基于纳米材料和含氟单体纳滤膜制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳滤技术已经广泛应用于生物化学、制药、食品及染料等领域,如何提高膜的渗透性能已经成为纳滤膜研究的热点之一。本文采用界面聚合的方法制备复合纳滤膜,通过在聚合单体溶液中添加无机或有机材料,选择新型含氟单体等方法对膜的渗透性能进行优化,并将其用于染料废水处理及反渗透浓水软化等方面。本文研究结果如下:
     首先,以聚醚砜(PES)超滤膜为基膜,利用界面聚合的方法制备了SiO2-聚哌嗪酰胺纳滤膜,研究了水相中添加硅溶胶的含量、单体浓度、反应时间等纳滤膜的制备条件及其对不同无机盐的截留性能;通过全反射红外(ATR-IR)研究膜表面的化学结构,利用扫描电镜(SEM)及原子力显微镜(AFM)观察膜表面的形态;在适宜的制膜条件下制备的聚哌嗪酰胺纳滤膜性能如下:操作压力0.6MPa,Na2SO4截留率97.4%,纯水通量46.8L·m-2·h-1;通过水相中添加硅溶胶,纳滤膜Na2SO4截留率变化不大,纯水通量增加了21.1%;根据纳滤膜对聚乙二醇(PEG)的截留测试,纳滤膜的截留分子量(MWCO)在600Da以下;在水相和有机相中分别添加SiO2、TiO2和Al2O3三种纳米颗粒,在相同的纳米颗粒与单体的比例下,有机相中添加纳米颗粒比水相中添加纳米颗粒表现出更好的性能;在水相中添加亲水性高分子聚合物聚乙烯苯磺酸钠(PSSS),膜的截留性能变化不大,渗透通量得到提高。
     其次,以2,2-二(1-羟基-1-三氟甲基-2,2,2-三氟乙基)-4,4-亚甲基双苯胺(BHTTM)为水相单体,均苯三甲酰氯(TMC)为有机相单体,通过界面聚合的方法制备复合纳滤膜,研究了纳滤膜的制备条件并对纳滤膜的性能进行评估,采用ATR-IR、SEM及AFM等对膜进行了表征;当水相中含有1%(w/v)的BHTTM,有机相中含有0.15%(w/v)的TMC,将水相和有机相单体聚合10s,然后将其放入80℃下热处理5min制备含氟纳滤膜,操作压力0.6MPa,纳滤膜Na2SO4截留率85.3%,纯水通量10.1L·m~(-2)·h~(-1);经过5000mg·L-1(ppm)(?)舌性氯处理1h后,纳滤膜Na2SO4截留率和纯水通量分别达到94.5%和94.8L·m~(-2)·h~(-1),处理前后纳滤膜对不同无机盐的截留率为Na2SO4>MgSO4> MgCl2>NaCl,该纳滤膜为荷负电纳滤膜。
     在研究纳滤膜中添加硅溶胶及选择新型聚合单体后,为了进一步提高纳滤膜的渗透性能,实验以BHTTM为水相单体,TMC为有机相单体,通过水相中添加硅溶胶制备SiO_(2-)含氟纳滤膜;研究了纳滤膜制膜工艺条件并对其进行优化,在优化条件下,操作压力0.6MPa,纳滤膜对Na2SO4的截留率为85.0%,纯水通量为15.2L·m-2·h-1,相比于不添加纳米颗粒,膜的渗透性能有一定的提高;经过5000ppm活性氯处理1h后,纳滤膜Na2SO4截留率94.0%,纯水通量105L·m~(-2)·h~(-1)(17.5L·m-2·h-1·bar-1),相比于大多数纳滤膜的纯水通量(5-10L·m~(-2)·h~(-1)·bar~(-1)得到了很大的提升。
     随后,以聚氯乙烯(PVC)中空纤维超滤为基膜,哌嗪(PIP)为水相单体,TMC为有机相单体,通过向有机相溶液中添加Si02纳米颗粒制备PVC-SiO2-聚哌嗪酰胺中空纤维纳滤膜,随着SiO2含量的增加,纳滤膜的渗透通量增大,截留率下降:随着聚合时间的增加,膜的分离性能提高,截留率增大,但是膜的渗透通量降低:以聚偏氟乙烯(PVDF)中空纤维超滤膜为基膜,将1%(w/v)的BHTTM水相单体和0.30%(w/v)的TMC有机相单体通过界面聚合制备了PVDF-含氟单体中空纤维纳滤膜,新制备的中空纤维纳滤膜在活性氯含量为500ppm的水溶液中进行氧化处理,纳滤膜有着较好的截留效果,当继续增加活性氯含量到3000ppm时,纳滤膜的截留性能和处理前差不多,但是渗透通量增加非常明显:以聚砜(PSf)中空纤维超滤膜为基膜,通过向水相单体溶液中添加硅溶胶成功制备了PSf-SiO2-聚哌嗪酰胺中空纤维纳滤膜。
     最后,采用自制的Si02-聚哌嗪酰胺纳滤膜处理活性艳蓝X-BR染料废水,研究了不同操作条件下纳滤膜对染料废水处理效果:随着压力的升高,膜的渗透通量一直增大,而染料的截留率基本都在99.5%以上:随着染料浓度的增大,纳滤膜的渗透通量下降,但是染料的截留率随着染料浓度的增加而增大;在长时间处理染料过程中,纳滤膜稳定性能较好:此外,采用PSSS-聚哌嗪酰胺纳滤膜对模拟的反渗透浓水进行处理,研究了不同操作压力、温度及反渗透浓水的浓度对纳滤膜处理反渗透浓水效果的影响,在不同浓度的浓水中,三种离子的截留顺序为SO42->Mg2+>Ca2+:25℃时,Ca2+、Mg2+和SO_4~(2-)的截留率比40℃时Ca~(2+)、Mg~(2+)和SO_4~(2-)的截留率高,但是25℃纳滤膜的渗透通量明显低于40℃纳滤膜的渗透通量;随着模拟反渗透浓水的浓度增加,膜的渗透通量减小,截留率下降。
Nanofiltration technology has been widely used in biochemical, pharmaceutical, food and dye areas. How to improve the permeability of the NF membrane has become one of the hottest topics. In this paper, composite NF membranes were prepared by interfacial polymerization. In the preparation process of the NF membrane, the permeability of NF membranes had been optimization by added inorganic or organic materials in the polymerizable monomer solution or selected a new polymerization monomer. The optimization NF membranes were used in the dye wastewater treatment and reverse osmosis concentrated water softening. The conclusions were as follows:
     Firstly, silica-polypiperazine-amide nanofiltration (NF) membranes were prepared by interfacial polymerization on polyethersulfone (PES) supporting membrane. Different preparation conditions and NF membrane performances were discussed, including silica concentrations, monomer concentrations, reaction time and salt rejections. The chemical structure characterizations of polyamide composite membrane were carried out by attenuated total reflectance infrared (ATR-IR). The surface images and cross sections were observed by scanning electron microscope (SEM) and atomic force microscopy (AFM). The results showed that polypiperazine-amide NF membrane prepared under the optimum conditions exhibited Na2SO4rejection of97.4%and water flux of46.8L·m-2·h-1. After added silica sol in the aqueous phase, the rejection of the resulting membrane changed slightly, but the water flux increased21.1%than polypiperazine-amide NF membrane. According to the rejection of polyethylene glycols (PEGs), the molecular weigh cut-off (MWCO) of the resulting membrane was under600Da. When the nanoparticles of SiO2, TiO2and Al2O3added in aqueous phase and organic phase respectively, the nanoparticles added in organic phase exhibited better performance than in aqueous phase. When the hydrophilic polymer compound of Poly(styrene sulfonic acid) sodium salt (PSSS) in the aqueous phase, the water flux was increased but the salt rejection was changed slightly.
     Secondly, a novel composite nanofiltration (NF) membrane was prepared by interfacial polymerization of2,2'-bis(1-hydroxyl-1-trifluoromethyl-2,2,2-trifluoroethyl)-4,4'-methylene-dianiline (BHTTM) and trimesoyl chloride (TMC). Different preparation conditions and NF membrane performances were discussed. The membrane structures of composite NF membranes were characterized by ATR-IR, SEM and AFM. The BHTTM-TMC composite NF membrane was prepared under the condition:1%(w/v) BHTTM in the aqueous phase;0.15%TMC in the organic phase; reaction time for10s and curing temperature at80℃for5min. The optimum condition exhibited Na2SO4rejection of85.3%and the water flux of10.1L·m-2·h-1under0.6MPa. The NF membrane was treated by5000ppm chlorine solution for1h. The salt rejection and water flux of the treated membrane reached to94.5%and94.8L·m-2·h-1. The rejection of two NF membranes for inorganic electrolyte solutions decreased in the order of Na2SO4, MgSO4, MgCl2, NaCl, which were typical characteristics of negatively charged membranes.
     The main objective of the research was to investigate the possibility of obtaining a membrane with high water flux. The composite polyamide NF membranes were prepared by interfacial polymerization of BHTTM and TMC with adding silica sol in aqueous phase. The performances of NF membranes were optimized by studying the preparation conditions. The results showed that the NF mrnbrane prepared under the optimum condition exhibited Na2SO4rejection of85.0%and the water flux of15.2L·m-2h-1under0.6MPa. Compared with the membrane not added nanoparticle in the aqueous phase, the permeability of silica-BHTTM-TMC NF membrane has improved. The NF membrane was treated by5000ppm chlorine solution for1h. The salt rejection and water flux of the treated membrane reached to94.0%and105L·m-2·h-1under0.6MPa (17.5L·m-2·h-1·bar-1). Compared to most other NF membrane water flux (5-10L·m-2·h-1·bar-1), the pure water flux has been greatly improved.
     Then, the hollow fiber NF membranes were prepared according to the preparation conditions of the flat NF membranes. PVC-silica-polypiperazine-amide NF membranes were prepared by interfacial polymerization of PIP and TMC with adding silica nanoparticle in organic phase. The salt rejection decreased whereas water flux increased with the increased of silica concentration. As the reaction time increased, the water flux decreased and the rejection increased. On the basis of the fluoride flat NF Membrane, the fluoride hollow fiber NF membranes were prepared by interfacial polymerization of1%(w/v) BHTTM in the aqueous phase;0.30%TMC in the organic phase on PVDF hollow fiber ultrafiltration membrane. The hollow fiber NF membrane had a good rejection after treated by500ppm chlorine solution for1h. When the concentration of chlorine solution increased to3000ppm, the rejiection of NF membrane changed slightly, but the permeate flux increased very obviously. PSf-silica-polypiperazine-amide hollow fiber NF membranes were successfully prepared by added silica sol into the aqueous solution.
     Finally, the reactive brilliant blue X-BR dye wastewater was treated by silica-polypiperazine-amide NF membranes, different operation conditions were discussed. With the increase of operation pressure, the permeate flux increased and the rejection of dye was above99.5%. When the feed dye concentration increased, the permeate flux decreased, but the rejection kept slightly increased. The NF membranes maintain permeability and selectivity after over10days of test, which showed excellent stability during the testing period. In addition, the RO concentrated water was treated by PSSS-polypiperazine-amide NF membranes. Different operation conditions and NF membrane performances were discussed, including operation pressure, temperature and salt concentrations. In different RO concentrated water concentration, the rejection of three kinds of ions decreased as per the order of SO42-, Mg2+and Ca2+. The salt rejection of Ca2+, Mg2+and SO42-kept on decreasing when the feed temperature was increased from25℃to40℃, while the permeate flux was increased. The salt rejection and permeate flux decreased with the increased of RO concentrated water concentration. Generally speaking, the NF membranes had a better treatment effect of dye wastewater and RO concentrated water.
引文
[1]时均,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001
    [2]刘茉娥.膜分离技术应用手册[M].北京:化学工业出版社,2001
    [3]于海琴,刘政修,孙慧德.膜技术及其在水处理中的应用[M].北京:中国水利水电出版社,2011
    [4]王晓琳,丁宁.反渗透和纳滤技术应用[M].北京:化学工业出版社,2005
    [5]Cicek N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater[J]. Canadian Biosystems Engineering.2003,45: 6-37
    [6]Takht R M, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry:a review[J]. Desalination.2009,235(1):199-244
    [7]Baker R W. Membrane Technology and Applications (2nd Edition)[M]. California: John Wiley & Sons Ltd,2004
    [8]高从堦.全国膜技术报告讨论会论文集[C].兴城.1993,15-18
    [9]Eriksson P. Nanofiltration extends the range of membrane filtration[J]. Environmental Progress.1988,7:58-62
    [10]Conlon W J, McClellen S A. Membrane softening:a treatment process comes of age[J]. Journal of the American Water Works Association.1989,81(11):47-51
    [11]Loeb S, Sourirajan S. Sea water demineralization by means of osmotic membrane in saline water conversion[J].1963.38:117-132
    [12]马冯,张玉忠,丁晓莉,等.磺化聚砜/醚砜共混非对称纳滤膜的制备与性能表征[J].膜科学与技术.2012,32(1):46-50
    [13]Li X L, Zhu L P, Zhu B K, et al. High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent[J].Separation and Purification Technology.2011,83:66-73
    [14]侯进,刘波,陈国华.壳聚糖共混改性/丙烯腈复合纳滤膜的研究[J].].现代化工2010,30(2):214-216.
    [15]李惠玲.壳聚糖季铵盐复合纳滤膜的制备与性能表征[D].郑州大学硕士毕业论文.2009
    [16]鲁学仁,高从堦,王更珍.丙烯酸-丙烯腈共聚物盐荷电膜的制备和性能研究[J].水处理技术.1997,23(1):1-6
    [17]李连超,马成良,谭惠民,等.磺化聚醚酮复合纳滤膜的制备[J].水处理技术.2005.31(10):13-16
    [18]Zhang S H, Jian X G, Dai Y. Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane[J]. Journal of Membrane Science. 2005,246(2):121-126
    [19]Jeong B, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes[J]. Journal of Membrane Science.2007,294:1-7
    [20]Korikov A P, Kosaraju P B, Sirkar K K. Interfacially polymerized hydrophilic microporous thin film composite membranes on porous polypropylene hollow fibers and flat films[J]. Journal of Membrane Science.2006,279:588-600
    [21]Song Y, Sun P, Henry L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of Membrane Science.2005,251:67-79
    [22]Ahmad A, Ooi B. Properties-performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time[J]. Journal of Membrane Science. 2005,255:67-77
    [23]高学理,王伟伟,陈晓琳,等.界面聚合法制备海藻酸钠/砜复合纳滤膜[J].膜科学与技术.2011,31(4):27-30
    [24]杨艳红,刘金盾,方文骥.聚酰胺复合荷电纳滤膜的制备技术研究[J].中南林业科技大学学报.2010,30(12):147-150
    [25]邓慧宇,徐又一,朱利平,等.树状聚合物PAMAM制备高脱盐纳滤膜[J].功能材料.2011,42(5):793-798
    [26]马跃华,潘凯,曹兵.胺结构对聚酰胺复合纳滤膜性能的影响[J].北京化工大学学报(自然科学版).2010,37(5):57-61
    [27]Solomon M F J, Bhole Y, Livingston A G. High flux membranes for organic solvent nanofiltration (OSN)-interfacial polymerization with solvent activation[J]. Journal of Membrane Science.2012,423-424:371-382
    [28]王宗文,苏保卫,高学理,等.层层自组装PDADMAC/PSS纳滤膜的制备[J].膜科学与技术.2012,32(1):27-32
    [29]魏洁林.基于聚丙烯腈(PAN)静电纺纳米纤维的醋酸纤维素(CA)复合超滤/滤膜的结构与性能研究[D].东华大学硕士学位论文.2010
    [30]Sahara N K, Joshi S V. Performance evaluation of thin film composite polyamide nanofiltration membrane with cariation in monomer type[J]. Journal of Membrane Science.2009,342(1):60-69
    [31]Jahanshahi M, Rahimpour A, Peyravi M. developing thin film composite poly (piperazine-amide) and poly (vinyl-alcohol) nanofiltration membranes[J]. Desalination. 2010,257(1):129-136
    [32]Ismail A F, Hassan A R. Effect of additive contents on performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membrane[J]. Separation and Purification Technology.2007,55(1):98-109
    [33]漆虹,李世大,江晓骆,等.TiO2纳滤膜的制备及其离子截留性能[J].无机材料学报.2011,26(3):305-310
    [34]Bouranene S, Szymczyk A, Fievet P, et al. Effect of salts on the retention of polyethylenegycol by a nanofiltration ceramic membrane[J]. Desalination.2009, 240(1):94-98
    [35]Sentana I, Puche R D S, Sentana E, et al. Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes[J]. Desalination.2011,277(1): 147-155
    [36]Yu S C, Liu M H, Lv Z H, et al. Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediaminc-4-methyl and cyclohcxanc-1,3,5-tricarbonyl chloride[J]. Journal of Membrane Science.2009,344(1):155-164
    [37]Yu S C, Liu M H, Liu X S, et al. Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination[J]. Journal of Membrane Science.2009,342(1):313-320
    [38]Liu M H, Wu D H, Yu S C, et al. Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes[J]. Journal of Membrane Science.2009,326(1): 205-214.
    [39]刘久清,许振良,张耀,等.聚偏氟乙烯(PVDF)中空纤维复合纳滤膜的研究[J].华东理工大学学报(自然科学版).2006,32(3):241-244
    [40]Huang S H, Hung W S, Liaw D J, et al. Interfacially polymerized thin-film composite polyamide membranes:Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions[J]. Separation and Purification Technology.2010. 72(l):40-47
    [41]Li C L, Huang S H. Liaw D J. et al. Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution[J]. Separation and Purification Technology.2008,62(3):694-701
    [42]Tang B B, Huo Z B, Wu P Y, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) I. Preparation, characterization and nanofiltration properties test of membrane[J]. Journal of Membrane Science.2008,320(1):198-205
    [43]Seman M N A, Khayet M, Hilal N. Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization[J]. Journal of Membrane Science.2010,348(1):109-116.
    [44]夏正斌,涂伟萍,陈焕钦.涂料用水性含氟聚合物合成研究[J].材料导报.2003,17(3):56-57
    [45]吕广才,胡国华,恽斌峰,等.含氟聚酰亚胺有机聚合物波导的制备[J].电子器件.2007,30(3):752-754
    [46]Kong L T, Wang J, Fu X C, et al. p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents[J]. Carbon. 2010,48(4):1262-1207
    [47]Fifield L, Grate J W. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups[J]. Carbon.2010,48(7): 2085-2088
    [48]邱实,吴礼光,张林,等.纳滤分离机理[J].水处理技术.2009,35(1):15-19
    [49]王晓琳,张澄洪,赵杰.纳滤膜的分离机理及其在食品和医药行业中的应用[J].膜科学与技术.2000,20(1):29-36
    [50]王晓琳.纳滤膜分离机理及其应用研究进展[J].化学通报,2001,2(2):86-90
    [51]Nguyen C M, Bang S, Cho J, et al. Performance and mechanism of arsenic removal from water by a nanofiltration membrane[J]. Desalination.2009,245(1):82-94
    [52]Madaeni S S, Salehi E. Adsorption of cations on nanofiltration membrane:Separation mechanism, isotherm confirmation and thermodynamic analysis[J]. Chemical Engineering Journal.2009,150(1):114-121
    [53]Nghiem L D, Hawkes S. Effects of membrane fouling on the nanofiltration of trace organic contaminants [J]. Desalination.2009,236(1):273-281
    [54]Perry M, Linder C. Intermediate reverse osmosis ultrafiltration (RO UF) membranes for concentration and desalting of low molecular weight organic solutes[J]. Desalination.1989,71(3):233-245
    [55]Levenstein R, Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes[J]. Journal of membrane science. 1996,116(1):77-92
    [56]Spiegler K S, Kedem O. Thermodynamics of hyperfiltration (reverse osmosis):criteria for efficient membranes[J]. Desalination.1966,1(4):311-326
    [57]葛目荣,许莉,曾宪友,等.纳滤理论的研究进展[J].流体机械.2005,33(1):35-39
    [58]葛善海,衣宝廉,张华民.质子交换膜燃料电池模型研究进展[J].电化学.2002,8(4):363-375
    [59]Pappenheimer J R. Passage of molecules through capillary walls[J]. Physiological reviews.1953,33(3):387-423
    [60]Renkin E M. Filtration, diffusion, and molecular sieving through porous cellulose membranes[J]. The Journal of general physiology.1954,38(2):225-243
    [61]Wang X L, Tsuru T, Togoh M, et al. Evaluation of pore structure and electrical properties of nanofiltration membranes[J]. Journal of chemical engineering of Japan. 1995,28(2):186-192
    [62]Christoforou C C, Westermann-Clark G B, Anderson J L. The streaming potential and inadequacies of the Helmholtz equation[J]. Journal of colloid and interface science. 1985,106(1):1-11
    [63]Oldham 1 B, Young F J, Osterle J F. Streaming potential in small capillaries[J]. Journal of colloid science.1963,18(4):328-336
    [64]Hijnen H J M, Van Daalen J, Smit J A M. The application of the space-charge model to the permeability properties of charged microporous membranes[J]. Journal of colloid and interface science.1985,107(2):525-539
    [65]Smit J A M. Reverse osmosis in charged membranes:analytical predictions from the space-charge model [J]. Journal of Colloid and Interface Science.1989,132(2): 413-424
    [66]Hoffer E, Kedem O. Hyperfiltration in charged membranes:the fixed charge model [J]. Desalination.1967,2(1):25-39
    [67]Tsuru T, Urairi M, Nakao S. et al. Reverse osmosis of single and mixed electrolytes with charged membranes:Experiment and analysis[J]. Journal of chemical engineering of Japan.1991,24(4):518-524
    [68]Tsuru T, Nakao S, Kimura S. Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions[J]. Journal of chemical engineering of Japan.1991,24(4):511-517
    [69]Wang X L, Tsuru T, Nakao S, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranesfJ]. Journal of membrane science.1997,135(1):19-32
    [70]Sombekke H D M, Voorhoeve D K, Hiemstra P. Environmental impact assessment of groundwater treatment with nanofiltration[J]. Desalination.1997,113(2):293-296
    [71]张显球,侯小刚,张林生,等.面向软化水处理的纳滤膜分离技术[J].膜科学与技术.2006,26(2):64-67
    [72]魏宏斌,彭海清,高廷耀.纳滤膜在优质饮用水生产中的应用[J].中国给水排水2001,17(5):71-73
    [73]Nanda D, Tung K L, Hsiung C C, et al. Effect of solution chemistry on water softening using charged nanofiltration membranes[J]. Desalination.2008.234(1):344-353
    [74]乔庆云.石灰软化地下水处理工程应用研究[J].扬州大学学报(自然科学版). 2003,6(4):74-77
    [75]Randtke S J, Thiel C E, Liao M Y, et al. Removing soluble organic contaminants by lime-softening[J]. Journal (American Water Works Association).1982:192-202
    [76]Liao M Y, Randtke S J. Predicting the removal of soluble organic contaminants by lime softening[J]. Water Research.1986,20(1):27-35
    [77]Bergman R A. Membrane softening versus lime softening in Florida:A cost comparison update[J]. Desalination.1995,102(1):11-24
    [78]Yeh H H, Tseng I, Kao S J, et al. Comparison of the finished water quality among an integrated membrane process, conventional and other advanced treatment processes[J]. Desalination.2000,131(1):237-244
    [79]Fu P, Ruiz H, Thompson K, et al. Selecting membranes for removing NOM and DBP precursors [J]. Journal of the American Water Works Association;(United States).1994, 86(12):55-72
    [80]杨青,张林生,李月中,等.纳滤膜在治理农药废水污染中的应用研究[J].工业水处理.2009,29(3):29-32
    [81]张阳,张颖,陈冠雄.原水性质对纳滤去除三嗪类除草剂的影响[J].哈尔滨工业大学学报.2005,37(3):311-314
    [82]Sanches S, Penetra A, Rodrigues A, et al. Nanofiltration of hormones and pesticides in different real drinking water sources[J]. Separation and Purification Technology.2012, 94:44-53
    [83]Sanches S, Penetra A, Granado C, et al. Removal of pesticides and polycyclic aromatic hydrocarbons from different drinking water sources by nanofiltration[J]. Desalination and Water Treatment.2011,27(1-3):141-149
    [84]张阳,胡锦英,李光哲.纳滤去除水中内分泌干扰物双酚A和四溴双酚A的研究[J].环境科学.2010,31(6):1513-1517
    [85]李清雪,肖伟,吴伟,等.纳滤组合工艺深度处理微量污染物[J].膜科学与技术.2010,30(5):103-106
    [86]Caus A, Vanderhaegen S, Braeken L, et al. Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production[J]. Desalination.2009,241(1):111-117
    [87]Sanches S, Penetra A, Granado C, et al. Removal of pesticides and polycyclic aromatic hydrocarbons from different drinking water sources by nanofiltration[J]. Desalination and Water Treatment.2011,27(1-3):141-149
    [88]董佳,彭丽花,黄瑞敏.纳滤膜技术回收印染废水试验研究[J].水处理技术.2011,37(4):102-104
    [89]Riera-Torres M, Gutierrez-Bouzan C, Crespi M. Combination of coagulation- flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents[J]. Desalination.2010,252(1):53-59
    [90]Huang R, Yang B, Zheng D, et al. Treatment of textile dye effluent using a self-made positively charged nanofiltration membrane[J]. Journal of Wuhan University of Technology-Materials Science Edition.2012,27(2):199-202
    [91]Linde K, Jonsson A, Wimmerstedt R. Treatment of three types of landfill leachate with reverse osmosis[J]. Desalination.1995,101(1):21-30
    [92]Peters T A. Purification of landfill leachate with reverse osmosis and nanofiltration[J]. Desalination.1998,119(1):289-293
    [93]Leslie G, Dawes T M, Snow T S, et al. Meeting the Demand for Potable Water in Orange County in the 21st Century:The Role of Membrane Processes[C]. Proc. American Water Works Association, Membrane Technology Conference, Long Beach, CA. March.1999,3
    [94]任承霞,李忠正.膜分离技术在制浆造纸工业中的应用[J].南京林业大学学报(自然科学版).2001,25(3):67-71
    [95]陈正行.膜分离技术提取米糠脂多糖的研究[J].水处理技术.2000,26(6):333-335
    [96]Matsubara Y, Iwasaki K, Nakajima M. et al. Recovery of oligo-saccharides from steamed soybean waste water in tofuprocessing by reverse osmosis and nanofiltration membrane[J]. Biosci biotech Biochem.1996,60(3):421-428
    [97]周家春.食品工业新技术[M].北京:化学工业出版社,2005
    [98]Nabetani H. Development of a membrane system for highly concentrated fruit juice[J]. Membrane.1996,21(2):102-108
    [99]Hassan A M, Al-Sofi M A K, Al-Amoudi A S, et al. A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1)[J]. Desalination.1998,118(1):35-51
    [100]杨庆娟,魏宏斌,王志海,等.纳滤膜去除饮用水中无机离子的中试研究[J].中国给水排水.2009,25(7):52-55
    [101]Tahaikt M, El Habbani R, Ait Haddou A, et al. Fluoride removal from groundwater by nanofiltration[J]. Desalination.2007,212(1):46-53
    [102]席北斗,王晓伟,霍守亮,等.纳滤膜技术在地下水除砷应用中的研究进展[J].环境工程学报.2012,6(2):353-360
    [103]高永,顾平,陈卫文.膜技术处理低浓度放射性废水研究的进展[J].核科学与工程.2003,23(2):173-177
    [104]侯立安,左菊.纳滤膜分离技术处理放射性污染废水的试验研究[J].给水排水.2004,30(10):47-49
    [105]Cheng S, Oatley D L, Williams P M, et al. Positively charged nanofiltration membranes:Review of current fabrication methods and introduction of a novel approach[J]. Advances in colloid and interface science.2011,164(1):12-20
    [106]Mansourpanah Y, Madaeni S S, Rahimpour A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance[J]. Journal of Membrane Science.2009,343(1):219-228
    [107]Li L, Zhang S, Zhang X. Preparation and characterization of poly (piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3',5, 5'-biphenyl tetraacyl chloride and piperazine[J]. Journal of Membrane Science.2009, 335(1):133-139
    [108]Tang B B, Zou C, Wu P. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. Ⅱ. The role of lithium bromide in the performance and formation of composite membrane[J]. Journal of Membrane Science. 2010,365(1):276-285
    [109]Ma X K, Lee N H, Oh H J, et al. Preparation and characterization of silica/polyamide-imide nanocomposite thin films[J]. Nanoscale research letters.2010, 5(11):1846-1851
    [110]Lee H S, Im S J, Kim J H, et al. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles[J]. Desalination.2008,219(1):48-56
    [111]Jadav G L, Singh P S. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties[J]. Journal of Membrane Science.2009,328(1):257-267
    [112]El-Safry S, Shahat A, Awual M R, et al. Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters:nanofiltration and permeation flux of proteins[J]. Journal of Materials Chemistry.2011,21(15):5593-5603
    [113]Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes[J]. Journal of Membrane Science.2009,343(1):189-198
    [114]Roy S, Ntim S A, Mitra S, et al. Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites[J]. Journal of Membrane Science.2011,375(1):81-87
    [115]Lee Y L, Du Z C, Lin W X, et al. Monolayer behavior of silica particles at air/water interface:A comparison between chemical and physical modifications of surface[J]. Journal of colloid and interface science.2006,296(1):233-241
    [116]Bhagat S D, Kim Y H, Suh K H, et al. Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels[J]. Microporous and Mesoporous Materials.2008,112(1):504-509
    [117]Oh C, Lee Y G, Jon C U, et al. Synthesis and characterization of hollow silica microspheres functionalized with magnetic particles using W/O emulsion method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2009,337(1): 208-212
    [118]Xue L, Li J, Fu J, et al. Super-hydrophobicity of silica nanoparticles modified with vinyl groups [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2009,338(1):15-19
    [119]赵斌,张磊,王现英,等.基于碳纳米管的纳滤膜研究进展[J].新型炭材料.2011,26(5):321-327
    [120]吴慧青,汤蓓蓓,武培怡.碳纳米管-聚合物复合纳滤膜的制备[J].第四届中国膜科学与技术报告会论文集.2010
    [121]Hu D, XuZL, Wei Y M, ct al. A Novel Composite Nanofiltration Membrane Prepared by Interfacial Polymerization of 2,2'-bis (1-hydroxyl-1-trifluoromethyl-2,2, 2-trifluoroethyl)-4,4'-methylenedianiline and Trimesoyl Chloride[J]. Separation Science and Technology.2013,48(4):554-563
    [122]Qiu S, Wu L, Pan X, et al. Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes[J]. Journal of Membrane Science.2009, 342(1):165-172
    [123]Freger V. Kinetics of film formation by interfacial polycondensation[J]. Langmuir. 2005,21(5):1884-1894
    [124]Morgan P W, Kwolek S L. Interfacial polycondensation. Ⅱ. Fundamentals of polymer formation at liquid interfaces[J]. Journal of Polymer Science Part A:Polymer Chemistry.1996,34(4):531-559
    [125]Wahab Mohammad A, Hilal N, Nizam Abu Seman M. A study on producing composite nanofiltration membranes with optimized properties [J]. Desalination.2003,158(1): 73-78
    [126]Liu M, Yu S, Tao J, et al. Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane[J]. Journal of Membrane Science.2008,325(2):947-956
    [127]Umpuch C, Galier S, Kanchanatawee S, et al. Nanofiltration as a purification step in production process of organic acids:Selectivity improvement by addition of an inorganic salt[J]. Process Biochemistry.2010,45(11):1763-1768
    [128]Weng Y H, Wei H J, Tsai T Y, et al. Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration[J]. Bioresource technology.2010,101(13):4889-4894
    [129]Buonomenna M G, Lopez L C, Davoli M, et al. Polymeric membranes modified via plasma for nanofiltration of aqueous solution containing organic compounds[J]. Microporous and Mesoporous Materials.2009,120(1):147-153
    [130]Walha K, Ben Amar R, Masse A, et al. Aromas potentiality of tuna cooking juice concentrated by nanofiltration[J]. Lwt-food Science And Technology.2011,44(1): 153-157
    [131]Diaz-Reinoso B, Moure A, Dominguez H, et al. Ultra-and nanofiltration of aqueous extracts from distilled fermented grape pomace[J]. Journal of Food Engineering.2009, 91(4):587-593
    [132]Han R, Zhang S, Zhao W, et al. Treating sulfur black dye wastewater with quaternized poly (phthalazinone ether sulfone ketone) nanofiltration membranes[J]. Separation and Purification Technology.2009,67(1):26-30
    [133]Vrijenhoek E M, Hong S, Elimelech M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes [J]. Journal of Membrane Science.2001,188(1):115-128
    [134]Al-Amoudi A, Williams P, Mandale S, et al. Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability [J]. Separation and purification technology.2007,54(2):234-240
    [135]Winston H W S, Sirkar K K. Membrane Handbook[M]. New York. Van Nostrand Reinhold,1992
    [136]Porter M C. Handbook of Industrial Membrane Technology[M]. Park Ridge, NJ: Noyes Publications,1990
    [137]Kong L, Wang J, Jia Y, et al. FT-IR and FT-Raman investigations of the chemosensing material para-hexafluoroisopropanol aniline[J]. Journal of Raman Spectroscopy.2010,41(9):989-995
    [138]Panday N, Benz J, Blum-Kaelin D, et al. Synthesis and evaluation of anilinohexafluoroisopropanols as activators/modulators of LXRa and [3[J]. Bioorganic & medicinal chemistry letters.2006,16(19):5231-5237
    [139]Signori F, Lazzari M, Castelvetro V, et al. Copolymers of isopropenyl alkyl ethers with fluorinated acrylates and fluoroacrylates:Influence of fluorine on their thermal, photochemical, and hydrolytic stability[J], Macromolecules.2006,39(5):1749-1758
    [140]Glater J, Hong S, Elimelech M. The search for a chlorine-resistant reverse osmosis membrane[J]. Desalination.1994,95(3):325-345
    [141]Kwon Y N, Leckie J O. Hypochlorite degradation of crosslinked polyamide membranes:I. Changes in chemical/morphological properties[J]. Journal of membrane science.2006,283(1):21-26
    [142]Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization[J]. Langmuir.2003,19(11):4791-4797
    [143]Song Y, Sun P, Henry L L, et al. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process[J]. Journal of membrane science.2005,251(1):67-79
    [144]Yip N Y, Elimelecb M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis[J]. Environmental science & technology.2011, 45(23):10273-10282
    [145]Elimelech M, Phillip W A. The future of seawater desalination:Energy, technology, and the environment[J]. Science.2011,333(6043):712-717
    [146]Sun H, Chen G, Huang R, et al. A novel composite nanofiltration (NF) membrane prepared from glycolchitin/poly (acrylonitrile)(PAN) by epichlorohydrin cross-linking[J]. Journal of membrane science.2007,297(1):51-58
    [147]杨振生,张磊,张光后,等.界面聚合法PI/PP耐溶剂复合纳滤膜的制备与表征[J].化工学报.2012,63(8):2635-2641
    [148]Yu S C, Ma M, Liu J Q, et al. Study on polyamide thin-film composite nanofiltration membrane by interfical polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC)[J]. Journal of Membrane Science.2011,379(1):164-173
    [149]Wu H, Tang B, Wu P. Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles[J]. Journal of Membrane Science.2012,428:341-348
    [150]Chen S H, Chang D J, Liou R M, et al. Preparation and separation properties of polyamide nanofiltration membrane[J]. Journal of applied polymer science.2002, 83(5):1112-1118
    [151]Jons S D, Stutts K J, Ferritto M S, et al. Treatment of composite polyamide membranes to improve performance:U.S. Patent 5.876,602[P].1999
    [152]Kang G D, Gao C J, Chen W D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane[J]. Journal of membrane science.2007,300(1): 165-171
    [153]Ahmad A L, Ooi B S, Mohammad A W, et al. Composite nanofiltration polyamide membrane:a study on the diamine ratio and its performance evaluation[J]. Industrial & engineering chemistry research.2004,43(25):8074-8082
    [154]Jin L M, Yu S L, Shi W X, et al. Synsthesis of a Novel Composite "Nanofiltration Membrane Incorporated SiO2 Nanoparticles for Oily Wastewater Desalination[J]. Polymer.2012,53(23):5295-5303
    [155]邹凯伦,王丽红,张林,等.TMC/TMPIP(?)内滤超薄复合膜的制备[J].化工学报.2012,63(3):948-954
    [156]任晓晶,赵长伟,张忠国,等.聚酰胺非对称纳滤膜在印染废水深度处理中的应用[J].水处理技术.2012,38(3):67-70
    [157]Ma J Q, Zhang Q, Lu Q L, et al. Study on the Advanced Treatment and Reuse of Dyeing Wastewater Using Polyamide Nanofiltration Membrane[J]. Advanced Materials Research.2012,356:1843-1846
    [158]袁俊生,焦亮,刘杰.利用纳滤膜软化浓海水研究[J].水处理技术.2012,38(11):81-83
    [159]Yu S, Liu M, Ma M, et al. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes[J]. Journal of Membrane Science.2010,350(1):83-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700