质积累量,但去旗叶处理促进了茎杆和
    穗壳中氮素和干物质转运量,而去穗处理则相反。去旗叶处理降低籽粒淀粉和蛋
    白质含量,去穗处理提高淀粉含量。去旗叶处理显著降低面筋含量,但提高了面
    筋指数和沉淀值,而去穗处理则相反。因此,改变源库比对籽粒品质形成有明显
    的调节作用。
     4.离体条件下,采用恒定比例、不同浓度的蔗糖和谷氨酞胺培养液对扬麦9
    号和徐州26进行离体穗培养,研究了糖氮供应水平对小麦籽粒重、淀粉和蛋白
    质及其组分合成的影响。结果表明,单粒重、每穗粒重及每穗结实粒数随糖氮供
    应水平提高呈单峰曲线.旗叶SOD和CAT活性和粒重趋势一致,而MDA含量与粒
    重相反,可见不同的糖氮供应水平,离体穗生长状况不同。籽粒蔗糖含量随糖氮
    供应水平提高而上升,而淀粉含量则先上升再下降,直链淀粉和支链淀粉含量在
    碳氮浓度过高时显著下降。籽粒SS、555和GBSS活性与粒重和淀粉含量趋势一
    致,表明3种酶活性对籽粒淀粉合成有重要调节作用。籽粒中氨基酸、蛋白质含
    量随碳氮供应浓度的增加而逐渐增大.籽粒清蛋白和球蛋白随糖氮供应水平提高
    而上升,扬麦9号的醇溶蛋白高浓度时下降,两品种谷蛋白在高浓度处理时含量
    均下降。表明提高碳氮供应水平,可提高籽粒营养品质.
     5.离体条件下,研究了谷氛酞胺供应水平对小麦籽粒重、淀粉和蛋白质合成
    及其组分含量的影响。结果表明,籽粒淀粉积累量和蛋白质积累量均随着培养基
    中谷氛酞胺供应水平提高,呈单峰曲线变化.随谷氨酞胺供应水平的提高籽粒蔗
    糖和淀粉含量逐渐下降,而氨基酸和蛋白质含量逐渐上升。籽粒直链淀粉和支链
    淀粉也随谷氨酸胺供应水平提高而下降.籽粒SS活性和粒重趋势一致,而555
    和GBSS活性则和淀粉含量趋势一致,呈逐渐下降趋势.籽粒中清蛋白和球蛋白
    随谷氨酞胺供应水平提高而上升,而醇溶蛋白和麦谷蛋白含量在一定浓度范围内
    呈上升趋势,过量供应则对籽粒醇溶蛋白和麦谷蛋白含量无明显影响。
    关键词:小麦;不同品质类型;籽粒蛋白质;籽粒淀粉;生理机制;调控途径
In recent years, wheat grain yield has increased continuously, yet grain quality is not much improved. As a result, the ordinary type of wheat is overstock, while good quality wheat is of shortage and has to import from other countries. So elucidating the physiological mechanism and regulation principles for grain quality formation in wheat is of importance for understanding grain quality physiology and guiding cultural management for quality wheat production. In the present study, different wheat varieties with varied grain protein contents were used to investigate the impact of C and N assimilation, translocation and key regulatory enzyme activities on the formation of grain starch and protein, and the relationships between starch and protein contents and flour quality, to assess the regulating effect of source-sink alteration and varied sucrose and nitrogen supply levels on the formation of grain starch and protein, and further to establish the physiological mechanism and technical approaches for regulation of grain quality in specialty wheats' The main results were summarized as follows:1. Four winter wheat cultivars differing in grain quality, Yumai 34, Xuzhou 26, Yangmai 10 and Yangmai 9 were used to determine the accumulation pattern of grain starch and protein contents and their components, along with flour quality traits. The results showed that grain protein content followed the order of Xuzhou 26>Yumai 34>Yangmai 10>Yangmai 9, while starch content was on the contrary. Albumin content decreased rapidly at the beginning stage and changed a little at later stage of grain filling. Globulin decreased initially and then increased until maturity. Gliadin and glutenin both increased with the progress of grain filling. From the mid stage of grain filling, the contents of albumin, globulin, gliadin, and glutenin also followed the order of Xuzhou 26>Yumai 34>Yangmai 10>Yangmai 9. Consistent with starch content, amylose and amypoctin increased gradually. The protein content was positively correlated to dry gluten and wet gluten significantly, and not correlated to other flour quality traits. Ratio of gliadin/glutenin was positively correlated to gluten index, SDS-sedimentation volume, falling number, while negatively correlated to test weight.2. Three wheat genotypes differing in grain protein content, Xuzhou 26, Yangmai 10 and Yangmai 9 were used to study the differences in grain protein and starch accumulation, and the ability of assimilate synthesis in flag leaves of different varieties. The results showed that Yangmai 9 had higher photosyntheitc rate, activity of sucrose phosphate
    
    synthase (SPS) and sucrose content in flag leaf,than Yangmai 10 and Xuzhou 26. The activities of sucrose synthase (SS) in grain were also higher with Yangmai 9 than Yangmai 10 and Xuzhou 26, while the sucrose content was in a opposite pattern. Soluble starch synthase (SSS), granule bound starch synthase (GBSS) and starch content in wheat grain followed the order of Yangmai 9 >Yangmai 10> Xuzhou 26. Thus, higher starch content was not only linked to the ability of sucrose supply as source, but also to the higher catalytic ability of starch synthase in sink. The activity of glutamine synthase (GS) in flag leaf and grain were higher in Xuzhou 26 than those in yangmai 10 and Yangmai 9, consistent with grain protein content. These results indicated that grain starch and protein synthesis were closely associated with the activities of key regulatory enzymes. The ratio of transferred soluble sugar to nitrogen in vegetative organs was negatively correlated to grain protein content. Therefore, the differential patterns for accumulation and remobilization of carbon and nitrogen in vegetative organs could be one of the most important reasons for different grain protein contents.3. Two wheat varieties differing in grain protein content, Yangmai 9 and Xuzhou 26 were used to investigate the effects of spikelet- and leaf-removal on the accumulation of protein and starch and flour quality in wheat grain. Dry matter weight per stem and grain weight per
引文
[1] 张庆江,张立言,毕恒武.春小麦品种氮的吸收积累的运转特征及籽粒蛋白质含量关系.作物学报,1997.23(60):712-718.
    [2] 方先文,姜东,戴廷波等.小麦淀粉组分的积累规律.江苏农业学报,2002,18(3):139-142
    [3] Bidinger F, Muscrave R B and Fisher R A. Contribution of stored preanthesis assimilate to grain yield in wheat and barley. Nature, 1977, 270: 431-433
    [4] 刘晓冰,李文雄.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的初步研究.作物学报,1996,22(6):736-740
    [5] 张秋英,刘娜,金剑等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系.麦类作物学报,2000,20(1):55-58
    [6] Ugalde T D, Aspinnall D. The physiology of starch and protein deposition in the endosperm of wheat. Austrialian Journal of Plant Physiology, 1991, 18(3): 211-216
    [7] 张玉文,张萍,于凤义等.冬小麦灌浆期旗叶叶片同化物源端装入和库端卸出的昼夜变化.作物学报,1997,23(2):252-255
    [8] 刘仲齐,吴兆苏,俞世蓉.吲哚乙酸和脱落酸对小麦籽粒淀粉积累的影响.南京农业大学学报,1992,15(1):7-12
    [9] 张秋英,刘娜,金剑等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系.麦类作物学报,2000,20(1):55-58
    [10] 张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62
    [11] 赵广才.不同种及类型小麦籽粒蛋白质含量动态变化的研究.作物学报,1992,18(3):205-212
    [12] Store J, Nicolas M E. Varietal difference in mature protein composition of wheat from rates of polymer accumulation during grain filling. Aust J Plant Physiol, 1996, 23: 727-737
    [13] 李九星,崔金梅,高瑞玲等.小麦籽粒蛋白质积累动态的研究.河南农业大学学报,1993,25(4):366-371
    [14] 杜金哲,李文雄,白祥和等.春小麦籽粒蛋白质积累和产量形成规律及氮肥的调节作用.东北农业大学学报,1998,30(1):1-9
    [15] Donovan G R, Lee J W and Hill R D. Compositional changes in the developing grain of high-and low-protein wheats. Ⅱ. Starch and protein synthetic capacity. Cereal Chem, 1977, 54: 646-656
    [16] 田纪春.张仲义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和转运差异的研究.作物学报,1994,20(1):76-83
    [17] 杜金哲,李文雄,胡尚连等.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白 质含量的关系.作物学报,2001,27(2):253-260
    [1
    
    [18] Johnson V A. Final report of research findings of genetic improvement of productivity and nutritional quality of wheat. Agency for international development, Washington D. C., USA. 1980
    [19] Smith C J, Whiffield D M. Nitrogen accumulation and redistribution of late applied of ~(15)N labeled fertilizer by wheat. Field Crop Res, 1990, 24: 211-228
    [20] Pelton J. Grain yield of high and low protein wheat cultivars as influenced by timing of nitrogen application during generative development. Field Crops Res. 1993, 33: 385-397
    [21] Noaman M M and Taylor G A. Vegetative protein and its relation to grain proteins in high and low grain protein winter wheats. Euphytica, 1990, 48: 1-8
    [22] Martin P and Lee B T. Phytohormone levels in the florets of a single wheat spikelet during preanthesis development relationships to grain set. J. Exp. Bot., 1988, 39(204): 927-933
    [23] Beittenmiller D P, Roughan C and Ohtrogge J B. Regulation of plant farry acid biosynthesis. Plant Physiol, 1992, 100: 923-930
    [24] Banziger M, Feil B and Stamp P. Competition between nitrogen accumulation and grain growth for grain growth for carbohydrate during grain filling of wheat. Crop Sci, 1994, 33: 440-446
    [25] Barlow E W R, Donovan G R, Lee J W. Water relations and composition of wheatears grown in liquid culture. Aust. J. Plant Physiol, 1983, 10: 99-108
    [26] Bhatia C R and Rabson R. Biogenergetic considerations in cereal breeding for protein improvement. Science, 1976, 194: 1418-1421
    [27] 朱德群,朱遐龄,王雁等.与小麦籽粒蛋白质有关的几项生理参数.作物学报,1991,17(2):135-144
    [28] 宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节.植物生理学通讯,1998,34(3):230-238
    [29] Desai R and Bhatia C R. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein content. Euphytica, 1978, 27: 561-566
    [30] 王月福,姜东,于振文等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础.中国农业科学,2003,36(5):513-520
    [31] 王忠,顾蕴洁,李卫芳等.小麦胚乳发育及其养分输入的途径.作物学报,1998,24(5):536—542
    [32] Stark J R and Lynn A. Starch granules large and small. Biochem Society Transacations, 1992, 20: 7-12
    [33] 焦鸿俊.基础生物化学.广西:广西民族出版社.1995:206
    [34] Stitt M. Regulation of carbon partitioning in photosynthetic tissue. In: Heath RL, et al. (eds). Waverley press, Baltimore. 1985, 100
    [3
    
    [35] Hawker J S and Jenner C F. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol, 1993, 20: 197-209
    [36] Duffus C M. Control of starch biosynthesis in developing cereal grain. Biochem Society Transactions, 1992, 20: 13-18
    [37] Fujital N and Taira T. A 56-kDa protein is a novel granule-bound starch synthase existingin the pericarps, aleurone layers, and embryos of immature seedin diploid wheat (Triticum monococcum L.). Planta, 1998, 207: 125-132
    [38] 陈新民.糯小麦研究进展.麦类作物学报,2000,20(3):82-85.
    [39] 王子宁,郭北海.小麦Waxy D1基因缺失材料的发现及分析.作物学报,2000,26(3):257-260
    [40] 梁建生,曹显祖,徐生等.水稻籽粒库强与其淀粉积累之间关系的研究.作物学报,1994,20 (6):685-691
    [41] 曹广才,王绍中.小麦品质生产.中国种子技术出版社,1994
    [42] Store J and Nicolas M E. Varietal difference in mature protein composition of wheat from rates of polymer accumulation during grain filling. Aust J Plant Physiol, 1996, 23: 727-737
    [43] Elrili I R, Holmes J J and Weger H G. RUBP limitation of photosynthetic carbon fixation during NH3 assimilation. Interactions between photosynthesis, respiration and ammonium assimilation in N limited green algae. Plant Physiology, 1988, 87: 395-401
    [44] Lea D J, Robinson S A and Stewart G R. The enzymology and metabolism of glutamine, glutamate, and asparagines. The Biochemistry of Plants, New York: Academic Press. 1990, 16: 121-159
    [45] 毛凤梧,赵会杰,徐立新等.水肥运筹对小麦品质形成的调控效应.河南农业大学学报,2001,35(1):14-16
    [46] Eilrich G L and Hageman R H. Nitrate reductase activity and its relationship to accumulation of vegetative and grain nitrogen in wheat. Crop Sci. 1973, 13: 59-66
    [47] 王宪泽,张树芹.不同蛋白质含量小麦品种叶片硝酸还原酶活性与氮素积累关系的研究.西北植物学报,1999,19(2):315-320
    [48] Dalling M J, Boland G and Willson J H. Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat. Aust. J Plant Physiol, 1976, 3: 721-730
    [49] 金善宝.中国小麦学.北京:中国农业出版社.1996
    [50] 张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究.中国农业科学,1993,26(2):39-46
    
    [51] 徐兆飞,张惠叶,张定一。小麦品质及其改良.北京:气象出版社,2000
    [52] 黄东印,林作辑.冬小麦品质性状与面条品质性状关系的初步研究.华北农学报,1990,5(1):40-45
    [53] 姚大年,李保云,朱金宝等.小麦品种主要淀粉性状及面条品质预测指标的研究.中国农业科学,1999,32(6):84-88
    [54] 姚大年,刘广田.淀粉理化特性、遗传规律及小麦淀粉与品质的关系.粮食与饲料工业,1997,2:36-38
    [55] Kulkarini R Q Ponte J G and Kulp K. Significance of gluten content as an index of flour quality. Cereal Chem, 1987, 64(1): 1-2
    [56] Firmey K R,Meyer J W, Smith F W et al. Effect of foliar spraying of pawnee wheat with urea solution on yield, protein content and protein quality. Agron. J, 1957, 49: 341-347
    [57] 张翼涛,李硕碧,张联会.不同栽培条件与小麦籽粒品质的关系.干旱地区农业研究.1991,2:16-21
    [58] 李志西,魏益民,张建国.小麦蛋白质组分与面团特性和烘焙品质关系的研究.中国粮油学报,1998,13(3):1-5.
    [59] 王月福,于振文,李尚霞等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响.中国农业科学,2002,35(9):1071-1078
    [60] 王立秋.小麦面食蒸煮品质研究动态.国外农学.麦类作物,1994,6:45-47
    [61] 李宗智,孙馥亭,张彩英等.不同小麦品种品质特性及其相关性的初步研究.中国农业科学,1990,23(6):35-41
    [62] 李宗智.冬小麦若干品质性状遗传及相关研究。作物学报,1990,16(1):8-18
    [63] 彭永欣,郭文善,严六零等.小麦栽培与生理.南京:东南大学出版社.1992:127-144
    [64] 李雁鸣,张立言,李振国.春季肥水运筹对小麦籽粒产量与品质调节效应的研究.河北农业大学学报,1996,19(1):1-6
    [65] 徐阳春,蒋廷惠,张春兰等.不同面包小麦品种的产量及蛋白质含量对氮肥用量的反应.作物学报,1998,24(6):731-737
    [66] 杨根海,张起刚,陈佑良等.用~(15)N示踪研究小麦品质Ⅰ后期氮肥对冬小麦产量和蛋白质含量的影响.北京农业大学学报.1986,12(1):39-46
    [67] 张保军,蒋纪云.小麦籽粒蛋白质组分的氮素效应研究.小麦研究,1996,17(1):7-12
    [68] 蒋纪云,张保军.硬粒小麦4286籽粒蛋白质及其组分的发育规律及调控技术.国外农学-麦类作物,1995(3):32-34
    [69] Martin R J, Sutton K H and Moyle T N et al. Effect of nitrogen fertilizer on the yield and quality of six cultivars of autumn-sown wheat. New Zealand J. of Crop and Hort. Sci, 1992, 20: 273-282
    
    [70] 朱新开,郭文善,周君良等.氮素对不同类型专用小麦营养和加工品质调控效应.中国农业科学,2003,36(6):640-645
    [71] Schipper A. The protein composition of maturity wheat grain with different nitrogen supply to the plant. Angawandte-Botanik, 1990, 64(1): 99-112
    [72] Neales M M, Anderson M J and Wardlow I F. The role of leaves in the accumulation of nitrogen by wheat during ear development. Aust. J. Agric. Res, 1963, 14: 725-735
    [73] Araus J L and Tapia L. Photosynthetic gas exchange characteristics of wheat flag blades and sheathes during grain filling. Plant physiol. 1987, 85: 667-673
    [74] 陆卫平,陈国平,郭景伦等.不同生态条件下玉米产量源库关系的研究.作物学报,1997,23(6):727-733
    [75] 刘晓冰,李文雄.源库改变对小麦籽粒蛋白质、淀粉含量和产量的影响.东北农业大学学报,27(4):321-325
    [76] Martin i M, Molino D, Rojo B, et al. Effects of alterations in source-sink ratio on various dates after anthesis on the amino acid composition of wheat grains. J Sci Food Agric, 1990, 52: 467-476
    [77] 王志敏.小麦穗培养系统的建立及其在花\粒发育生理研究中的应用.中国农学通报,1995,11(6):1-5
    [78] Ahmadi A, Baker D A. Effects of abscisic acid (ABA) on grain filling processes in wheat. Plant Growth Regul, 1999, 28: 187-197
    [79] Czyzewicz J R. 1994. Genotypic variation for nitrogen uptake hb maize kernels grown in vitro. Crop Sci, 1994, 34: 1003-1008
    [80] Hanft J M. Reed AJ, Jones R J, et al. Effect of 1-aminocycle-propane-1-carbonxylic acid on maize kernel development in vitro. J. Plant growth Regulation, 1990, 9(2): 89-94
    [81] Pinthus M J. Maize topmost axillary shoot interference with-lower ear development in vitro. Crop Sci, 1994, 34: 458-461
    [82] Keller W. Seed production on grass culms detached prior to pollination. J Amer Soc of Agronomy, 1943, 35: 617-624
    [83] Jenner C F. Synthesis of starch in detached ear of wheat. Aust Jour of Biol Sci, 1968, 21: 597-608
    [84] Donovan G R, Lee J W. The growth of detached wheat heads in liquid culture. Plant Sci Lett, 1977, 9: 107-113
    [85] Waters S P, Martin Perter, Lee B T. The influence of sucrose and abscisic acid on the determination of grain number in wheat. Journal of Experimental Botany, 1984, 35(155): 829-840
    [86] 梁建生,曹显祖,徐生.蔗糖和激素对水稻离体培养穗籽粒生长的影响.中国水稻科学,1993,7(2):77-82
    
    [87] 王志敏.小麦穗和小麦离体生长的培养方法.国外农学-麦类作物,1994,6:37-39
    [88] 张风路,王志敏,赵明等.玉米籽粒和果穗离体培养技术及其应用研究进展.玉米科学,1996,4(2):65-69
    [89] Cobb B G. The effects of modifying sucrose concentration on the development of maize kernels grown in vitro. Annals of Botany, 1988, 62: 265-270
    [90] Mayers PN. Abscisic acid inhibition of endosperm cell division in cultured maize kernels. Plant Physiol, 1990, 94: 1330-1336
    [91] Jones R J. Thermal environment during endosperm cell division and grain filling in maize. Crop Sci, 1984, 24: 133-137
    [92] 王志敏.小麦穗离体培养的简化方法.北京农业大学学报,1994,20(3):20
    [93] Yasuda S. Reproduction physiology in higher plants yokendo, Tokyo. 1948
    [94] Kato K, Tomo S, Yamazaki S, et al. Simplified culture method of detached ears and its application to vernalization in wheat. Euphytica, 1990, 49: 161-168
    [95] 王志敏,王树安,苏宝林.蔗糖供给对小麦离体培养穗小花结实的影响.北京农业科学,1996,14(4):17-20
    [96] 潘晓华,李木英,熊伟等.蔗糖和谷氨酰胺及植物激素对水稻离体培养穗淀粉积累的影响.江西农业大学学报,2000,22(1):1-5
    [97] Singh R, Perez C M, Pascual C G, et al. Grain size, sucrose level and starch accumulation in developing rice grain. Phytochemistry, 1978, 17: 1869-1874
    [98] Cervantes E, Perez P, Martinez, et al. Dry weight accumulation and starch-synthesis enzymes in grain of cultured ear of three winter wheat varieties. Physiol Plant, 1987, 77-52
    [99] Doehlert D C, Kuo T M and Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 1013-1019
    [100] Villareal R M, Juliano B Q. Effect of sucrose level on rice grain deposition in detached panicle system. Phytochemistry, 1987, 26(12): 3121-3125
    [101] Singletary G W, Doehlert D C, Wilson C M, et al. Response of enzymes and storage proteins of maize endosperm to nitrogen supply. Plant Physiol. 1990, 94: 858-864
    [102] Singletary G W and Below F E. Nitrogen-induced changes in the growth and metabolism of developing maize kernels grown in vitro. Plant Physiol. 1990, 92: 160-167
    [103] Blumenthal C, Lee J W, Barlow E W R, et al. Effects of nitrogen source and concentration on the free amino composition of developing wheat grains. Australian Journal of Plant Physiology, 1990, 17: 199-206
    [104] Jenner C F. The uptake of sucrose and its conversion to starch in detached ears of wheat. Journlal of Experimental Botany, 1973: 295-306
    
    [105] Ugalde T D, Jenner C F. Route of substrate movement into wheat endosperm. II. Amino acids.Australian Journal of Plant Physiology, 1990, 17: 705-714
    [106] Lyznik L, Rafalski A, Bojanowska K R. Amino acid metabolism in the pedicel-placenta-chalazalregion of the developing maize kernel. Phytochemistry, 1985, 24(3): 425-430
    [107] Jenner C F, Siwek K and Hawker J S. The synthesis of [14C]starch from [14C]sucrose in isolatedwheat grains is dependent upon the activity of soluble starch synthase. Australian Journal of PlantPhysiology, 1993,20:329-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700