用户名: 密码: 验证码:
高浓度铵态氮条件下与水稻根长相关的QTL解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是水稻生长发育所必须的营养元素,也是限制其产量的重要因素之一。在农业自然生态系统中,氮素主要以三种不同的形式存在:铵态氮(NH4+-N)、硝态氮(NO3+-N)及铵硝混合(NH4+-NO3-的形态。目前,世界上70%的水稻栽培于水田或旱田的土壤中,由于长期的自然选择及进化,水稻为典型的喜铵(NH4+)作物,而陆稻则为典型的喜硝(NO3-)作物。并且高浓度的铵态氮常常会抑制陆稻品种主根的伸长,为了阐明陆稻主根的伸长受高NH4+抑制的作用机理,我们利用耐NH4+较强的水稻品种Akihikari与对NH4+较敏感的陆稻品种IRAT109构建重组自交系群体(BC1F11),开展了数量性状定位(QTL)与代谢组学的研究,主要研究结果如下:
     1.两亲本Akihikari与IRAT109分别在含有不同浓度的(NH4)2SO4、NH4N03与Ca(NO3)2为唯一氮源的水培液中培养9天,随着处理浓度的升高,在含有NH4+的条件下对两亲本的根长都有明显的抑制作用,而Ca(N03)2则对两亲本主根的伸长没有影响,即使在较高的浓度条件下。
     2.在含有500μM KNO3、(NH4)2SO4或NH,NO3为唯一氮源的水培液处理下,三种氮素对亲本Akihikari主根的仲长无明显的影响,然而IRAT109在KN03处理液中主根最长,其次是NH4N03,在(NH4)2S04处理下主根最短。
     3.应用QTL定位方法分析水稻与陆稻主根的伸长对三种不同形态氮素(NO3--N, NH4-N, NO3--NH,4-)的遗传效应,共检测到两个QTLs,其中一个QTL是在NO3-条件下检测到的,Q7-1位于第7号染色体的RM3859-RM5405分子标记之间,促进主根仲长的等位基因来自于IRAT109(陆稻);另外一个QTL是在NH4+条件下检测到的,Q2-1位于第2号染色体的RM3421-RM5472分子标记之间,促进主根伸长的等位基因来自于Akihikari(水稻)。
     4.两亲本Akihikari与IRAT109在不同浓度的NO3-与NH4+处理下,Akihikari与IRAT109主根的伸长不受低浓度或高浓度NO3-的影响,表现稳定的生长趋势。而且低浓度与高浓度的NH4+对Akihikari主根的仲长也无影响,然而随着NH4+处理浓度的升高IRAT109主根的伸长明显受到了抑制作用。此外,通过对伴随离子(SO42-)试验研究表明,陆稻在高浓度铵条件下,NH4+为主要的决定性因子抑制主根的伸长。
     5.利用QTL Cartgrapher2.0软件对水稻Akihikari与陆稻IRAT109的重组自交系群体(BC1F11)133株系进行QTL分析显示,在20μM与2mM的NH4+处理下共检测到6个基因组区域控制主根的伸长效应,分别位于第1、2、6(2个QTLs)、9和11号染色体上。其中,IRAT109等位基因促进主根伸长的QTL有4个,包括qSRLl-1, qSRL6-1, qSRL6-2与qSRL9-1,这个结果与IRAT109实际具有比Akihikari较长的根系统相一致。比较在低浓度与高浓度处理下检测到的QTL,20μM NH4'处理下没有特异的QTL存在,然而在2mM NH4处理下存在两个特异的QTLs, qSRL2-1与qSRL6-2,其中,只有qSRL2-1在高NH4+条件下参与IRAT109主根伸长的抑制作用。
     6.利用毛细管质谱分析法(CE-MS)分析两亲本Akihikari与IRAT109根部的29种氨基酸含量。在低浓度NH4+处理下,Akihikari与IRAT109根部氨基酸组成非常相似,含量最高的是谷氨酰胺(Gln),其次是天冬酰胺(Asn)、丙氨酸(Ala)、谷氨酰胺(Glu)、丝氨酸(Ser)及天冬氨酸(Asp)。在高浓度NH4+处理下,这6种氨基酸在Akihikari与IRAT109根部的含量明显不同,谷氨酰胺、谷氨酸与天冬氨酸在Akihikari根部的积累量明显升高,而丝氨酸主要在IRAT109根部积累。丙氨酸与天冬酰胺含量在两亲本问无明显差别。
     7.利用重组自交系群体(BC1F11)133株系在20μM与2mM的NH4+处理下的每种氨基酸含量进行QTL遗传分析,结果检测到2个与根长相关的丝氨酸含量的QTL,分别位于2和11号染色体上,低浓度NH4+(2号染色体)与高浓度NH4+(11号染色体)促进丝氨酸含量的等位基因都来自于IRAT109。而且这两个丝氨酸含量的QTL与IRAT109等位基因抑制根长的QTL (qSRL2-1与qSRL11-1相重叠。暗示了在高NH4+条件下丝氨酸在IRAT109根部的积累可能参与根长的抑制作用。
     另外,向培养基中分别添加0.1mM或0.5mM浓度的谷氨酰胺、谷氨酸、天冬酰胺、丙氨酸及丝氨酸对两亲本主根伸长的影响结果显示:添加丝氨酸严重抑制了Akihikari与IRAT109的根长,而添加的谷氨酰胺、谷氨酸、天冬酰胺或丙氨酸都对Akihikari与IRAT109的根长无任何的影响,我们得出的结论是,丝氨酸与主根的伸长相关,至少在高NH4+条件下参与主根的抑制作用。
Nitrogen is one of the necessary nutrition for plant growth and development, and also one of the limited factors for yield. In the agricultural natural ecological system, the nitrogen mainly exist by three different forms:ammonium (NH4+-N), nitrate (N03-N) and ammonium nitrate (NH4+-NO3-). At present,70%of the world's rice cultivation in paddy field and upland soil, due to long-term natural selection and evolution, lowland rice prefer ammonium as the major nitrogen source, and upland rice utilize nitrate for growth. In generally, high concentration of NH4+often inhibits seminal root elongation in upland cultivars. To elucidate mechanism underlying this inhibition by NH4+on root elongation, we carried out quantitative trait locus (QTL) and metabolome analyses using a mapping population derived from the cross between "Akihikari"(NH4+-tolerant lowland cultivar) and "IRAT109"(NH4+-susceptible upland cultivar), the main research results are as follows:
     1. Akihikari and IRAT109were hydroponically for9days in different concentration of three nitrogen forms, containing (NH4)2SO4、NH4NO3and Ca(N03)2, respectively. With increasing the concentrations of (NH4)2SO4and NH4NO3, Akihikari and IRAT109seminal root elongation inhibited, while Ca(N03)2have no effect on seminal root elongation, even in high concentration conditions.
     2. Akihikari and IRAT109were grown in500μKN03、(NH4)2SO4, and NH,N03as the sole nitrogen source treatment, all three kinds of nitrogen forms no significant effects on Akihikari seminal root elongation, however IRAT109with the longest seminal root in KNO3solution, followed by NH4NO3, and in (NH4)2SO4, has the shortest root.
     3. Perform QTL analysis of genetic effects on lowland and upland rice seminal root elongation which treated in three different nitrogen forms (NO3--N、NH4+-N and NO3--NH4-),wo specific QTL regions were detected, Q7-1was located on chromosome7between the marker RM3859-RM5405, and IRAT109(upland rice) allele promote seminal root elongation in N03condition (upland soil),while Q2-1was located on chromosome2between marker RM3421-RM5472, and Akihikari (lowland rice)allele promote the seminal root elongation in NH4+condition (paddy field).
     4. When grown hydroponically over the wide ranges of NH4+concentration (20μM,200μM and2mM), Akihikari and IRAT109seedlings showed different growth responses to NH4+. In Akihikari seminal root length was almost uniform over the ranges of NH4-, while seminal root length was progressively reduced with increasing NH4+concentration in IRAT109. Such inhibitory effect on IRAT109roots was never seen in NO3-:seminal root elongation was uniform over the ranges of N03in both Akihikari and IRAT109. High concentration of NH4-was much inhibitorier for IRAT109root than for Akihikari root. In addition, through the accompaning ion test study shows that only NH4-inhibit seminal root elongation.
     5. Analysis BC1F11population with QTL Cartgrapher2.0revealed that a total of six genomic regions, distributed on chromosomes1,2,6(two QTLs),9and11, affected root elongation. The IRAT109allele promoted elongation on four (qSRL1-1, qSRL6-1, qSRL6-2and qSRL9-1) out of six QTLs, which consisted with the fact that IRAT109has a deeper root system than Akihikari. Comparison of QTLs between low and high NH4+treatments revealed that no QTLs were specific for low (20μM) NH4+treatment while two QTLs (qSRL2-1and qSRL6-2) were specific for high (2mM) NH4+treatment. Of the two, one (qSRL2-1) seemed to be involved in the growth inhibition by high NH4; only at this QTL the IRAT109allele reduced root growth under high concentration of NH4+
     6. Measurement of29amino acids content in Akihikari and IRAT109root were analyzed by capillary electrophoresis-mass spectrometry (CE-MS). At low concentration of NH4, amino acid composition was similar between "Akihikari" and "IRAT109", with glutamine as the major component followed by alanine, glutamate, serine and asparagine. Under high NH4+concentration, however, amino acid contents were fairly different between two cultivars; glutamine and glutamate were notably increased in "Akihikari" while serine was increased only in "IRAT109". Alanine and asparagine were increased similarly between the two cultivars.
     7. We determined QTLs controlling the content of these amino acids. Of these amino acids, serine seemed to be related to root elongation. We detected two QTLs for serine content on chromosomes2and11where the IRAT109allele increased serine content under low (chromosome11) and high (chromosome2) NH4-, respectively. Interestingly, these two QTL were co-located with the seminal root length QTLs with negative effect from IRAT109allele (qSRL2-1and qSRL11-1). Among them was the QTL on chromosome2(qSRL2-1) where the IRAT109allele reduced root growth under high concentration of NH4-, indicating that accumulation of serine under high concentration of NH4+might inhibit root elongation.
     Morover, additional of0.1mM or0.5mM of glutamine、glutamate、 asparagine、aspartate and serine to the growth medium to examined the effects of these amino acids on root growth. Addition of serine to growth medium severely inhibited seminal root elongation, while glutamine, glutamate, alanine, and asparagine had little effects on seminal root elongation. From these results, we concluded that inhibitory effect of serine may, at least in part, be involved in the inhibition of rice root elongation by NH4.
引文
[1]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展.西北农业大学学报,1999,27(4):96-101.
    [2]张光星,王靖华.番茄无公害生产技术.第1版.中国农业出版社,2003:153.
    [3]Yoshida S, Navasero SA,and Ramirez EA.. Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil,1969,31:48-56.
    [4]叶永印,张时龙.不同施氮方式对水稻群体结构的影响.耕作与栽培,2001,2:21-22,48.
    [5]De Datta SK. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. In:De Datta SK and Patrick WH。 (eds) Nitrogen economy of flooded rice soils.Nutrient Cycling in Agroecosystems. Springer, Dordrecht.1986,pp171-186.
    [6]Wilson Jr CE., Bollich PK and Norman RJ. Nitrogen application timing effects on nitrogen efficiency of dry-seeded rice. Soil Science Society of America Journal,1998,62, (4):959-964
    [7]Mitsui S, and Nishigaki S. Effect of nitrogen top-dressing upon the carbon assimilation of rice plants. In Japanese. J. Sci. Soil and Manure. Japan. 1940,14(6):375-377.
    [8]王仁雷,魏锦城.氮水平对水稻汕优64和金南风光合特性的影响.中国水稻科学,2002,16(4):331-334.
    [9]Yoshio Murata. Photosynthesis, respiration, and nitrogen response. In:The mineral nutrition ofthe rice plant. Proceedings of a symposium at the International Rice Research Institute. Feb.1964. IRRI. pp385-400.
    [10]Murata Y, and Iyama J. Studies on photosynthesis in rice plants. Photosynthesis and dry matter production of rice plants grown with heavy manuring and dense planting. Proc. Crop Sci. Soc, Japan.1958,27(1):9-11.
    [11]王仁雷,李霞.氮肥水平对杂交稻汕优63剑叶光合速率和RuBP竣化酶活性的影响.作物学报.2001,27(6):930-934.
    [12]吴良欢,陈峰.水稻叶片氮素营养对光合作用的影响.中国农业科学.1995,28(1):104-107.
    [13]徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系.作物学报.1995,21(2):171-175.
    [14]刘宛,徐正进,陈温福,李金泉,李磊鑫,张龙步.不同氮素水平对直立穗型水稻品种群体 光合特性的影响.沈阳农业大学学报.2001,32(1):8-12.
    [15]李之林.施氮对香稻某些生理效应的研究.华南农业大学学报.1997,18(3):13-17.
    [16]王娜,邵志广.不同形态氮素配比对水稻光合特性的影响.江苏农业学报.2002,18(1):18-22.
    [17]谈建康,沈其荣.不同形态氮素比例对水稻苗期水分利用效率及其生物效应的影响.南京农业大学学报.2002,25(3):49-52.
    [18]赵全志,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究.中国农业科学,2001,34(3):304-310.
    [19]潘晓华,王永锐.两系杂交稻始穗期追氮钾肥对同化物运输与分配的影响.江西农业大学学报.1996,18(3):252-258.
    [20]潘晓华,王永锐.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用,江西农业大学学报.1997,19(3):1-5.
    [21]Ferrario S, Foyer CH, and Morot-Gaudry JF. Co-ordination between nitrogen photosynthetic and respiratory metabolism. In:Jean-Francois Morot-Gaudry (eds.) Nitrogen assimilation by plants. Science publishers, Inc. Enfield, USA.1997, pp269-283.
    [22]Robinson JM, and Baysdorfer C. Interrelationship between photosynthetic carbon and nitrogen metabolism in mature soybean leaves and isolated leaf mesophyll cells. In:Regulation of carbon partitioning in photosynthetic tissue. Health RL and Preiss J. (eds.). Am. Soc. Plant Physiol,1985. pp333-357.
    [23]Rufty TW, Huber SC, and Volk RJ. Alternations in leaf carbohytrate metabolism inresponse to nitrogen stress. Plant Physiol,1988,88:725-730.
    [24]Weger HG, and Turpin DH. Mitochondrial respiration can support NO3 and NO2 reduction during photosynthesis. Plant Physiol,1989,89:409-415.
    [25]Hageman RH. Uptake and reduction of nitrate:Bacteria and higher plants. In: Lauchli A and Bieleshi RL. (eds.) Encyclopedia of plant physiology, new series. Springer-Verlag, Berlin and New York.1983, vol. ISA:pp351-375.
    [26]Lillo C and Henriksen A. Comparative studies of diurnal variations of nutrate reductase activity in wheat, oat and barley. Physiol Plant.1984,62:89-94.
    [27]Aulakh MS, Khera TS, Doran JW. Yields and Nitrogen Dynamics in a Rice-Wheat System Using Green Manure and Inorganic Fertilizer. Soil Science Society of America Journal.2000,64:1867-1876.
    [28]崔克辉,张甲耀.模拟污水中氮、磷对水稻幼苗根系呼吸作用的影响.武汉植物学研究.1996,14(4):323-328.
    [29]Chaillou S. and Lamaze T. Ammoniacal nutrition of plants. In:Jean-Francois Morot-Gaudry (eds.) Nitrogen assimilation by plants. Science publishers, Inc. Enfield, USA.1997. pp53-69.
    [30]Chaillou S. and Lamaze T. Ammoniacal nutrition of plants. In:edited by Jean-Francois Morot-Gaudry. Nitrogen Assimilation by Plants. Science Publishers, Inc. (USA).2001. pp53-69.
    [31]罗安程,杨肖娥.氮钾供应水平与水稻生育后期对不同形态氮吸收的关系.中国农业科学.1998,31(3):62-65
    [32]杨肖娥,孙羲.生育后期追施NO3-N和NH4-N对水稻的生理效应.土壤通报.1990,21(3):111-114.
    [33]张达,林杉.通气状况与氮素形态对水稻和旱稻生长的影响.哈尔滨师范大学自然科学学报.2002,18(4):97-102.
    [34]Shingo Mitsui. Dynamic aspects of nutrient uptake. In:The mineral nutrition of the rice plant. Proceedings of a symposium at the International Rice Research Institute. Feb.1964. IRRI. pp53-62.
    [35]史瑞和.植物营养原理.第2版.江苏科学技术出版社.1989.
    [36]Zenzaburo Kasai and Kozi Asada. Translocation of mineral nutrients and other substances within the rice plant. In:The mineral nutrition of the rice plant. Proceedings of a symposium at the International Rice Research Institute. Feb. 1964. IRRI pp.63-74.
    [37]Faure JD, Meyer C, and Caboche M. Nitrate assimilation:Nitrate and nitrate reductases. In:edited by lean-Francois Morot-Gaudry. Nitrogen Assimilation by Plants. Science Publishers, Inc. (USA).2001.pp33-52.
    [38]Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm 0, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136,2004,2483-2499.
    [39]Diaz C, Lemaitre T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry JF, Le Dily F, Masclaux-Daubresse C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiology 2008,147:1437-1449.
    [40]Miller AJ, Fan XR, Shen QR, Smith SJ. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany 2008,59:111-119.
    [41]Vidal EA, Gutierrez RA. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology 2008,11:521-529.
    [42]Krouk G, Crawford NM, Coruzzi GM, Tsay YF. Nitrate signaling:adaptation to fluctuating environments. Current Opinion in Plant Biology 2010,13:266-273.
    [43]Coruzzi G, Bush DR. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 2001,125:61-64.
    [44]Thum KE, Shasha DE, Lejay LV, Coruzzi GM. Light-and carbon-signaling pathways. Modeling circuits of interactions. Plant Physiology 2003,132:440-452.
    [45]Urbanczyk-Wochniak E, Fernie AR. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. Journal of Experimental Botany 2005,56:309-321.
    [46]Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biology 2007,8:7.
    [47]Lam HM, Coschigano KT, Oliveira IC, MeloOliveira R,Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 1996,47:569-593.
    [48]Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A. Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 2002,53:959-970.
    [49]Yamaya T, Oaks A. Metabolic regulation of ammonium uptake and assimilation. In: Stulen I, Amancio S, eds. Nitrogen acquisition and assimilation in higher plants. The Netherlands:Kluwer Academic Publishers,2004,35-63.
    [50]Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany 2007,58:2319-2327.
    [51]Forde BG and Clarkson DT. Nitrate and Ammonium Nutrition of Plants:Physiological and Molecular Perspectives. Advances in Botanical Research 1999,30:1-90.
    [52]MarsehnerH. Mineral nutrition of higher Plants. London:Aedemie PressLne. LTD.433
    [53]Filleur S, Daniel-Vedele F. Expression analysis of a high affinity transporter isolated from Arabidopsis thaliana by different display. Planta, 1999,207:461-469.
    [54]Fraisier V, Gojon A, Tillard P, et al. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia:evidence for post-transcriptional regulation by a reduced nitrogen source. PlantJ, 2000,23:489-496.
    [55]Tsay AF, Schroeder JI.Feldmann KA, Crawford NM. The herbicide sensitivity gene CHL1 of Arabidopsis encode a nitrate-inducible nitrate transporter. Cell,1993,71:705-713.
    [56]Huang NC, Chiang CS, Crawford NM,Tsay AF. CHL1 encode a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell,1996,8:2183-2191.
    [57]Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. Mutation of a nitrate transporter, AtNRTl;4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiology,2004,45:1139-1148.
    [58]Loque D, von Wiren N. Regulatory levels for the transport ammonium in plant roots. Journal of Experimental Botany,2004,55:1293-1305.
    [59]Ninnemann 0, Jauniaux JC, Frommer WB. Identification of a high affinity NHi transporter from plants. The European Molecular Biology Organization Journal,1994,13:3464-3471.
    [60]Gazzarrini S, Lejay L, Gojon A, Ninnemann 0, Frommer WB, von Wiren N. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell,1999,11:937-947.
    [61]Sohlenkamp C, Shelden M, Howitt S, Udvardi M. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Letters,2000,467:273-278.
    [62]Lauter FR, Ninneman O, Bucher M. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato
    [63]Salvemini F, Marini AM, Riccio A, PatriarcaEJ,Chiurazzi M. Functional characterization of an ammonium transporter gene from Lotus japonicas. Gene,2001,270:237-243.
    [64]Cox WJ, Reisenauer HM. Growth and ion uptake by wheat supplied nitrogen as nitrate,or ammnonium, or both.Plant and Soil,1973,38:363-380
    [65]Raven JA. Regulation of PH and generation of osmolarity in vaseular plants:A cost-benefit analysis relation to effieient of use of energy nitrogen,and water. New Phytologist,1985,101:25-77
    [66]Granato TC, Raper CD. Proliferation of maize roots in response to localized supply of nitrate. Journal of Experimental Botany,1989,40:'263-275.
    [67]Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science,1998,279:407-409
    [68]Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA,1999,96:6529-6534
    [69]Tatsuya Hirano, Yoshikazu Satoh, Atsushi Ohki, Ryuji Takada, Toshiro Arai and Hiroyasu Michiyama. Inhibition of ammonium assimilation restores elongation of seminal rice roots repressed by high levels of exogenous ammonium。Physiologia Plantarum,2008,134:183-190.
    [70]Edwards MD, Stuber CW, Wendel JF. Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics,1987,116:113-12
    [71]Stitt M. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol.1999,2:178-186.
    [72]Zhang H, Andrea J, Peter W. Dual Pathways for regulation of root branchinghy nitrate. PlantBiology,1999,96(11):6529-534.
    [73]Lin CM, Koh S, Stacey G. Cloning and funectional of a characterization of a constitutively expressed nitrate transporter gene,Osnrtl, from rice. Plant Physiology,2000,122(2):379-388.
    [74]Scheible WR, Lauerer M, Schulze ED, Caboche M, Stitt M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. PlantJ.1997,11:671-691
    [75]Raab KT, Terry N. Nitrogen source regulation of growth and photosynthesis in Beta Vulgaris L. Plant Physiology,1994,105:1159-1166
    [76]Hirano T, Satoh Y, Ohki A, Takada R, Arai T, Michiyama H. Inhibition of ammonium assimilation restores elongation of seminal rice roots repressed by high levels of exogenous ammonium. Physiologia Plantarum.2008,134:183-190.
    [77]Britto DT, Kronzucker HJ. NH4 toxicity in higher plants:a critical review. Journal of Plant Physiology,2002,159:567-584.
    [78]DUAN Ying-Hua, YIN Xiao-Ming, ZHANG Ya-Li and SHEN Qi-Rong. Mechanisms of Enhanced Rice Growth and Nitrogen Uptake by Nitrate. Pedosphere,2007,17(6): 697-705
    [79]DUAN Ying-Hua, ZHANG Ya-Li, SHEN Qi-Rong and WANG Song-Wei. Nitrate Effect on Rice Growth and Nitrogen Absorption and Assimilation at Different Growth Stages.Pedosphere,2006,16(6):707-717
    [80]Zhao XQ, Zhao SP,Shi WM. Enhancement of NH4' by N03 in relation to expression of nitrate-induced genes in rice (Oryza sativa) roots. Pedosphere,2008,18(1):86-91.
    [81]李勇,周毅,郭世伟,沈其荣.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响.中国水稻科学,2007,21(3):294-298.
    [82]张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29(3):239-250.
    [83]Yamaya T, Oaks A. Metabolic regulation of ammonium uptake and assimilation. In: Nitrogen Acquisition and Assimilation in Higher Plants (Plant Ecophysiology Series) (edn I. Stulen & S. Smancio). The Netherlands:Academic Publisher,2004,35-64.
    [84]Magalhaes JR, Huber DM. Ammonium assimilation in different plant species as affected by nitrogen form and PH control in solution culture. Fertilizer Research,1989,21:1-6.
    [85]Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ. Futile transmembrane NH4 cycling:A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Science, USA.2001,98:4255-4258.
    [86]Kronzucker HJ, Britto DT, Davenport RJ, Tester M. Ammonium toxicity and the real cost of transport. Trends in Plant Science,2001,6:335-337.
    [87]Balkos KD, Britto DT, Kronzucker HJ. Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant, Cell and Environment,2010,33:23-34.
    [88]Tanaka S, Yamauchi A, Kono Y. Response of the seminal root elongation to NH4+ nitrogen in several rice cultivars. Journal of Crop Science,1993,62:288-293(in Japanese with English summary).
    [89]Lin S, Li J, Sattelmacher B, Bruck H. Response of lowland and aerobic rice to ammonium and nitrate supply during early growth stages. Journal of Plant Nutrition,2005,28:1495-1510.
    [90]Kondo M, Murty MVR, Aragones DV, Okada K, Winn T, Kwak KS. Characteristics of the root system and water uptake in upland rice. In:Hardy B. eds. Genetic improvement of rice for water-limited environment. International Rice Research Institute (IRRI),1999, pp117-131.
    [91]Kawada S, Maruyama S, Soejima M. Root formation in rice plant and levels of nitrogen supply. Jpn J Crop Sci,1997,46:193-198 (in Japanese with English summary)
    [92]Tanksely SD. Mapping polygenes. Annu Rev Genet,1993,27:205-233.
    [93]Burr B, Burr FA,. Reeombinant inbreds for moleeular mapping in maize; theoretieal and praetieal considerations. TAG,1991,7:55-60
    [94]吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数(英文),福建农业大学学报,1997,26(2):129-132
    [95]Tanksley SD, Medina HilhoH, Rick C M. Useofnaturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity,1982,49:11-25
    [96]Weller DM. Biological-control of soilborne plantpathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,1988,26,379-407.
    [97]Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    [98]Jensen J. Estimation of recombination parameters between aquantitative trait locus (QTL) and two marker gene loci.Theor Appl Genet,1989,78:613-618.
    [99]Knapp SJ,Bridges WC, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps.Theor App lGenet,1990,79:583-592
    [100]Zeng ZB.Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    [101]Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative traitloci. Proc Natl Acad Sci USA,1993,90:10972-10976
    [102]Jiang CJ, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative traitloci. Genetics,1995,140:1111-1127
    [103]吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399
    [104]Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ. Times related mapping of quantitative trait loci underlying tiller number in rice. Genetics,1999,151:297-303
    [105]徐辰武,顾世梁.构建数量性状基因图的双侧标记基因型均值回归法.扬州大学学报,自然科学版,1999,2(1):42-47
    [106]Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics,1993,135:205-211
    [107]Jansen RC. Controlling the type I and type II errors in mapping quantitative traitloci. Genetics,1994,138:871-881
    [108]Kearsey MJ, Hyne V. QTL analysis:a simple marker regression approach. Theor Appl Genet,1994,89:698-702
    [109]Hyne V, Kearsey MJ. QTL analysis:further uses of marker regression. Theor Appl Genet,1995,91:471-476
    [110]Charmet G, Cadalen T, Sourdille P, Bernard M. Anextension of the marker regression method to interactive QTL.Molecular Breeding,1998,4:67-72
    [111]Wu WR, Li WM.A new approach for mapping quantitative trait lociusing complete genetic marker linkage maps. Theor Appl Genet,1994,89:535-539
    [112]Arth I, Frenzel P, Conrad R. Denitrification coupled to nitrification in the rhizosphere of rice J. Soil Biology and Biochemistry,1998,30:509-515.
    [113]Kronzucker HJ, Kirk GJ D, Siddiqi M Y. Effects of hypoxia on NH4 flux in rice roots:kinetics and compartmental analysis J. Plant Physiol,1998,116: 581-587.
    [114]Lincoln S.Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep,3rd edn. Whitehead Institute, Cambridge,1992.
    [115]Kosambi DD. The estimation of map distance from recombination values. Annu Eugen,1944,12:172-175.
    [116]Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer, version 2.0. Department of Statistics, North Carolina State University, Raleigh. http://statgen. ncsu.edu/qtlcart/WQTLCart. htm.2003.
    [117]Li HH, Ye GY,Wang JK.A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175:361-374.
    [118]Lan C, Liang S, Zhou X, Zhou G, Lu Q, Xia X, He Z. Identification of genomic regions controlling adult-plant stripe rust resistance in chinese landrace pingyuan 50 through bulked segregant analysis. Phytopathology,2010,100(4):313-318.
    [119]Huang G., Yi KK., Wu YR., Zhu L., Mao CZ., Wu P., QTLs for nitrate induced elongation and initiation of lateral roots in rice(Oryza sativa L.). Plant and Soil.2004,263:229-237.
    [120]Obara M., Tamura W., Ebitani T., Yano M., Sato T., Yamaya T., Fine-mapping of qRL6.1, a major QTL for root length of riceseedlings grown under a wide range of NH.i concentrations in hydroponic conditions. Theoretical and Applied Genetics.2010,121:535-547.
    [121]Lian X., Xing Y., Yan H., Xu C., Li X., Zhang Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinantinbred line population derived from an elite rice hybrid, Theoretical and Applied Genetics.2005,112:85-96.
    [122]Xu CG, Li XQ, Xue Y, Huang YW, Gao J, Xing YZ. Comparison of quantitative trait loci controlling seedling characteristicsat two seedling stages using rice recombinant inbredlines. Theoretical and Applied Genetics.2004,109:640-647.
    [123]Rauh BL, Basten C, Buckler ES. Quantitative trait loci analysis of growth response to varying nitrogensources in Arabidopsis thaliana. Theoretical and Applied Genetics.2002,104:743-750.
    [124]Liu J, LiJ, ChenF, Zhang F, RenT, Zhuang Z, MiG. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil,2008,305:253-265
    [125]Rauh BL, Basten C, Buckler ES IV. Quantitative trait locianalysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet,2002,104:743-750
    [126]Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Plants,2010,232:299-311.
    [127]Wakayama M, Aoki N, Sasaki H, Ohsugi R. Simultaneous analysis of amino acids and carboxylic acids by capillary electrophoresis-mass spectrometry using an acidic electrolyte and uncoated fused-silica capillary. Analytical Chemistry,2010,82:9967-9976.
    [128]Nihei N, Masuda S, Tanoi K, Rai H, Nakanishi TM. Initial growth of some crops grown in amino acids as nitrogen source under aseptic condition. Japanese Journal of Crop Science,2012,81:194-200.
    [129]Jung SM, Kim SW, Ban SH, In DS, Jung JD, Chung HJ, Liu JR, Lim YP, Choi DW. Glutamine accumulation inhibites root growth and lateral root formation in ginseng hairy roots.2006
    [130]Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm 0, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology,2004,136:2483-2499.
    [131]Pracharoenwattana I, Zhou WX, Keech 0, Francisco PB, Udomchalothorn T, Tschoep H, Stitt M, Gibon Y, Smith SM. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. The Plant Journal,2010,62:785-795.
    [132]Urbanczyk-Wochniak E, Fernie AR. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. Journal of Experimental Botany,2005,56:309-321.
    [133]Masumoto C, Miyazawa S, Ohkawa H, Fukuda T, Taniguchi Y,Murayama S, Kusano M, Saito K, Fukayama H, Miyao M. Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences, USA,2010,107:5226-5231.
    [134]Rognes SE, Wallsgrove RM, Kueh JSH, Bright SWJ.1986. Effects of exogenous amino acids on growth and activity of four aspartate pathway enzymes in barley. Plant Science 43,45-50.
    [135]Kato-Noguchi H, Kosemura S, Yamamura S, Mizutani J, Hasegawa K.1994. Allelopathy of oats. I. Assessment of allelopathic potential of extract of oat shoots and identification of an allelochemical. Journal of Chemical Ecology20, 309-314.
    [136]Barazani 0, Friedman J.2000. Effect of exogenously applied L-tryptophan on allelochemical activity of plant-growth promoting rhizobacteria (PGPR). Journal of Chemical Ecology 26,343-350.
    [137]Sivaguru M, Pike S, Gassmann W, Baskin T.2003. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane:Evidence that these responses are mediated by a glutamate receptor. Plant Cell and Physiology 44, 667-675.
    [138]Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG.2006. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell and Physiology 47,1045-1057.
    [139]Walch-Liu P, Forde BG.2008. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. The Plant Journal 54,820-828.
    [140]Barbosa JM, Singh NK, Cherry JH, Locy RD.2010. Nitrate uptake and utilization is modulated by exogenous g-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry 48,443-450.
    [141]Sonoda Y, Ikeda-A, Saiki S, Yamaya T, Yamaguchi J.2003. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell and Physiology 44,1396-1402.
    [142]Tamura W, Hidaka Y, Tabuchi M, Kojima S, Hayakawa T, Sato T, Obara M, Kojima M, Sakakibara H, Yamaya T.2010. Reverse genetics approach to characterize a function of NADH-glutamate synthasel in rice plants. Amino Acids39,1003-1012.
    [143]Coruzzi G, Last R.2000. Amino acids. In:Buchanan B, Gruissem W, Jones R. eds. Biochemistry and molecular biology of plants. American society of plant physiologists, pp.358-411.
    [144]Colmer TD.2003. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice(Oryza sativaL.). Annals of Botany 91,301-309.
    [145]Kirk GJD.2003. Rice root properties for internal aerationand efficient nutrient acquisition in submerged soil. New Phytologist 159,185-194.
    [146]Colmer TD, Cox CH, Voesenek LA.2006. Root aeration in rice(Oryza sativa): Evalutation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytologist 170,767-778.
    [147]Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ.2001. Futile transmembrane NH4 cycling:A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Science, USA 98,4255-4258.
    [148]Kronzucker HJ, Britto DT, Davenport RJ, Tester M.2001. Ammonium toxicity and the real cost of transport. Trends in Plant Science 6,335-337.
    [149]Suenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., von Wiren, N., Hayakawa, T., Yamaguchi,J. and Yamaya, T. (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol.44:206-211.
    [150]Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, and Yamaguchi J. (2003) Distinct expression and function of three ammonium transporter genes(OsAMTl;1-1;3) in rice. Plant Cell Physiol.44:726-734.
    [151]Jahn TP, Mler AL, Zeuthen T, Holm LM, Klaerke DA.Mohsin B, Kuhlbrandt W, and Schjoerring JK,2004. Aquaporin homologues in plants and mammals transportammonia, FEBS Lett,574(1-3):31-36.
    [152]Salvemini F, Marini AM, Riccio A, Patriarca EJ and Chiurazzi M. (2001)Functional characterization of an ammonium transporter gene from Lotusjaponicus. Gene 270: 237-243.
    [153]Simon-Rosin U, Wood C and -Udvardi MK. (2003) Molecular and cellularcharacterisation of LjAMT2;1, an ammonium transporter from the model legumeLotusjaponicus. Plant Mol. Biol.51:99-108.
    [154]Kim TH, Kim EC, Kim SW, Lee HS, Choi DW (2010)Exogenous Glutamate Inhibits the Root Growth and Increases the Glutamine Content in Arabidopsis thaliana. Journal of Plant Biology 53:45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700