4,5-二氮芴-9-酮衍生物及配位聚合物的合成、结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机配位聚合物作为一种新型的分子功能材料,凭借其独特的结构可剪裁性、多样的拓扑结构和在离子交换、吸附、分子识别、催化以及光、电、磁、手性拆分等领域的巨大潜在应用,受到各界科学家越来越多的关注。按照晶体工程的原理,通过选择特定几何构型的中心金属原子和特殊的有机配体可以在一定程度上实现晶体材料的定向设计与合成;同时,还可以通过选择功能性的中心金属离子和具有功能官能团的有机配体赋予目标配位聚合物以光、电、磁、手性拆分和催化等功能。由含氮螯合配体邻菲罗啉(phen)、4,5-二氮杂芴-9-酮(Dafo)合成配位聚合物的工作已有大量报道,然而合成具有新型结构的含氮配体仍然具有十分重要的意义,有广阔的发展空间和应用前景。通过对合成新型含氮配体和对已有含氮配体进行修饰,同时引入适合的第二羧酸配体,可以预期得到一些具有特殊性质的新型功能材料。Rao、Kitagawa 、Yaghi 等在这方面做了出色的工作,其中一个重要的合成策略是通过不同尺度,不同形状的芳香羧酸类配体与含氮的中性配体合成功能性多孔材料配位聚合物和具有互穿结构的配位聚合物。
    本文中,我们合成了三种新的含氮多齿配体:4,5-二氮芴-9-肟(L1)、2-(4,5-二氮芴-9-亚胺基)苯酚(L2)、4-(4,5-二氮芴-9-亚胺基)苯甲酸(L3)。从分子设计的角度出发,同过选择对苯二甲酸和均苯四酸为第二配体,与过渡金属Zn(II)在不同的条件下形成了两种配合物:
    以L1为第一配体,对苯二甲酸为第二配体与Zn(II)合成了一个具有新颖结构的三维配位聚合物[Zn_2(L1) (tp)_(1.5)(OH)](H_2O) 1。值得注意的是,结构中的μ3-O和金属离子Zn(II)构筑成类似于环己烷椅式构象的构筑单元Zn_4O_2(SBU),通过与对苯二甲酸桥联构成简单立方体结构。从拓扑学角度分析,该结构具有6节点的三维互穿网络结构。
    同时,以L1为第一配体,均苯四酸为第二配体与Zn(II)合成了另一个具有新颖结构的三维配位聚合物 [Zn_2(L1) (btec)_(0.5)(OH)_2]2。在2中μ2-O的出现导致配合物维数升高,由μ2-O和Zn(II)构筑而成的具有八元环结构的Zn_4O_4构筑单元,与四个羧酸连接形成三维网络结构。在c轴方向,略去配体分子L1,得到孔径为(10.8A×8.15 A)的一维孔道。
    氨基酸类配体因其具有较多的配位点,以及在生物等领域具有广泛的应用而倍受重视。我们以对乙酰氨基苯甲酸为配体,与过渡金属 Zn(II),Cd (II)反应得到了两个通过超分子作用形成的三维配合物 [Cd(CH_3CONHC_6H_4COO)_2·4(H_2O)]·2(H_2O) 3 和 [Zn(CH_3CONHC_6H_4COO)_2·4(H_2O)]·2(H_2O) 4。X 射线单晶衍射表明,在化合物中存在着多种氢键,使配合物构成了无限延伸的超分子三维网络结构。探讨了氢键在结构构建中所起的作用,并对化合物的光谱性质进行了研究。
Metal-organic coordination polymers-a new kind of functional molecule materials- have attracted much more attentions for their flexible tailoring, various topologies and promising application in ion-exchange, adsorption, molecular recognization, catalysts along with optics, electrics, magnetism and enantioslective separation. According to the principle of crystal engineering, it is possible that rational design and synthesis of porous crystalline materials by selecting certain geometric metal ions and special organic ligands; At the same time, coordination polymers can be endowed with optics, electric, magnetism, enantioselective separation and catalysis by selecting functional metal ions and organic ligands with functional groups. To today, there have been a lot of reports on coordination polymers, which generally constructed from various N-containing chelating bidentate ligand such as phen and Dafo. It is also important to synthesize the novel structure N-containing ligands which have widely developing space and potential application. Through modifying or synthesis the novel N-containing ligands and selecting suitable secondary multi-carboxylic ligands, a series of novel funditional materials with a range of special optics, electrics, magnetism properties can be designed and synthesized. In this filed, it is noteworthy that many hybrid compounds have been gotten by C. N. R. Rao, Kitagawa, Yaghi. A strategy based on selecting different size, different shape aromatic carboxylic and neutral N-containing ligands has been applied for the design and synthesis of new functional coordination polymers of porous and interpenetrating coordination polymers.
    Here, Three new polypyridine ligands of 4,5-diazafluorene-9-one oxime(L1), 2-(4,5-Diazafluoren-9-ylideneamino)phenol(L2) and 4-(4,5-Diazafluoren-9-ylideneamino) benzoic acid(L3) have been successfully synthesized. From the viewpoint of molecular design, two rigid polycarboxyl ligands have been introduced into the complexes as the secondary ligands. A novel Three-Dimensional coordinaton polymer[Zn_2(L1) (tp)_(1.5)(OH)](H_2O) 1 has been constructed with L1 in the presence of an additional terephthalate. It is noteworthy that the structure consisits of interpenetrating six-connected topology nets. In its most symmetrical form this net consists of nodes with a chair form(Zn4O_2)building of μ3-O bridge and Zn(II) and has a primitive cubic unit cell building of terephthalate. At the same time another three-dimensional coordination coordination polymer[Zn_2(L1)(btec)_(0.5)(OH)_2] 2 have been obtained bridging in 1,2,4,5-benzenete- tracarboxylate. The presence of μ2-O bridge result in the increment of the dimension of polymers. Tortile octagonal Zn_4O_4 building of μ2-O is edge-bridged by four carboxylates to give a novel topology structure. Viewed along the c zxis, there are channels(10.8A×8.15A)
    
    in the structure filled by L1 ligands. Amino acid is a kind of well-exploited ligand and it has more coordinated sites, so it is of great interest in biochemisty and other fields. Here a flexible ligand 4-acetamidobenzic acid was used for ligand to form complex.Two 3-dimensional suparmolecular coordination polymer [Cd(CH_3CONHC_6H_4COO)_2·4(H_2O)]·2(H_2O) 3 and [Zn(CH_3CONHC_6H_4 COO)_2·4(H_2O)]·2(H_2O) 4 have been got in the condition of existing of the transition metal Zn(II) and Cd(II). The crystal structure of the compound was determined by X-ray diffraction. The result shows that the crystal possesses three 3-dimensional infinite network structure constructed by many kinds hydrogen bond, forming the supramolecule. The various kinds of hydrogen bond in the compound and their effect on the crystal structure are discussed. At last the spectra studies are here.
引文
[1] 徐志固. 现代配位化学[M]. 北京: 科学工业出版社, 1987.
    [2] Lin W, Evans O R, Xiong R G, et al. Supramolecular engineering of chiral and acentric 2d network. Synthesis, structures and second-order nonlinear optical properties of bis(nicotinato) zinc and bis {3-[2-(4-pyridyl)ethenyl]benzoate}cadmium[J]. J Am Chem Soc, 1998, 120(50): 13272-13273.
    [3] Miller S J, Epstein A J. Organic and organometallic molecular magnetic materials - designer magnets[J]. Angew Chem Int Ed Engl, 1994, 33(4): 385-415.
    [4] 徐筱杰. 超分子建筑—从分子到材料[M]. 科学技术文献出版社, 2000.
    [5] 沈昊宇, 廖代正. 生物体系和模型化合物顺磁离子间的磁相互作用[J]. 化学通报, 1998: 10-14.
    [6] Batten S R, Robson R. Interpenetrating nets: ordered, periodic entanglement[J]. Angew Chem Int Ed Engl, 1998, 37(11): 1460-1494.
    [7] Lu J, Paliwala T, Lim S C, etal. Coordination polymers of Co(NO_3)_2 with pyrazine and 4, 4’-bipyridine: synthesis and structure[J]. Inorg Chem, 1997, 36(5): 923-929.
    [8] Losier P, Zaworotko M J. A noninterpenetrated molecular ladder with hydrophbic cavities[J]. Angew Chem Int Ed Engl, 1996, 35(23-24): 2779-2782.
    [9] Yaghi O M, Li H, Groy T L. A molecular railroad with large pores: synthesis and structure of Ni(4, 4’-bpy)_2(H_2O)_2 (ClO_4)_2 5(4, 4’-bpy). 2H_2O[J]. Inorg Chem, 1997, 36(20): 4292-4293.
    [10] Hanan G S, Arana C R, bLehn J-M, et al. Synthesis, structure, and properties of dinuclear and trinuclear rack-type rull complexes[J]. Angew Chem Int Ed Engl, 1995, 34(10): 1122-1124.
    [11] MacGillivaray L R, Groeneman R H, Atwood J L. Design and self-assembly of cavity-containing rectangular grids[J]. J Am Chem Soc, 1998, 120(11): 2676-2677.
    [12] Tong M-L, Ye B-H, Cai J-W, et al. Clathration of two-dimensional coordination polymers: synthesis and structure of[M(4, 4’-bpy)_2(H_2O)_2](ClO_4)_2·(2, 4’-bpy)2H_2O and[Cu(4, 4’-bpy)2 (H_2O)_2](ClO_4)2·(4, 4’-H_2bpy)_2 (M=Cd~(II), Zn~(II) and bpy=bipyridine)[J]. Inorg Chem, 1998, 37(11): 2645-2650.
    [13] Fujita M, Kwon Y J, Sasaki O, et al. Interpenetrating moleculae ladders and bricks[J]. J Am Chem Soc, 1995, 117(27): 7287-7288.
    [14] Yaghi O M, Li H, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. J Am Chem Soc, 1995, 117(41): 10401-10402.
    [15] Soma T, Yuge H, Iwamoto T, Three-dimensional interpenetrating double and triple framework structures in[Cd(bpy)_2{Ag(CN)_2}_2 and[Cd(pyrz){Ag_2(CN)_3}{Ag(CN)_2}][J]. Angew Chem Int Ed Engl, 1994, 33(15-16): 1665-1666.
    [16] Chen X M, Tong M L, Lou Y J, et al. Inclusion of 4, 4-bipyridine(bpy) in its copper(II) aqua perchlorato complex crystal structure of[Cu(bpy)(H_2O)_2 (ClO_4)_2]n·(bpy)n[J]. Aust J Chem, 1996, 49(7): 835.
    
    [17] Yaghi O M, Li H. T-shaped molecular building units in the porous structure of Ag(4, 4’-bpy)·NO_3[J]. J Am Chem Soc, 1996, 118(1): 295-296.
    [18] Carlucci L, Ciani G, Proscrpio D M, et al. 1-, 2-, and 3-dimensional polymeric frames in the coordination chemistry of AgBF4 with pyrazine. The first example of three interpenetrating 3-dimensional triconnected nets[J]. J Am Chem Soc, 1995, 117(16): 4562-4569.
    [19] Wang Q M, Guo G C, Mak T C W. A coordination polymer based on twofold interpenetrating three-dimensional four-connected nets of 4~26~38 topology,[CuSCN(bpa)][bpa=1, 2-bis(4-pyridyl)ethane][J]. Chem Commun, 1999: 1849-1850.
    [20] Su C Y, Goforth A M, Smith M D, et al. Assemmbly of large simple 1D and rare polycatenated 3D molecular ladders from T-shaped building blocks containing a new, long N, N’-bidentate ligand[J]. Chem Commun, 2004(19): 2158-2159.
    [21] Wang Z M, Zhang B, Fujiwara H, et al. Mn_3(HCOO)_6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature[J]. Chem Commun, 2004(4): 416-417.
    [22] Eugenio C, Miguel C L, José R G M, et al. Design of molecular materials combining magnetic, electrical and optical properties[J]. J Chem Soc Dalton Trans, 2000(21): 3955-3961.
    [23] Yaghi O M, Li H. Groy, construction of porous solid from hydrogen-bonded metal complex of 1, 3, 5-benzenetricarboxylic acid[J]. J Am Chem Soc, 1996, 118: 9096-9101.
    [24] Chen B L, Eddaoudi M, Yaghi1 O M, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1021-1023.
    [25] Reineke T M, Eddaoudi M, Yaghi O M, et al. Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]416[(CH3)2SO][J]. J Am Chem Soc, 2000, 122: 4843-4844.
    [26] Eddaoudi M, Kim J, Yaghi O M, et al. Cu2[ o-Br-C6H3(CO2)2]2 (H2O) 2 (DMF)8(H2O)2: a framework deliberatelydesigned to have the NbO structure type[J]. J Am Chem Soc, 2002, 124: 376-377.
    [27] Rowsell J L C, Millward A R, Yaghi O M, et al. Hydrogen sorption in functionalized metal-organic frameworks[J]. J Am Chem Soc, 2004, 126: 5666-5667.
    [28] Sudik A C, Millward A R, Yaghi O M, et al. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra[J]. J Am Chem Soc, 2005, 127: 7110-7118.
    [29] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472.
    [30] Liang Y C, Cao R, Su W P, et al. Synthesis, structure and magnetric properties of two gadolinium(III)-copper(II) coordination polymers by a hydrothemal reaction[J]. Angew Chem Int Ed Engl, 2000, 39(18): 3304-3307.
    [31] Barton J K, Danishefsky A J, Raphael A L. Enatinomeric selectivity in binding tris(phenanthroline)zinc(II)to DNA[J]. J Am Chem Soc, 1982, 104(18): 4967-4969.
    
    [32] Barton J K, Danishefsky A J, Goldberg J M. Tris(phenanthroline) ruthenium(II): stereoselectivity in binding to DNA[J]. J Am Chem Soc, 1984, 106(7): 2172-2176.
    [33] 宋玉民, 康敬万, 高锦章. 钴(III)配合物与 DNA 作用的研究[J]. 无机化学学报, 2000, 16(1): 53-57.
    [34] Bu X H, Tong M L, Chang H C, et al. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network[J]. Angwe Chem Int Ed, 2004, 43: 192-195.
    [35] Barton J K, Dannenberg J J, Raphael A L. Enantiomeric selectivity in binding tris(phenanthroling)zinc(II) to DNA[J]. J Am Chem Soc, 1982, 104(18): 4967-4969.
    [36] Barton J K, Danishefsky A J, Goldberg J M. Tris(phenanthtoline)ruthenium(II): stereoselectivuty in binding to DNA[J]. J Am Chem Soc, 1984, 106(18): 2172-2176.
    [37] 韩美娇, 王科志, 吕媛媛.一种新型含二茂铁基的多吡啶钌配合物与 DNA 的相互作用[J]. 高等学校化学学报, 2004, 25(12): 2221-2223.
    [38] Kraft B J, Eppley H J, Zaleski J M, et al. Cu(II)-mediated intramolecular carbene cation radical formation: relevance to unimolecular metal-ligand radical intermediates[J]. J Am Chem Soc. 2002. 124(2): 272-280.
    [39] Wang Y X, Rillema D P. A new tris-diimine ruthenium(II) derivative: nucleophilic ring opening of coordinated diazafluorenone[J]. Inorg Chem Comm, 1998, 318(1): 27–29.
    [40] Kulkarni P, Padhye S, Sinn E. Neutral metal complex in an ionic pocket: synthesis, physicochemical properties and X-ray structure of a copper(II) complex containing neutral as well as cationic dafone ligands and dafonium perchlorate[J]. Inorg Chim Acta, 2001, 321: 193–199.
    [41] Henderson L J, Fronczek F R, Cherry W R. Selective perturbation of ligand field excited states in polypyridine ruthenium(II) complexes[J]. J Am Chem Soc, 1984, 106(20): 5876-5879.
    [42] Wang Y X, Rillema D P. Altering the reaction pathways of aminopyridine with 4, 5-diazafluorenone: metal ion control[J]. Tetrahedron Letters, 1997, 38(38): 6627-6630.
    [43] Rajasekharan M V, Menon S. A channel-forming ployiodide network in[Cu(dafone)3]I12. A tris chelate of dafone and a new planer structure for the I_(12)~(2-) ion (dafone=4, 5-diazafluoren-9-one)[J]. Inorg Chem, 1997, 36: 4983-4987.
    [44] Wang Y X, Perez W, Zheng G Y, et al. Syntheses and electrochemical, photophysical, and photochemical properties of ruthenium(II) 4, 5-diazafluorenone complexes and their ketal derivatives[J]. Ingorg Chem, 1998, 37: 2051-2059.
    [45] Wang Y X, Perez W, Zheng G Y, et al. Preparation, purification, and characterization of binuclear ruthenium(II) complexes: bridging ligands based on diazafluorenes[J]. Inorg Chem, 1998: 2227-2234.
    [46] 钟文添, 吴建中. 双(4, 5-二氮杂芴酮)缩对, 对-二氨基二苯甲烷桥联的二(邻菲罗啉)合铜(II)的合成及其与 DNA 作用的光谱研究[J]. 无机化学学报, 2003, 19(2): 196-200.
    
    [47] Kraft B J, Eppley H J, Huffman J C, et al. Cu(II)-mediated intramolecular carbene cation radical formation: relevance to unimolecular metal-ligand radical intermediates[J]. J Am Chem Soc, 2002, 124(2): 272-280.
    [48] Zhou G C, Harruna I I. Synthesis of ligand monomers derived from 4, 5-diazafluoren-9- one[J]. Tetrahedron Letters, 2003, 44: 4617–4619.
    [49] Hee K. Chae, Jaheon Kim, Omar M. Yaghi, et al.. Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of [Zn4O(TCA)2] Having the Pyrite Topology [J]. Angew Chem Int Ed, 2003, 42: 3907-3909.
    [50] Sun J Y, Weng L H, Zhou Y M, et al. QMOF-1 and QMOF-2: three-dimensional metal-organic open frameworks with a quartzlike topology[J]. Angew Chem Int Ed, 2002, 41(23): 4471-4473.
    [51] Abrahams B F, Haywood M G, Robson R, et al. New tricks for an old dog: the carbonate ion as a building block for networks including examples of composition[Cu6(CO3)12{C(NH2)3}8]4- with the sodalite topology[J]. Angew Chem Int Ed, 2003, 42(10): 1112-1114.
    [52] Dybtsev D N, Chun H, Yoon S H, et al. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J]. J Am Chem Soc, 2004, 126(1): 32-33.
    [53] Pan L, Sander M B, Huang X Y, et al. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage[J]. J Am Chem Soc, 2004, 126(5): 1308-1309.
    [54] Xiong R G, Xue X, Zhao H, et al. Novel, acentric metal-organic coordination polymers from hydrothermal reactions involving in situ ligand synthesis[J]. Angew Chem Int Ed, 2002, 41(20): 3800-3803.
    [55] Chen W, Wang J Y, Chen C, et al. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates[J]. Inorg Chem, 2003, 42: 944-946.
    [56] Wang S, Mitzi D B, Field C A, et al. Synthesis and characterization of[NH2C(I): NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single .ltbbrac. 110. rtbbrac. perovskite sheets[J]. J Am Chem Soc, 1995, 117(19): 5297-5302.
    [57] Galán-Mascarós J R, Dunbar K R. A Self-Assembled 2D Molecule-Based Magnet: The Honeycomb Layered Material {Co3Cl4(H2O)2[Co(Hbbiz)3]2}[J]. Angew Chem Int Ed, 2003, 42(20): 2289-2293.
    [58] Liu C M, Gao S, Xiong R G, et al. A unique 3D alternating ferro- and antiferromagnetic manganese azide system with threefold interpenetrating (10, 3) nets[J]. Angew Chem Int Ed, 2004, 43(8): 990-994.
    [59] Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr~(III)(OH)·{O2_C-C_6H_4-CO_2}·{(HO_2C-C_6H)~(4-) CO_2H}x·H_2O_y[J]. J Am Chem Soc, 2002, 124: 13519-13526.
    [60] Shiiu K B, Lee H C, Lee G H, et al. Solid-state supramolecular organization of supermolecules into a truly molecular zeolite[J]. Angew Chem Int Ed, 2003, 42(26): 2999-3001.
    
    [61] Rusonov E B, Ponomarouva V V, Komarchuk V V, et al. A topology paradigm for metal-organic zeolites[J]. Angew Chem Int Ed, 2003, 42(22): 2499-2501.
    [62] Zhang J P, Zheng S L, Chen X M, et al. Two unprecedented 3-connected three-dimensional networks of copper(I) triazolates: in situ formation of ligands by cycloaddition of nitriles and ammonia[J]. Angew Chem Int Ed, 2004, 43(2): 206-209.
    [63] Pan L, Liu H M, Li J, et al RPM-1: A recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption[J]. Angew Chem Int Ed, 2003, 42: 542-546.
    [64] Sun D F, Cao R, Liang Y, et al. Hydrothermal syntheses, structures and properties of terephthalate- bridged polymeric complexes with zig-zag chain and channel structures[J]. J Chem Soc Dalton Trans. 2001,2335-2340
    [65] Shi Xin, Zhu Guangshan, Fang Qiangrong, et al. Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains[J]. Eur J Inorg Chem. 2004:185-191
    [66] Lucia Carlucci, Gianfranco Ciani, Davide M. Proserpio Polycatenation, polythreading and polyknotting in coordination network chemistry Coordination[J] Chemistry Reviews. 2003, 246: 247–289
    [67] 游效曾, 孟庆金, 韩万书. 配位化学进展[M].北京:高等教育出版社. 2000.
    [68] Castillo-Blum, Silvia E, Barba-Behrens, Noráh. Coordination chemistry of some biologically active ligands[J]. Coord Chem Rev, 2000, 196(1): 3-30.
    [69] Zhou X X, Ling Y M, Nan F J. Ferrocenyl thiosemicarbazone and its transition metal complexes[J]. Polydron, 1992, 11(4): 447-451.
    [70] Arends I W C E, Sheldon R A, Wallau M, et al. Oxidative transformations of organic compounds mediated by redox molecular sieves[J]. Angew Chem Int Ed Engl. 1997, 36: 1145-1163.
    [71] Burrows A D, Mingos D M P, White A J P, et al. Crystal engineering of metal complexes based on charge-augmented double hydrogen-bond interactions between thiosemicarbazides and carboxylates[J]. Chem. Commun. 1996(1): 97-99.
    [72] Kou H Z, Gao S, Ma B Q. Crystal structure and magnetic properties of a new two-dimensional cyano-bridged bimetallic assembly[NiL ]_3[Cr(CN)_5(NO)]_2·10H_2O (L =3,10-dimethyl-1,3,5,8,10,12- hexaazacyclotetradecane)[J]. Chem Commun, 2000(8): 713-714.
    [73] 刘育, 尤长城, 张衡益主编. 超分子化学[M]. 天津: 南开大学出版社, 2001: 1-6.
    [74] Chen C T, Sustick K S. One-dimensional coordination polymers: applications to material science[J]. Coord Chem Rew, 1993, 128(1-2): 293-322.
    [75] Tang Z, Guloy A M. A methylviologen lead(II) iodide: novel[PbI3-]∞ chains with mixed octahedral and trigonal prismatic coordination[J]. J Am Chem Soc, 1999, 121(2): 452-453.
    [76] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: from simple coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed. Engl, 1999, 38(18): 2638-2684.
    [77] 张精安. 邻乙酰胺基苯甲酸的合成[J]. 中国医药工业杂志, 2005, 35(1): 8-9.
    [78] 徐克勋. 精细有机合成手册[M]. 北京: 化学工业出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700