硒代蛋氨酸及其席夫碱金属配合物的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒代蛋基酸是一种含硒的α-氨基酸,具有抗氧化、抗癌、增强繁殖等功能,同时也是生物体重要的补硒产品。本文研究了硒代蛋氨酸的合成与毒性及其对肥育猪生产性能的影响,同时研究了硒代蛋氨酸缩水杨醛席夫碱及其金属配合物、硒代蛋氨酸缩2-羟基-1-萘醛席夫碱及其金属配合物的合成与表征,并对上述席夫碱配合物的抗菌效果进行了初步探讨。
     以α-溴-γ-丁内酯为原料,经过氨解、氢氧化钡成环,再加入适量硫酸,得到α-氨基-γ-丁内酯氢溴酸盐,产率为78.2 %;α-氨基-γ-丁内酯氢溴酸盐在醋酸钾、无水乙醇条件下回流,通过分子间反应生成酰胺进而保护氨基和羧基的方法,得到3,6-二羟乙基-2,5-哌啶二酮,产率为70.0 %;3,6-二羟乙基-2,5-哌啶二酮与二氯亚砜发生氯代反应,得到3,6-二氯乙基-2,5-哌啶二酮,产率80.1 %;在氢氧化钠水溶液中用80 %水合肼还原硒粉,加入四丁基溴化铵,经硫酸二甲酯甲基化,得到二甲基二硒醚,产率为90.0 %;通过“一锅煮”方法制备硒代蛋氨酸:二甲基二硒醚在DMSO、碳酸钾作用下,水合肼还原得到甲硒基盐后,不经分离,直接与3,6-二氯乙基-2,5-哌啶二酮反应,得到硒代蛋氨酸分子间缩合物,进一步用酸水解、三乙胺调节pH= 6-7,得到硒代蛋氨酸,产率为60.1 %。产物经过元素分析、质谱、IR、1H NMR、13C NMR、COSPY谱等分析方法确认其结构。
     以亚硒酸钠为参照,饲喂小鼠不同浓度硒化合物,对比死亡率、体重、肝脏、肺等指标和器官变化来研究硒代蛋氨酸的毒性。结果表明当含硒量大于4.20 mg/kg体重时,相同水平的硒代蛋氨酸毒性小于亚硒酸钠,计算得到亚硒酸钠和硒代蛋氨酸的半致死量(LD50)值分别为7.85和16.57。
     研究硒代蛋氨酸在肥育猪生产中的应用,考察其对生产性能、胴体性状、肉质指标的影响。与亚硒酸钠比较,饲粮中添加不同水平硒代蛋氨酸的试验结果表明:①未能显著改善肥育猪日增重、日采食量、料重比、左侧胴体重、背膘厚,但增加了肥育猪的眼肌面积;②对肥育猪的肌纤维密度未产生影响,能提高肌纤维直径;③降低了宰后不同时间点肉色L*值,提高了不同时间点肉色a*值,降低了宰后12h肉色b*值;④提高肥育猪宰后12 h背最长肌pH值,降低滴水损失,但不影响影响大理石纹评分、肌内脂肪含量和剪切力。
     氨基酸席夫碱是一类重要的配体,这类席夫碱结构中含有富电子的氧原子和氮原子,具有较强的配位能力和多样的配位模式。硒代蛋氨酸是一种重要的氨基酸,除具有一般氨基酸的功能外,分子含有硒原子,是一种很有前景的补硒来源。金属铜、锌、钴是生物体必须的营养微量元素。理论上将硒代蛋氨酸、席夫碱、营养金属元素设计成一个多功能分子,期待其具有特殊的生物功能。基于此,通过硒代蛋氨酸与水杨醛反应生成相应的席夫碱钾盐[K(HL)](硒代蛋氨酸席夫碱不稳定)。硒代蛋氨酸缩水杨醛金属配合物通过将硒代蛋氨酸、水杨醛、金属醋酸盐水合物“一锅煮”的方法制备。通过元素分析、摩尔电导率、热分析、磁化率、红外光谱、电子光谱和XRD对K(HL)和各金属配合物进行表征,确定席夫碱金属配合物的化学组成为:ML(H_2O),M = Co(II), Cu(II)和Zn(II),L为硒代蛋氨酸缩水杨醛席夫碱。推断其可能的结构式:席夫碱铜配合物为平面四方形构型,席夫碱钴配合物为四面体构型。
     另外,设计合成硒代蛋氨酸与共轭性高且空间位阻较大的2-羟基-1-萘醛席夫碱反应生成相应的席夫碱,席夫碱不稳定,制备成对应的席夫碱锂盐[Li(HL)]。通过将硒代蛋氨酸、2-羟基-1-萘醛、金属醋酸盐水合物“一锅煮”的方法制备对应的席夫碱铜、锌、钴配合物。对各化合物进行元素分析、摩尔电导率、热分析、磁化率、红外光谱、核磁、电子光谱和XRD表征,确定席夫碱金属配合物为:ML(H2O),M = Co(II), Cu(II)和Zn(II),L为硒代蛋氨酸与2-羟基-1-萘醛反应生成的席夫碱。推断配合物可能的结构式:席夫碱铜配合物为平面四方形构型,席夫碱钴配合物为四面体构型。
     采用抑菌圈测定法对硒代蛋氨酸缩水杨醛席夫碱钾盐及其席夫碱铜、锌、钴金属配合物、硒代蛋氨酸缩2-羟基-1-萘醛席夫碱锂盐及相应席夫碱铜、锌、钴金属配合物的抗菌活性进行了测定,研究结果表明:金属配合物的抗菌活性高于相应的配体,认为可能的原因是配合物中除了席夫碱、硒原子外,金属有可能参与协同作用,金属离子与席夫碱螯合减小了金属离子的极性,增加了金属螯合物的亲油特性,有利于穿过菌类的油脂层,从而提高配合物的抗菌活性。在所有的席夫碱金属配合物中,席夫碱铜配合物抗菌效果最好,可能是因为铜可破坏菌的机体组织。实验表明配合物的抑菌活性与其浓度呈正相关。
Selenomethionine(Se-Met), anα-amino acid containing selenium, is a reagent protecting human systems against oxidation, radiations, cancer, aging and related diseases, as well as a hopeful source of selenium in the diets of both animals and human. The synthesis and toxicity of Se-Met as well as the effect of its addition on performance in finishing pigs were investigated. Moreover, the Schiff base ligands derived from Se-Met and salicylaldehyde as well as 2-hydroxy-1-naphthaldehyde and their Co(II), Cu(II) and Zn(II) complexes were synthesized and characterized. The biological activity of these metal complexes was screened.
     Preparation ofα-amino-γ-butyrolactone hydrobromide started with amination of commercially availableα-bromo-γ-butyrolactone by ammonia water, followed by treatment with barium hydroxide and sulphuric acid. The amination ofα-bromo-γ-butyrolactone described here was a more effective and simple route for the synthesis ofα-amino-γ-butyrolactone hydrobromide in one step with 78.2 % yield. 3,6-Bis(2-hydroxyethy1)-2,5-diketopiperazine was readily produced fromα-amino-γ-butyrolactone hydrobromide by treatment with CH3COOK in absolute alcohol solution with 70.0 % yield. This route not only effectively protected carboxylic hydroxy and amino groups, but also prevented deprotection process through formation of two amide bonds in diketopiperazine. 3,6-Bis(2-hydroxyethy1)-2,5-diketopiperazine treated with thionyl chloride gave 3,6-bis(-2chloroethyl)-2,5-diketopiperazine in 80.1 % yield.
     A vital procedure for preparation of Se-Met is introduction of methylselenide. Hydrazine hydrate was used as reduction on selenium to give diselenide anion in water. Subsequently, addition of tetrabutyl ammonium bromide and dimethyl sulfate to above solution smoothly provided dimethyl diselenide in 90.0 % yield. The reduction of dimethyl diselenide was performed using hydrazine hydrate in DMSO in the presence of potassium carbonate. The nucleophilic methylselenide anions were not isolated and reacted directly with 3,6-bis(-2chloroethyl)-2,5-diketopiperazine to give 3,6-bis(β-methylselenoethyl)-2,5- diketopiperazine intermediate in a one-pot procedure. Followed by treatment with aqueous HCl and neutralization with triethylamine at pH= 6-7, Se-Met was obtained as white solid in 60.1 % yield. Se-Met was characterized by elemental analysis, mass spectrum, IR, NMR and COSPY spectra.
     The toxicity of Se-Met was evaluated through death rate, body weight, liver, lung and body organs change of rats when rats were fed with basal diets containing different concentration of Se-Met and sodium selenite (SS). Results showed that the toxicity of Se-Met was lower than that of SS at same level of dietary Se when the rats were fed with more than 4.20 mg/kg diet of Se. The data of LD50 were 7.85 for SS and 16.57 for Se-Met, respectively. This indicated that the toxicity of Se-Met was lower than that of SS.
     Finishing pigs were slaughtered to investigate the effects of Se-Met addition on performance, carcass traits, pork quality, and muscle antioxidant capacity in finishing pigs. A SS group was used as a standard of comparison in a control experiment. Results showed that①there was no significant differences in average daily gain, average daily feed intake and feed, back-fat thickness among all groups (P>0.05). However, addition of 0.30 mg/kg Se significantly improved eye muscle area compared to that of 0.15 mg/kg Se and SS added groups (P<0.05);②there was no significant differences in muscle fiber density among all groups (P>0.05). Addition of 0.30mg/kg Se significantly increased muscle fiber diameter of longissimus muscle (P<0.05);③meat color L* value was significantly decreased and a* value was significantly improved at 12 h, 24 h, 48 h post-slaughter in all Se-added groups in contrast with the control (P<0.05), also 0.15 mg/kg Se supplementation significantly decreased meat b* value at 12 h post-slaughter (P<0.05);④marbling score, shear force, drip loss and intramuscular fat content of porcine Longissimus muscle were not affected by Se addition. All Se-added groups presented significantly higher pH value at 12 h post-slaughter than the control (P<0.05).
     Amino acid Schiff bases are an important class of ligands containing electron-rich oxygen and nitrogen atoms, showing strong coordination ability and various coordination behavior. Se-Met, anα-amino acid containing selenium, is a potential source of selenium in the diets. On the other hand, cobalt, copper and zinc are necessary nutritious trace elements. Thus, we designed novel molecules which contained Se-Met, Schiff bases and nutritional metal elements, expecting their special biological activity. Certain problem of instability of the Se-Met Schiff base was encountered, which was resolved by making an equimolar potassium salt of the Schiff base ligand [K(HL)]. The synthesis of metal complexes proved to be straightforward in simple by one-pot reactions of Se-Met, salicylaldehyde and metal(II) acetate monohydrate. New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from Se-Met and salicylaldehyde were characterized by elemental analysis, IR, NMR, electronic spectra, conductance magnetic measurements and powder XRD. The analytical data showed that the Schiff base ligand acted as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine-N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L was the Schiff base ligand derived from Se-Met and salicylaldehyde, M = Co(II), Cu(II) and Zn(II). The proposed structures of metal complex were square planar geometry for Cu(II) complex and tetrahedral geometry for the Co(II) complex.
     2-Hydroxy-1-naphthaldehyde shows special property due to its high conjugation and steric hindrance. In the same way , due to instability of Schiff base of Se-Met and 2-hydroxy-1-naphthaldehyde, it was made an equimolar lithium salt of the Schiff base ligand [Li(HL)]. The novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2-hydroxy-1-naphthaldehyde and Se-Met were synthesized by one-pot reactions and characterized by elemental analysis, IR, electronic spectra, conductance measurements, powder XRD, NMR and magnetic measurements. The analytical data displayed the composition of the metal complex to be ML(H2O), where L was the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). The proposed structures of metal complex were square planar geometry for Cu(II) complex and tetrahedral geometry for the Co(II) complex.
     The ligands salts derived from Se-Met and salicylaldehyde as well as 2-hydroxy-1-naphthaldehyde and their metal complexes had been screened for their antibacterial activities. All the metal complexes were more potent bactericides than the ligand. This enhancement of metal complexes in the activity can be explained on the basis of chelation theory. Chelation reduces the polarity of the metal atom mainly because of partial sharing of its positive charge with the donor groups and possibleπelectron delocalization within the whole chalete ring. Such a chelation also enhances the lipophililic character of the central metal atom, which subsequently favors its permeation through the lipid layers of cell membrane and blocking the metal binding sites on enzymes of microorganism. Co(II) and Zn(II) complexes are much less microbial active than the Cu(II) complex.
引文
[1] Berzelius J. J. Des Recherches sur un nouveau corps minéral, trouvédans le soufre[J]. Afhandl. Fys. Kemi Mineralogi, 1818, 6(1): 42-45
    [2] Schwarz K.; Foltz C. M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration[J]. J. Am. Chem. Soc., 1957, 79(12): 3292-3293
    [3] Rotruck J. T.; Pope A.L.; Ganther H. E., et al. Selenium: biochemical role as a component of glutathione peroxidase[J]. Science, 1973, 179(4073): 588-590
    [4]游金明,张宏福,陈能春.微量元素硒营养的研究与应用[J].中国饲料. 2002, (8): 3-15
    [5] Kim Y. Y.; Mahan D. C. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs[J]. J. Anim. Sci., 2001, 79(4): 942-948
    [6] Erbayraktar Z.; Yilmaz O.; Artmann A. T., et al. Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus[J]. Biol. Trace. Elem. Res., 2007, 118(3): 217-226
    [7] Jackson M. I.; Combs G. F. Curr. Selenium and anticarcinogenesis: underlying mechanisms[J]. Opin. Clin. Nutr. Metab Care., 2008, 11(6): 718-726
    [8] Holben D. H.; Smith A. M. The diverse role of selenium within selenoproteins: a review[J]. J. Am. Diet. Assoc., 1999, 99(7): 836-842
    [9]刘海燕,郭欣.心血管疾病与相关微量元素研究现状[J].微量元素与健康研究, 2002, 19(2): 69-71
    [10]尹兆正,钱利纯,李肖梁.蛋氨酸硒对岭南黄肉鸡生长性能、胴体特性和硒存留率的影响[J].浙江大学学报-农业与生命科学版, 2005, 31: 499-502
    [11]王惠康,刘建新.蛋氨酸硒对育肥猪生产性能的影响[J].饲料广角, 2005, (23): 28-30
    [12] Stewart J.; Ko Y. H.; Kennedy A. R. Protective effects of L-selenomethionine on space radiation induced changes in gene expression[J]. Radiat. Environ. Biophys., 2007, 46(2): 161-165.
    [13] Traynor N. J.; McKenzie R. C.; Beckett G. J.; Gibbs N. K. Selenomethionine inhibits ultraviolet radiation-induced p53 transactivation[J]. Photodermatol Photoimmunol Photomed. 2006, 22(6): 297-303
    [14] Plieninger H. Die Aufspaltung desγ-butyrolactons undα-amino-γ-butyrolactons mit natriummethylmercaptid bzw.-selenid. eine synthese des methionins[J]. Chem. Ber., 1950, 83(3): 265-268
    [15] Krief A.; Trabelsi M. Efficient syntheses of (d, l) and (d) selenomethionine[J]. Synth. Commun., 1989, 19(7): 1203-1210
    [16] Johannes R.; Peter Ma.; Frank R. Chemical synthesis of L-[75Se]selenomethionine in a high-activity scale[J]. Appl. Radiat. Isot., 1992, 43(4): 495-501
    [17] Painter E. P. The synthesis of amino acids from benzoylaminomalonic ester[J]. J. Am. Chem. Soc., 1940, 62(1): 232-233
    [18] Troels K.; Ole B. Synthesis of L-(+)-selenomethionine[J]. Synthesis, 1993, 11, 1065-1607
    [19] Barton D. H. R.; Bridon D.; Herve Y., et al. Concise synthesis of L-selenomethionine and L-selenocystine using radical chain reactions[J]. Tetrahedron, 1986, 42(18): 4983-4990
    [20]董国臣.海因法一站式制备硒代蛋氨酸铬(III)化合物及其应用[P]. CN1884261. 2006. 12. 27
    [21] Esaki N.; Shimoi H.; Yang Y.S., et al. Enantioselective synthesis of L-selenomethionine with leucine dehydrogenase[J]. Biotechnol. Appl. Biochem., 1989, 11(3): 312-317
    [22] Singh N. K.; AgrawalM S.; Agrawal R. C. Synthetic, structural and antifungal studies of some 3d-metal complexes of salicylaldehyde-2-furanthiocarboxyhydrazone[J]. Synth. React.Inorg. Met-Org. Chem., 1985, 15(1): 75-92
    [23] Michacl R.; Wagner F.; Walker A. Spectroscopic study of 1:1 copper(II) complexes with Schiff base ligands derived from salicylaldehyde and L-histidine and its analogs[J]. Inorg. Chem., 1983, 22(21), 3021-3028
    [24] Andrzej V.; Ram L.; Anil G., et al. Synthesis and characterization of nickel(II), copper(II), manganese(III) and iron(III) complexes with new chiral salen-type ligand N,N′-bis(3,5-di-tert-butylsalicylidene)-(1R,3S)-1,3-diamine-1,2,2-trimethylcyclopentane [J]. Polyhedron, 1998, 17(8): 1231-1240
    [25] Chen H.; Rhodes J. Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potential[J]. Mol. Med., 1996, 74(9): 497-504
    [26] Lumme P.; Hannu E.; Juhani J. Antitumor activity and metal complexes of the first transition series. Trans-bis(salicylaldoximato)copper(II) and related copper(II) complexes, a novel group of potential antitumor agents[J]. Inorg. Chim. Acta., 1984, 92(4): 241-251
    [27] Holnett E. M.; Dunn W. Structure-antitumor activity correlation of some Schiff bases[J]. J. Med. Chem., 1970, 13(4): 768-770
    [28]陈春华,陆茜. L-半胱氨酸席夫碱及其铜、锌配合物的合成及表征[J].湖北化工, 1998, 5, 18-20
    [29]何秀英,严振寰,吴自慎等.邻甲氧基苯甲醛苯丙氨酸席夫碱和配合物的合成、表征及其对超氧离子自由基的作用[J].华中师范大学学报(自然科学版), 1995, 29(4): 197-200
    [30]毕思玮,刘树祥.氨基酸水杨醛席夫碱与铜(Ⅱ)配合物的合成及其抗菌活性和稳定性、结构间的关系[J].无机化学, 1996, 12(4): 423-426
    [31]柳翠英,赵全芹,郭秀英. 5-氯, N-(2-羟基乙基)水杨醛亚胺Schiff碱的合成与表征[J].化学试剂, 1998, 20(1): 42-43
    [32]李桂芝, 2种水杨醛缩氨基酸及其10种金属配合物的杀菌活性研究[J].聊城大学学报(自然科学版), 2003, 16(1): 57-59
    [33]蒋毅民,张淑华,徐庆等.双核Cu(II)—牛磺酸缩水杨醛席夫碱配合物的合成,晶体结构及生物活性[J].化学学报, 2003, 61(4): 573-577
    [34]冯小珍,夏金虹,刘峥.氨基酸席夫碱配合物的制备及性能研究进展[J].化学研究与应用, 2007, 19(3): 238-241
    [35] Koichiro J.; Tetsuya Y.; Tomokazu A., et al. Novel hydroperoxidation of theα-position in pyridoxylidene-amino acid Schiff base–cobalt complex by hydrogen peroxide[J]. J. Chem.Soc. Chem. Commun., 1994, 2335-2336
    [36] Rath S. P.; Mondal S.; Ghosh T. Mixed-ligand oxovanadium(V) complexes incorporating bidentate salicylaldehyde and tridentate aldimine ligands[J]. Transition Metal Chemistry, 1996, 21(4): 309-311
    [37]陈德余,江银枝.过渡金属L-丙氨酸夫碱配合物的合成及其抗O-2性能[J].应用化学, 1997, 14(3): 5-8
    [38]鲁桂,姚克敏,张肇.镧系与直链醚-组氨酸Schiff碱新配合物的合成,波谱与生物活性[J].应用化学, 2001, 18(1): 1-4
    [39]贤景春,哈日巴拉. Cu, Zn-SOD酶模型化合物催化O2--歧化作用的研究[J].光谱实验室, 1999, 16(6): 656-658
    [40] Casella L.; Gullotti M. Synthesis, stereochemistry, and oxygenation of cobalt(II)-pyridoxal model complexes. A new family of chiral dioxygen carriers[J]. Inorg. Chem., 1986, 25(9): 1293-1303
    [41] James P. C.; Virgil J. L.; Cynthia J. K.Y., et al. Threitol-strapped manganese porphyins as enantioselective epoxidation catalysts of unfunctionalized olefins[J]. J. Am. Chem. Soc., 1995, 117(2): 692-703
    [42] Haga T.; Nishiyama Y. Regeneration of nickel catalyst on carbon[J]. Journal of Catalysis, 1993, 140(1): 168-172
    [43] Oliveira P.; Ramos A. M.; Fonseca I., et al. Oxidation of limonene over carbon anchored transition metal Schiff base complexes: Effect of the linking agent[J]. Catalysis Today, 2005, 102-103: 67-77
    [44] Vadim A. S.; Chao Z. C.; Victor J. A unique case of face diastereoselectivity in the Michael addition reactions between Ni(II)-complexes of glycine and chiral 3-(E-enoyl)-1,3-oxazolidin-2-ones[J]. Tetrahedron Letters, 2000, 41(49): 9645-9649
    [45] Michele G.; Laura S.; Roberto P., et al. Synthesis and characterization of new chiral octadentate nitrogen ligands and related copper(II) complexes as catalysts for stereoselective oxidation of catechols[J]. Journal of Molecular Catalysis A: Chemical, 2005, 235(1-2): 271-284
    [46] Liu X. W.; Tang N.; Chang Y. H. The asymmetric induction and catalytic activity of new chiral Mn(III)-Schiff-base complexes with L-amino acids as steric groups[J]. Tetrahedron: Asymmetry, 2004, 15(8): 1269-1273
    [47] Saghiyan A. S.; Dadayan S. A.; Satenik G., et al. New chiral NiII complexes of Schiff’s bases of glycine and alanine for efficient asymmetric synthesis ofα-amino acids[J].Tetrahedron: Asymmetry, 2006, 17(3): 455-467
    [48]姚克敏,李宁,黄巧红,等. Ln(III)-Cu(II)与直链-氨基酸新型Schiff碱异核配合物合成与催化[J].中国科学(B辑), 1998, 28(6): 517-520
    [49] Belokon Y. N.; Maleev V. I.; Kataev D. A., et al. Potassium and silver chiral cobaltate(III) complexes as precatalysts for asymmetric C–C bond formation[J]. Tetrahedron: Asymmetry, 2008, 19(7): 822-831
    [50]李太山,黎植昌. N-亚水杨基氨基酸锌配合物的合成及表征[J].高等学校化学学报, 1993, 14(4): 301-304
    [51] Guzow K.; Milewska M.; Dominik W., et al. 3-[2-(8-Quinolinyl)benzoxazol-5-yl]alanine derivative-a specific fluorophore for transition and rare-earth metal ion detection[J]. Tetrahedron, 2004, 60(51): 11889-11894
    [52]李怀娜,尤进茂,田来进,等. N-亚水杨基氨基酸的某些过渡金属络合物的合成及薄层色谱与紫外光谱研究[J].分析化学, 1995, 23(8): 911-914
    [53] Maarten M.; Kopp D. A.; Sazinsky M., et H. Angew al. Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins[J]. Chem. Int. Ed. Eng., 2001, 40(15): 2782-2807
    [54] Sasmal P. K.; Patra A. K.; Nethaji M., et al. DNA Cleavage by new oxovanadium(IV) complexes of N-salicylideneα-amino acids and phenanthroline bases in the photodynamic therapy window [J]. Inorg. Chem., 2007, 46(26): 11112-11121
    [55] Hurler L. H.; Reynolds V. L.; Swenson S. H., et al. Reaction of the antitumor CC-1065 with DNA structure of a DNA sequence specificity[J]. Science, 1984, 226(4676): 843-844
    [56] Anneheim H. G.; Perree F. M.; Gaudemer A., et al. Porphyrin-netropsin: a potential ligand of DNA[J]. Tetrahedron Letter, 1993, 34(45): 7263-7266
    [57] Brown S. C.; Thomson S. A.; Veal J. M. NMR solution structure of a peptide nucleic acid complexed with RNA[J]. Science, 1994, 265(5173): 777-780
    [58] Kureshy R. I.; Khan N. H. Mononuclear chiral ruthenium(II) schiff base complexes; synthesis, physicochemical studies and reactivity withπ-acceptor ligands[J]. Polyhedron, 1993, 12(2): 195-201
    [59] Paredes G. V.; Venegas Y. D.; Latorre R. O. Electronic properties of mixed valence iron(II, III) dinuclear complexes with carboxylate bridges[J]. Polyhedron, 2006, 25(9): 2026-2032
    [60] Cabeza N. A.; Miguel N.; Moreno C. Preparation and characterisation of oxovanadium(IV) complexes derived from 2,6-diformyl-4-methylphenol and l-His and l-Ala. Spectroscopic study of the system VIVO~(2+) + BDF–His[J]. Inorganica Chimica Acta., 2005,358(7): 2246-2254
    [61] Chohan Z. H.; Arif M.; Sarfraz M. Metal-based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity[J]. Appl. Organometal. Chem. 2007, 21(4): 294-302
    [62]李冬成,沈联芳.稀土元素与3,4-二羟基苯甲醛缩邻氨基苯甲酸配合物的合成和表征[J].应用化学, 1993, 10(3): 8-11
    [63] Raso A. G.; Fiol J. J.; Zafra A. L., et al. Synthesis of Zn N-salicylidene-L-aminoacidatos: X-ray structure of [(N-salicylidene-L-alaninato)(aqua)zinc(II)]·0.25H2O and [(N-salicylidene-L-valinato)(aqua)zinc(II)][J]. Polyhedron 2000, 19(6): 673-680
    [64] Dariusz P.; Marek M.; Grzegorz M., et al. New unsymmetrical Schiff base Ni(II) complexes as scaffolds for dendritic and amino acid superstructures[J]. New J. Chem., 2004, 28(12): 1615-1621
    [1] Johannes R.; Peter Ma.; Frank R. Chemical synthesis of L-[75Se]selenomethionine in a high-activity scale[J]. Appl. Radiat. Isot., 1992, 43(4): 495-501
    [2] Paulmier C. Selenium reagents and intermediates in organic synthesis[M]. Pergamon, Oxford; 1986: 115-164
    [3] Painter E. P. The synthesis of amino acids from benzoylaminomalonic ester[J]. J. Am. Chem. Soc., 1940, 62(1): 232-233
    [4] Barton D. H. R.; Bridon D.; Herve Y., et al. Concise synthesis of L-selenomethionine and L-selenocystine using radical chain reactions[J]. Tetrahedron, 1986, 42(18): 4983-4990
    [5] Miyashita M.; Suzuki T.; Hoshino M., et al. The organoselenium-mediated reduction ofα,β-epoxy ketones,α,β-epoxy esters, and their congeners toβ-hydroxy carbonyl compounds: Novel methodologies for the synthesis of aldols and their analogues[J].Tetrahedron, 1997, 53(37): 12469-12486.
    [6] Wolfgang H. H. G. Hypophosphorous acid, a novel reagent for the reduction of diselenides and the selenol-catalyzed reduction of disulfides[J]. J. Org. Chem., 1966, 31 (4):1202-1205
    [7] Troels K.; Ole B. Synthesis of L-(+)-selenomethionine[J]. Synthesis, 1993, 11, 1065-1607
    [8] Plieninger H. Die aufspaltung desγ-butyrolactons undα-amino-γ-butyrolactons mit natriummethylmercaptid bzw.-selenid. eine synthese des methionins[J]. Chem. Ber., 1950, 83(3): 265-268
    [9] Krief A.; Trabelsi M. Efficient syntheses of (d, l) and (d) selenomethionine[J]. Synth. Commun., 1989, 19(7): 1203-1210
    [10] Michio I.; Ryuta O.; Toshifumi N., et al. Synthesis of selenocysteine and selenomethionine derivatives from sulfur-containing amino acids[J]. Chemistry & Biodiversity, 2008, 5(3): 359-374
    [11] Frankel M.; Knobl Y. Synthesis of a-amino-7-halogenobutyric acids. A new synthesis of DL-homoserine[J]. J. Am. Chem. Soc., 1958, 80(12): 3147-3149
    [12] Painter E. P. New Syntheses of the Selenium analogs of dl-cystine and cysteine derivatives[J]. J. Am. Chem. Soc., 1947, 69(1): 232-234
    [13] Livak J. E.; Britton E. C.; Vander J. C., et al. Synthesis of dl-methionine[J]. J. Am. Chem. Soc., 1945, 67(12): 2218-2220
    [14] Marvin D. A. The preparation of D- and L-homoserine[J]. J. Am. Chem. Soc., 1948, 70(5): 1757-1759
    [15] Snyder H. R.; Andreen J. H.; Cannon G. W., et al. A convenient synthesis of dl-methionine[J]. J. Am. Chem. Soc., 1942, 64(9): 2082-2084
    [16] Ludwig S.; Jacek M. The Convenient Syntheses of Organoselenium Reagents[J]. Sythesis, 1984, 5: 439-442
    [17] Schrauzer G. N. Selenomethionine: a review of its nutritional significance, metabolism and toxicity[J]. J. Nutr., 2000, 130(7): 1653-1656
    [1] Clyburn B. S. Effects of sel-plex (organic selenium) and vitamin E on performance, immune response, and beef cut shelf life of feedlot steers[D]. Texas Tech University PhD thesis, 2002
    [2]杨华,傅衍,陈安国.有机硒对杜大长商品猪生产性能、胴体性状、肉质的影响[J].中国饲料, 2004, 4: 21-24
    [3]孔晓玲,蒋德云,韦山等.关于肌肉嫩度评价方法的比较研究[J].农业工程学报, 2003, 19(4): 216-219
    [4]陈润生.猪生产学[M].北京:中国农业出版社, 1995, 138-157
    [5]王惠康,刘建新.蛋氨酸硒对肥育猪生长能性、胴体组成和肉质的影响[J].饲料研究,2006, 3: 1-3
    [6]邹晓庭,郑根华,尹兆正等.不同硒源对肉鸡生长性能、胴体特性和肉质的影响[J].浙江大学学报(农业与生命科学版), 2005, 31(6): 773-776
    [7] Wang C L. Comparison of organic and inorganic sources of selenium for growth, glutathione peroxidase activity and immune responses in channel catfish. Auburn University PhD thesis, 1997
    [8] Neve J. New approaches to assess selenium status and requirement[J]. Nutr Rev., 2000, 58(12): 363-369
    [9] Preter F S. Organic selenium: benefits to animals and humans, a biochemist’s view[A] . Proceedings of Alltech’s 16th Symposium. 2000, 205-206
    [10] Wolter B.; Ellis M.; Mckeith F. K. Wolter B, Ellis M, Mckeith F K. Influence of dietary selenium source on growth performance and carcass and meat quality characteristics in pigs[J]. Canadian J Anim Sci., 1999, 79(1): 119-121
    [11]陈代文,张克英,胡祖禹.猪肉品质特征的形成原理[J].四川农业大学学报, 2002, 20(1): 60-66
    [12]占秀安,许梓荣.不同硒源对肥育猪鲜肉肉色和滴水损失的影响[J].畜牧兽医学报, 2004, 35(5): 505-509
    [13] Mahan D. C.; Cline T. R.; Richert B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality[J]. J Anim Sci., 1999, 77(8): 2172-2179
    [14] Rammouz; Berri C.; Le E., et al. Breed differences in the biochemical determinism of ultimate pH in breast muscles of broiler chickens--a key role of AMP deaminase[J]. Poult Sci., 2004, 83(8): 1445-1451
    [15] Corino C.; Magni S.; Pastorelli G., et al. Effect of conjugated linoleic acid on meat quality, lipid metabolism and sensory characteristics of dry-cured hams from heavy pigs[J]. J. Anim. Sci., 2003, 81(9): 2219-2229
    [1] Shanthi R.; Nagaraja K. S.; Udupa M. R. Chromium(llI) complexes of N-salicylideneamino acid[J]. Inorg. Chim. Acta., 1987, 133(2): 211-215
    [2] Khan M.T.; Kureshy R. I.; Khan N. H., et al. Synthesis and characterization of Ru(III) chiral Schiff base complexes derived from salicylaldehyde and L-aminoacids[J]. Tetrahedron: Asymmetry, 1991, 2(10):1015-1020
    [3] Sattari D.; Alipour E.; Shirani S., et al. Metal complexes of N-salicylideneamino acids[J]. J. Inorg. Biochem., 1992, 45(2): 115-122
    [4] Palacios M. S.; Medina E.; Manrique F. G., et al. Exchange interactions in carboxylate-bridged alternating chains of copper(II). Synthesis, crystal structure, spectroscopic and magnetic properties of catena-bis(N-salicylidene-L- methioninato)aquadicopper(II)[J]. Polyhedron, 1989, 8(17): 2132-2137
    [5] Pessoa J. C.; Cavaco I.; Correia I., et al. Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from amino acids and aromatic o-hydroxyaldehydes[J]. Inorg. Chim. Acta., 1999, 293(1): 1-11
    [6] Casella L.; Gullotti M.; Pintar A., et al. Coordination modes of histidine. 10. Iron(III) tyrosinate models. Synthesis and spectroscopic and stereochemical studies of iron(III) complexes of N-salicylidene-L-amino acids[J]. Inorg. Chem., 1987, 26(7): 1031-1038
    [7] Thomas A. M.; Naik A. D.; Nethaji M., et al. Photo-induced DNA cleavage activity of ternary(N-salicylidene-L-methioninato)copper(II)complexes of phenanthroline bases[J].Indian J. Chem., 2004, 43A(4): 691-700
    [8] Alam M. A.; Nethaji M.; Ray M. Structural characterization of an enantiopure hydroxo-bridged binuclear Iron(III) complex with empty one-dimensional helical channels[J]. Inorg. Chem., 2005, 44(5): 1302-1308
    [9] Valentova J.; Zemlicka M.; Vanickova M., et al. Slovak progress in coordination and organometallic chemistry[M], Technical University Press, Bratislava, 1997: 325-351
    [10] Kafka Z.; Puncocharova J. Bioindikatory V monitoringu zivothiho prostredi[J]. Chem. Listy., 2000, 94(10): 909-912
    [11] Sokolik J.; Blahova M.; Zemlicka M., et al. Antimicrobial activity of pseudohalogeno(N-salicylidene-α-alaninato)cuprates(II)[J]. Pharmazie 1997, 52(55): 408-409
    [12] Valent A.; Melnik M.; Hudecova D., et al. Copper(II) salicylideneglycinate complexes as potential antimicrobial agents[J]. Inorg. Chim. Acta. 2002, 340(25): 15-20
    [13] Sasmal P. K.; Patra A. K.; Nethaji M., et al. DNA cleavage by new oxovanadium(IV) complexes of N-salicylideneα-amino acids and phenanthroline bases in the photodynamic therapy window[J]. Inorg. Chem., 2007, 46(26): 11112-11121
    [14] Vanco J.; Svajlenova O.; Racianska E., et al. Antiradical activity of different copper(II) Schiff base complexes and their effect on alloxan-induced diabetes[J]. J. Trace Elem. Med. Biol. 2004, 18(2): 155-161
    [15] Wang M. Z.; Meng Z. X.; Liu B., et al. Novel tumor chemotherapeutic agents and tumor radio-imaging agents: Potential tumor pharmaceuticals of ternary copper(II) complexes[J]. Inorg. Chem. Commun., 2005, 8(4): 368-371
    [16] Panchal P. K.; Pansuryia P. B.; Patel M. N. Study on increase in toxicity of Schiff bases on microorganism on chelation with metal[J].Toxicol. Environ. Chem., 2006, 88(1): 57-64
    [17] Toyota E.; Chinen C.; Sekizaki H., et al. Application of spontaneous Schiff Base copper chelates formation process to the design of a trypsin inhibitor[J].Chem. Pharm. Bull., 1996, 44(5): 1104-1106
    [18] P Reddy. N.; Nethaji M.; Chakravarty A. R. Hydrolytic cleavage of DNA by ternary amino acid Schiff Base copper(II) complexes having planar heterocyclic ligands[J]. Eur. J. Inorg. Chem., 2004, 7, 1440-1446
    [19] Gaery W. J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coord. Chem. Rev., 1971, 7(1): 81-122
    [20] Nair M.S.; Joseyphus R.S. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and dl-α-aminobutyric acid[J]. Spectrochim. Acta A., 2008, 70(4): 749-753
    [21] Belaid S.; Landreau A.; Djebbar S., et al. Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis(salicylideneimine)[J]. J. Inorg. Biochem., 2008, 102(1): 63-69
    [22] Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds[M]. fifth ed., J. Wiley, New York, 1997: 587-591
    [23] Szorcsik A.; Nagy L.; Sletten J., et al. Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono- and dicarboxylic acids[J]. J. Organomet. Chem., 2004, 689(7): 1145-1154
    [24] Yan C. W.; Li Y. T.; Liao D. Z. Synthesis, characterization and magnetism of binuclear cobalt(II) complexes bridged by tetracarboxylato groups[J]. Chin. J. Chem. 2000, 18(3): 351-356
    [25] Grag B. S.; Kumar D. N.; Sarbhai M. Copper(II) complexes of new biomimetic polydentate amide ligands: a spectroscopic study[J]. Spectrochim. Acta A., 2005, 61(1&2): 141-147
    [26] Mohamed G. G.; Metal complexes of antibiotic drugs. Studies on dicluxacillin complexes of FeII, FeIII, CoII, NiII and CuII[J]. Spectrochim. Acta A., 2001, 57(6): 1643-1648
    [27] Smith B. Infrared Spectral Interpretation[M], CRC-Press, Boca Raton, FL 1999: 689-697
    [28]陈慧兰,余宝源.理论无机化学[M].北京:高等教育出版社, 1989: 137-157
    [1] Teoh S. G.; Yeap G. Y.; Lob C. C. Inner coordination sphere tin(IV) complexes with some O,N,N-terdentate {N-(2-hydroxybenzaldehyde)-1-amino-2-phenyleneimine and N-(2-hydroxy-1-naphthaldehyde)-1-amino-2-phenyleneimine} and O,N,N,O-quadridentate {N,N′-bis(2-hydroxybenzaldehyde)-1,2-phenylenediimine and N,N′-bis(2-hydroxy-1-naphthaldehyde)-1,2-phenylenediimine} Schiff bases[J].Polyhedron, 1997, 16(13): 2213-2221
    [2] Shi J.; Tang C. W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices[J]. Appl. Phys. Lett., 2002, 80(17): 3201-3203
    [3] Hamada Y.; Sano T.; Fujita M., et al. Blue electroluminescence in thin films of azomethin-zinc complexes[J]. Jpn. J. Appl. Phys., 1993, 32(2): 511-513
    [4] Sakiyan I.; Yilmaz H.; Synthesis and characterization of copper(II), nickel(II) and cobalt(II) chelates with tridentate Schiff Base ligands derived from 4-amino-5-hydroxynaphthalene-2,-7-disulfonic acid[J]. Synth. React. Inorg. Met-Org. Chem., 2003, 33(6): 971-998
    [5] Ozcan Y.; Ide S.; Sakiyan I., et al. Structure and characterization of N-(2-hydroxy-1-naphthylidene)threonine[J]. J. Mol. Str., 2003, 658(): 207-213
    [6] Sakiyan I.; Logoglu E.; Arslan S., et al. Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese(III) complexes[J]. Biometals, 2004, 17(2): 115-120
    [7] Sakiyan I.; Gunduz N.; Gunduz T. Synthesis and characterization of manganese(III) complexes of Schiff Base derived form amino acids and 2-hydroxy-1-naphthaldehyde[J]. Synth. React. Inorg. Met-Org. Chem., 2001, 31(7): 1175-1187
    [8] Abdel-Mawgoud A. M.; El-Gyar S. A.; Hamed M. M. A. Synthesis and structure of a new series Fe(III) and Co(II) chelates of some polyfunctional N-naphthylideneamino acids[J]. React. Inorg. Met-Org. Chem., 1991, 21(5&6): 1061-1072
    [9] Nath M.; Goyal S. Synthesis, characteristic spectral studies and in vitro antimicrobial activity of organosilicon(IV) complexes of N-(2-hydroxynaphthalidene)- amino acid Schiff Bases[J]. Phosphorus, Sulful and Silicon, 2002, 177(2): 447-463
    [10] Awad A. M.; Shaker A. M.; Zaki A. B. Novel mechanistic aspects on the reactionbetween low spin Fe(II) Schiff base amino acid complexes and hydrogen peroxide-Spectrophotometric tracer of intraperoxo intermediate catalyzed reaction[J]. spectrochim. Acta A., 2008, 71(3): 921-928
    [11] Rozwadowski Z. Deuterium isotope effects on 13C chemical shifts of lithium salts of Schiff bases amino acids[J]. J. Mol. Str., 2005, 753(1): 127-131
    [12] Rozwadowski Z.; Ambroziak K.; Szypa M., et al. The 15N and 13C NMR study of Schiff bases of amino acids and their lithium salts in solid state and DMSO solution[J]. J. Mol. Str., 2005, 734(1-3): 137-142
    [13] Sharma P. K.; Dubey S. N. Metal complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with N-(2-hydroxy-1-naphthylidene)-L-amino acids[J]. J. Chem. Sci., 1994, 106(1), 23-27
    [14] Nath M.; Yadav R.; Gielen M., et al. Synthesis, characteristic spectral studies and in vitro antimicrobial and antitumour activities of organotin(IV) complexes of Schiff bases derived from amino-acids[J]. Appl. Organometal. Chem., 1997, 11(9): 727-736
    [15] Nath M.; Yadav R. Spectral studies and In vitro antimicrobial activity of new organotin(IV) complexes of Schiff Bases derived from amino acids[J]. Bull. Chem. Soc. Jpn., 1997, 70(6): 1331-1337
    [16] Shaker A. M.; Awad A. M.; Nassr L. A. E. Synthesis and characterization of some novel amino acid Schiff Base Fe(II) complexes[J]. Synth. React. Inorg. Met-Org. Chem., 2003, 33(1): 103-117
    [17] Abdel-Mawgoud A. M. Zn(II) and Cd(II) complexes of some polyfunctional N-naphthylideneamino acids[J]. React. Inorg. Met.-Org. Chem., 1995, 25(9): 1561-1569
    [18] Gaery W. J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds[J]. Coord. Chem. Rev., 1971, 7(1): 81-122
    [19] Wahab Z. H.; Mashaly M. M.; Salman A. A., et al. Co(II), Ce(III) and UO2(VI) bis-salicylatothiosemicarbazide complexes: Binary and ternary complexes, thermal studies and antimicrobial activity[J]. Spectrochim. Acta A., 2004, 60(12): 2861-2873
    [20] Belaid S.; Landreau A.; Djebbar S., et al. Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N′-O-phenylenebis(salicylideneimine)[J]. J. Inorg. Biochem., 2008, 102(1): 63-69
    [21] Nair M. S.; Joseyphus R. S. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and dl-α-aminobutyric acid[J]. Spectrochim. Acta A., 2008, 70(4): 749-753
    [22] Szorcsik A.; Nagy L.; Sletten J., et al. Preparation and structural studies on dibutyltin(IV)complexes with pyridine mono- and dicarboxylic acids[J]. J. Organomet. Chem., 2004, 689(7): 1145-1154
    [23] Yan C. W.; Li Y. T.; Liao D. Z. Synthesis, characterization and magnetism of binuclear cobalt(II) complexes bridged by tetracarboxylato groups[J]. Chin. J. Chem. 2000, 18(3): 351-356
    [24] Grag B. S.; Kumar D. N.; Sarbhai M. Copper(II) complexes of new biomimetic polydentate amide ligands: a spectroscopic study[J]. Spectrochim. Acta A., 2005, 61(1&2), 141-147
    [25] Mohamed G.G.; Metal complexes of antibiotic drugs. Studies on dicluxacillin complexes of FeII, FeIII, CoII, NiII and CuII[J]. Spectrochim. Acta A., 2001, 57(6): 1643-1648
    [26] Smith B. Infrared Spectral Interpretation[M]. CRC-Press, Boca Raton, FL 1999: 689-697
    [27]陈慧兰,余宝源.理论无机化学[M].北京:高等教育出版社, 1989: 137-15
    [1] Pouralimardan A. O.; Chamayou C.; Janiak H., et al. Hydrazone Schiff base-manganese(II) complexes: Synthesis, crystal structure and catalytic reactivity[J]. Inorg. Chim. Acta., 2007, 360(5): 1599-1608
    [2] Raman N.; Raja J. D.; Sakthivel A. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies[J]. J. Chem. Sci., 2007, 119(4): 303-310
    [3] Omar M. M.; Mohamed G. G.; Ibrahim A. A. Spectroscopic characterization of metal complexes of novel Schiff base. Synthesis, thermal and biological activity studies[J]. Spectrochim. Acta A. 2009, 73(2): 358-369
    [4] Thomas A. M.; Naik A. D.; Nethaji M., et al. Photo-induced DNA cleavage activity of ternary (N salicylidene-L methioninato) copper(II) complexes of phenanthroline bases[J]. Indian J. Chem., 2004, 43A(4): 691-700
    [5] Alam M. A.; Nethaji M.; Ray M. Structural characterization of an enantiopurehydroxo-bridged binuclear iron(III) complex with empty one-dimensional helical channels[J]. Inorg. Chem., 2005, 44(5): 1302-1308
    [6] Tascioglu S.; Yalcm B.; Nasrullayeva T. M., et al. The syntheses, structure and properties of cobalt complexes withβ-alanine derivatives[J]. Polyhedron, 2006, 25(6): 1279-1286
    [7] Sakiyan I.; Logoglu E.; Arslan S., et al. Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese(III) complexes[J]. Biometals, 2004, 17(2): 115-120
    [8] Nath M.; Yadav R.; Spectral studies and In vitro antimicrobial activity of new organotin(IV) complexes of Schiff Bases derived from amino acids[J]. Bull. Chem. Soc. Jpn., 1997, 70(6): 1331-1337
    [9] Sakiyan I.; Yilmaz H.; Synthesis and characterization of copper(II), nickel(II) and cobalt(II) chelates with tridentate Schiff Base ligands derived from 4-amino-5-hydroxynaphthalene-2,-7-disulfonic acid[J]. Synth. React. Inorg. Met-Org. Chem., 2003, 33(6): 971-998
    [10] Yatsmilski K. B.; Xun Y.; Wu Y. M.Elementary bio-inorganic chemistry[M] CRC-Press, Boca Raton, FL 1984: 253-261
    [11] Chohan Z. H.; Supuran C. T.; Scozzafava A. metalloantibiotics: Synthesis and antibacterial activity of cobalt(II), copper(II), nickel(II) and zinc(II) complexes of kefzol[J]. J. Enz. Inhib. Med. Chem., 2004, 19(1): 79-84
    [12] Sasmal P. K.; Patra A. K.; Nethaji M., et al. DNA cleavage by new oxovanadium(IV) complexes of N-salicylideneα-amino acids and phenanthroline bases in the photodynamic therapy window[J]. Inorg. Chem., 2007, 46(26): 11112-11121
    [13] Lv J.; Liu T. T.; Cai S., et al. Synthesis, structure and biological activity of cobalt(II) and copper(II) complexes of valine-derived Schiff bases[J]. J. Inorg. Biochem., 2006, 100(11): 1888-1896
    [14] Chohan Z. H.; Arif M.; Sarfraz M. Metal-based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity[J]. Appl. Organometal. Chem., 2007, 21(4): 294-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700