氯代苯胺合成中金属催化剂性能与溶剂效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化卤代芳香硝基化合物加氢还原生成卤代芳胺是最重要的有机反应之一,在精细化学品合成中有着重要的地位。但是,卤代芳香硝基化合物在加氢还原过程中极易发生氢解脱卤现象。因此,提高反应选择性一直是卤代芳香硝基化合物加氢还原反应的重要研究课题。前人提出了许多抑制脱卤的方法,至今仅有在有机溶剂中添加抑制剂的雷尼镍催化液相加氢技术在工业上获得了广泛应用。易燃的雷尼镍催化剂在液相催化加氢生产过程一直存在着安全隐患。另外,在现有的液相催化加氢工艺中大量使用有机溶剂,造成溶剂回收需要消耗大量的能量、且有机溶剂的易燃和易致毒性质影响了生态环境及劳动者的身体健康。因此,开展金属催化剂在卤代芳香硝基化合物加氢还原生成卤代芳胺反应中的催化性能和溶剂效应研究,提高反应目标产物选择性、减少溶剂使用等,对于研发环境友好的卤代芳胺催化合成技术及工艺具有重要的现实意义。
     论文针对在有机溶剂中雷尼镍催化卤代芳香硝基化合物液相加氢合成卤代芳胺工艺技术中,催化剂和抑制剂混合投料存在抑制脱卤效果和产物选择性不稳定,以及直接将脱卤抑制剂加入到反应体系中容易残留在产品中的不足。利用配位络合原理对雷尼镍催化剂进行电子特性改性预处理,预处理剂双氰胺分子中的C=N键选择性地吸附在雷尼镍催化剂表面上的易致脱氯的路易斯酸活性位“Ni-H+”上,并与之发生较强的相互作用,可以有效钝化引起C-Cl键活化的路易斯酸性位,显著降低脱氯氢解的可能性。当双氰胺处理液浓度大于0.15 mol/L时(催化剂:双氰胺水溶液比例为0.15:1 g/m1),75克6-氯-2-硝基甲苯完全转化时间仅需65分钟左右,3-氯-2-甲基苯胺选择性超过了99.9%。与催化剂和抑制剂混合投料方式比较,3-氯-2-甲基苯胺的纯度提高了一个数量级。氢气的传质效率和催化剂解离吸附氢气性能是影响镍基催化剂上芳香硝基化合物催化加氢性能的至关重要因素。氢气传质效率或者催化剂解离吸附氢气性能较弱,将无法保证持续不断提供足够量的活泼H与硝基物或者中间态反应,吸附停留在催化剂表面的大量的硝基物或者中间态就会沿着其它路径生成各种副产物。对于氯代芳香硝基化合物来说,这些中间产物同样可以发生脱卤氢解反应。因此,抑制脱卤的关键不在于毒化催化剂降低催化活性,而是应尽量提高催化剂的氢气解离吸附性能和提高氢气的传质速率,消除催化剂表面上存在的可以活化C-X键的活性位。
     论文针对目前有溶剂液相催化加氢工艺中,普遍使用易燃易爆的雷尼镍、甲醇溶剂以及氢气等,存在严重的安全隐患和环境不友好的现象,利用氯代芳香硝基化合物及其相应的氯代苯胺的低熔点特性,开展了无溶剂条件下炭载大粒径钯催化氯代芳香硝基化合物液相加氢合成氯代苯胺反应性能的研究。Pd2+离子与卤素离子可形成不同稳定性的钯金属络合物。配位络合于活性炭表面卤化物离子的[PdCl4-nXn]2-可被卤素离子与活性炭表面形成的双电子荷层结构还原生成零价Pd,并成核于活性炭表面。双电子荷层结构中卤素离子与活性炭表面双键作用程度越强,钯金属越易还原。晶体生长速度与还原速度的相对快慢决定了钯粒子的大小。活性炭经2.5 mol/l碘化钾处理剂预处理后,炭载钯催化剂平均Pd粒径可达35 nm,且分布均匀,表现出很强的低负载低分散性能。在383 K、1.0 MPa、1200 r/min、无溶剂反应条件下,6-氯-2-硝基甲苯加氢合成3-氯-2-甲基苯胺选择性超过99.9%。在反应速率不高于32.5 molCNT/(molPd min)时,温度和压力对脱氯选择性的影响可以忽略。无溶剂条件下,炭载大粒径钯催化剂在6-氯-2-硝基甲苯及其它卤代芳香硝基化合物液相加氢反应中表现出了良好的催化活性、选择性和稳定性。循环使用10次以上,催化剂仍无明显失活现象。无溶剂液相催化加氢有效抑制脱氯可能与高粘度的反应介质对氢气扩散的抑制作用、水与更易于脱氯的产物氯代苯胺在催化剂表面活性位上的竞争吸附以及大粒径金属粒子具有较大的配位数和较少的缺电子原子有关。
The selective hydrogenation of aromatic halonitro compounds to the corresponding aromatic haloamines is one of the most essential transformations in the synthesis of fine chemicals and intermediates. Although many efforts have been made to minimize dehalogenation, up to now, it remains a big challenge to completely avoid the hydrodehalogenation as a result of the electron donating effect of amino groups in the aromatic ring. In addition, most of the hydrogenation processes entail the use of organic solvents including methanol or alcohol etc, which plays an important part in dissolution, mass and heat transfer, solvation effect and so forth. However, organic solvents are hazardous in terms of toxicity, waste generation and flammability, especially in the presence of ignitable Raney Ni and noble metal catalysts. Thus removal of solvents and trace impurities is highly significant to achieve green production of aromatic haloamines.
     On the base of the existing problem and deficiency aforementioned, we reported the catalytic performance of Ni catalyst modified with minute quantity of organic amine compounds in the selective hydrogenation of chloronitrobenzenes to chloroanilines. There is a strong interaction between the electron-deficient Lewis acid site characterized as Ni-H+ specie on the surface of Raney Ni catalyst and the nitrogen atom in organic amine molecule with high electronegativity. And then C-Cl bond would not be polarized and activated. The hydrodechlorination side reaction would be inhibited. Over RND-4 catalyst, the selectivity to 3-chloro-2-methylaniline reached up to 99.96% when the 6-chloro-2-nitrotoluene hydrogenation was fully accomplished within 64 min. The amount of hydrodechlorination by-product in the 6-chloro-2-nitrotoluene hydrogenation over modified Ni catalyst was 10 times lower than that over unmodified Raney Ni catalyst. Furthermore, the selectivity to chloroanilines was, to a large extent, depended on the hydrogen diffusion and dissociative adsorption of hydrogen on the catalyst surface efficiently. We think that the superior selectivity for the selective hydrogenation of chloronitrobenzenes to chloroanilines could not be obtained, unless the catalyst possesses excellent dissociative adsorption hydrogen and the catalytic sites in favor of the hydrodehalogenation are covered or deactivated.
     Selective hydrogenation of aromatic halonitro compounds to aromatic haloamines is usually carried out in methanol solvent, which is hazardous in terms of toxicity, flammability and waste generation. Aromatic haloamines and the corresponding aromatic halonitro compounds have the relatively low melting points, which provide a possibility to carry out catalytic hydrogenation under solvent-free conditions. Whereas much less effort have been paid to the study on the catalytic hydrogenation in solvent-free. In the present work, we prepared a series of Pd/C catalysts with different Pd particles sizes, through the pretreatment of activated carbon with halogen ions solution. The sizes of Pd particles were dependent on the electrical double layer built up with halogen ions and the activated carbon. The Pd/C catalyst with the average Pd particles size of 35 nm and a narrow particle size distribution could be prepared after the activated carbon was pretreated with KI aqueous solution (2.5 mol/l). Compared with the hydrogenation in organic solvent, the selectivity to the desired product of catalytic hydrogeantion of 6-chloro-2-nitrotoluene and some other aromatic halonitro compounds over Pd/C(Ⅰ) catalyst could reach up to as high as 99.9% under solvent-free conditions. Furthermore, Pd/C catalyst could be recovered and reused more than 10 times without any notable loss of catalytic activity and selectivity. The results infer that the larger Pd particles with narrow particle size distribution, hydrogen diffusion, and the competitive adsorption of water and aromatic haloamines on the catalyst surface could be responsible for the almost complete suppression hydrodehalogenation.
引文
[1]Fan G Y, Zhang L, Fu H Y, et al. Hydrous zirconia supported iridium nanoparticles: An excellent catalyst for the hydrogenation of haloaromatic nitro compounds [J]. Catalysis Communications,2010,11 (5):451-455.
    [2]Wang X D, Liang M H, Liu H Q, et al. Selective hydrogenation of bromonitrobenzenes over Pt/gamma-Fe2O3 [J]. Journal of Molecular Catalysis a-Chemical,2007,273 (1-2):160-168.
    [3]Yuan X, Yan N, Xiao C X, et al. Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids [J]. Green Chemistry,2010,12 (2): 228-233.
    [4]Liang M H, Wang X D, Liu H Q, et al. Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes [J]. Journal of Catalysis,2008,255 (2):335-342.
    [5]Zuo B J, Wang Y, Wang Q L, et al. An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles [J]. Journal of Catalysis,2004,222 (2):493-498.
    [6]Greenfield H, Dowell F S. Metal sulfide catalysts for hydrogenation of halonitrobenzenes to haloanilines [J]. Journal Organic Chemistry,1967,32 (11): 3670-3671.
    [7]Tijani A, Coq B, Figueras F. Hydrogenation of para-chloronotrobenzene over suppored ruthenium-based catalysts [J]. Applied Catalysis,1991,76 (2):255-266.
    [8]Han X X, Zhou R X, Lai G H, et al. Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts [J]. Journal of Molecular Catalysis a-Chemical,2004,209 (1-2):83-87.
    [9]Vishwanathan V, Jayasri V, Basha P M. Vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over alumina supported palladium catalyst-A kinetic study [J]. Reaction Kinetics and Catalysis Letters,2007,91 (2):291-298.
    [10]Ning J, Xu J, Liu J, et al. A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol [J]. Catalysis Communications,2007,8 (11):1763-1766.
    [11]Yu W Y, Wang Y, Liu H F, et al. Preparation and characterization of polymer-protected Pt/Co bimetallic colloids and their catalytic properties in the selective hydrogenation of cinnamaldehyde [J]. Journal of Molecular Catalysis a-Chemical,1996,112(1):105-113.
    [12]Liu M H, Yu W Y, Liu H F. Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts [J]. Journal of Molecular Catalysis a-Chemical,1999,138 (2-3):295-303.
    [13]Liu M H, Yu W Y, Liu H F, et al. Preparation and characterization of polymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene [J]. Journal of Colloid and Interface Science,1999,214 (2):231-237.
    [14]Yu W Y, Liu H F, An X H, et al. Modification of metal cations to the supported metal colloid catalysts [J]. Journal of Molecular Catalysis a-Chemical,1999,147 (1-2): 73-81.
    [15]Tu W X, Liu H F, Liew K Y Preparation and catalytic properties of amphiphilic copolymer-stabilized platinum metals colloids [J]. Journal of Colloid and Interface Science,2000,229 (2):453-461.
    [16]Liu M H, He B L, Liu H F, et al. Unexpected effects of trace impurities on the properties of polymer-stabilized ruthenium colloids from different sources of ruthenium(Ⅲ) chloride hydrate [J]. Journal of Colloid and Interface Science,2003,263 (2):461-466.
    [17]Coq B, Tijani A, Figueras F. Particle-size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum alumina catalysts [J]. Journal of Molecular Catalysis,1991,68 (3):331-345.
    [18]Li J Y, Ma L, Li X N, et al. Effect of nitric acid, pretreatment on the properties of activated carbon and supported palladium catalysts [J]. Industrial & Engineering Chemistry Research,2005,44 (15):5478-5482.
    [19]Quan L H, Hui L M, Chao X, et al. An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene [J]. Journal of Molecular Catalysis a-Chemical,2009,308 (1-2):79-86.
    [20]王多禄,张泽朋,陈立功,et al.哌啶酮催化氢化制备哌啶醇催化剂的研究[J].化学学报,1999,57:176-182.
    [21]王锦业,龙湘云,聂红,et al.NiW/γ-Al2O3加氢催化剂化学吸附性质的研究[J].催化学报,1999,20(5):541-544.
    [22]Baumeister P, Blaser H U, Scherrer W. Chemoselective hydrogenation of aromatic chloronitro compounds with amidine modified nickel catalysts [J]. Studies in Surface Science and Catalysis,1991,59:321-328.
    [23]胡拖平.二氯代(2,5,3,4-)硝基苯的催化加氢制二氯代苯胺的研究.硕士论文,大连理工大学,2000.
    [24]Shen J H, Chen Y W. Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene [J]. Journal of Molecular Catalysis a-Chemical,2007,273 (1-2):265-276.
    [25]Tang P K, Intermediate Chemistry and Technology [B]. Chemical Industry Press: Beijing,1984; p 160.
    [26]胡拖平,陈宏博,李海泓.氯代芳香硝基化合物催化加氢研究[J].化学工程师,2000,(05):12-14.
    [27]王闯.碳纳米管负载金属催化剂的制备及其催化氯代硝基苯加氢反应性能.博士论文,大连理工大学,2009.
    [28]Zaera F. Outstanding mechanistic questions in heterogeneous catalysis [J]. Journal of Physical Chemistry B,2002,106(16):4043-4052.
    [29]Chen B, Dingerdissen U, Krauter J G E, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals [J]. Applied Catalysis a-General,2005,280 (1):17-46.
    [30]Yadav G D, Kharkara M R. Liquid-phase hydrogenation of saturated and unsaturated nitriles-activities and selectivities of bimetallic nickel-copper and nickel-iron catalysts supported on silica [J]. Applied Catalysis a-General,1995,126 (1): 115-123.
    [31]Coq B, Tijani A, Dutartre R, et al. Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over suppored platinum catalysts [J]. Journal of Molecular Catalysis,1993,79 (1-3):253-264.
    [32]Menini C, Park C, Shin E J, et al. Catalytic hydrodehalogenation as a detoxification methodology [J]. Catalysis Today,2000,62 (4):355-366.
    [33]Chon S, Allen D T. Catalytic hydroprocessing of chlorophenols [J]. AIChE Journal, 1991,37(11):1730-1732.
    [34]Liu Y C, Chen Y W. Hydrogenation of p-chloronitrobenzene on lanthanum-promoted NiB nanometal catalysts [J]. Industrial & Engineering Chemistry Research,2006,45 (9):2973-2980.
    [35]Sikhwivhilu L M, Coville N J, Pulimaddi B M, et al. Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts [J]. Catalysis Communications,2007,8 (12):1999-2006.
    [36]Xu Q, Liu X M, Chen J R, et al. Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/gamma-Al2O3 [J]. Journal of Molecular Catalysis a-Chemical,2006,260 (1-2):299-305.
    [37]Wang X D, Liang M H, Zhang J L, et al. Selective hydrogenation of aromatic chloronitro compounds [J]. Current Organic Chemistry,2007,11 (3):299-314.
    [38]Chen S, Ma L, Lu C S, et al. Synthesis of 3,4-dichloroaniline via selective hydrogenation over Pd/C catalyst [J]. Industrial Catalysis,2007,15 (9):33-37.
    [39]Zhang J L, Wang Y, Ji H, et al. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene [J]. Journal of Catalysis,2005,229 (1):114-118.
    [40]韩晓祥,周仁贤,郑小明.负载Pt催化剂在卤代硝基苯氢化反应中的催化性能研究[J].复旦学报(自然科学版),2003,42(03):428430.
    [41]Han X X, Zhou R X, Lai G H, et al. Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts [J]. Catalysis Today,2004,93 (5):433-437.
    [42]Han X X, Chen Q, Zhou R X. Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu [J]. Journal of Molecular Catalysis a-Chemical,2007,277 (1-2):210-214.
    [43]Jiang L C, Gu H Z, Xu X Z, et al. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals [J]. Journal of Molecular Catalysis a-Chemical,2009,310 (1-2):144-149.
    [44]梅华,王欢,陈墨雨,et al.Pt/C催化剂的制备及其在对氯苯胺合成中的应用[J].工业催化,2007,15(4):37-41.
    [45]Cheng H Y, Xi C Y, Meng X C, et al. Polyethylene glycol-stabilized platinum nanoparticles:The efficient and recyclable catalysts for selective hydrogenation of o-chloronitrobenzene to o-chloroaniline [J]. Journal of Colloid and Interface Science, 2009,336 (2):675-678.
    [46]Yu Z K, Liao S J, Xu Y, et al. A remarkable synergic effect of polymer-anchored bimetallic palladium-ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene [J]. Journal of the Chemical Society-Chemical Communications, 1995, (11):1155-1156.
    [47]Kratky V, Kralik M, Mecarova M, et al. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes [J]. Applied Catalysis a-General,2002,235 (1-2): 225-231.
    [48]Yuan Q Keane M A. Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3:a consideration of HCl/catalyst interactions and solution pH effects [J]. Applied Catalysis B-Environmental,2004,52 (4):301-314.
    [49]Xia C H, Liu Y, Xu J, et al. Catalytic hydrodechlorination reactivity of monochlorophenols in aqueous solutions over palladium/carbon catalyst [J]. Catalysis Communications,2009,10 (5):456-458.
    [50]Xia C H, Liu Y, Zhou S W, et al. The influence of ion effects on the Pd-catalyzed hydrodechlorination of 4-chlorophenol in aqueous solutions [J]. Catalysis Communications,2009,10 (10):1443-1445.
    [51]Xia C H, Liu Y, Zhou S W, et al. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions:A promising approach to practical use in wastewater [J]. Journal of Hazardous Materials,2009,169 (1-3): 1029-1033.
    [52]Zhang C, Li X Y, Sun H J. Palladium-catalyzed hydrodechlorination of ary chlorides and its mechanism [J]. Inorganica Chimica Acta,2011,365 (1):133-136.
    [53]Witonska I, Krolak A. Catalytic hydrodechlorination of 2,4-dichlorophenol over Pd/SiO2 and Pd-Bi/SiO2 systems. Effect of the chemical nature of silica [J]. Przemysl Chemiczny,2011,90 (4):636-640.
    [54]Shao Y, Xu Z Y, Wan H Q, et al. Enhanced liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over mesoporous carbon supported Pd catalysts [J]. Catalysis Communications,2011,12 (15):1405-1409.
    [55]Jin Z H, Yu C, Wang X Y, et al. Liquid phase hydrodechlorination of chlorophenols at lower temperature on a novel Pd catalyst [J]. Journal of Hazardous Materials,2011, 186(2-3):1726-1732.
    [56]Gomez-Quero S, Cardenas-Lizana F, Keane M A. Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over Pd/Al2O3:Batch vs. continuous operation [J]. Chemical Engineering Journal,2011,166 (3):1044-1051.
    [57]Bonarowska M, Rarog-Pilecka W, Karpinski Z. The use of active carbon pretreated at 2173K as a support for palladium catalysts for hydrodechlorination reactions [J]. Catalysis Today,2011,169(1):223-231.
    [58]Simagina V I, Netskina O V, Tayban E S, et al. The effect of support properties on the activity of Pd/C catalysts in the liquid-phase hydrodechlorination of chlorobenzene [J]. Applied Catalysis A-General,2010,379 (1-2):87-94.
    [59]Xu L, Shen X X, Xiao Q, et al. Preparation, characterization and catalytic properties of Pd/Fe3O4-MCNT magnetically recyclable catalysts [J]. Acta Physico-Chimica Sinica,2011,27 (8):1956-1960.
    [60]Tu W X, Cao S J, Yang L P, et al. Modification effects of magnetic supports and bimetallic structures on palladium nanocluster catalysts [J]. Chemical Engineering Journal,2008,143 (1-3):244-248.
    [61]Cardenas-Lizana F, Gomez-Quero S, Hugon A, et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au [J]. Journal of Catalysis,2009,262 (2):235-243.
    [62]Wang C A, Qiu J S, Liang C H. Synthesis of Carbon Nanotubes-Supported Pd/SnO2 for the Hydrogenation of ortho-Chloronitrobenzene [J]. Chinese Journal of Catalysis, 2009,30 (3):259-264.
    [63]Vishwanathan V, Jayasri V, Basha P M, et al. Gas phase hydrogenation of ortho-chloronitrobenzene (O-CNB) to ortho-chloroaniline (O-CAN) over unpromoted and alkali metal promoted-alumina supported palladium catalysts [J]. Catalysis Communications,2008,9 (3):453-458.
    [64]Ilchenko I A, Bulatov A V, Uflyand I E, et al. Hydrogenation of chloronitrobenzenes on heterogenized Pd(Ⅱ) chelates [J]. Kinetics and Catalysis,1991, 32 (3):691-693.
    [65]Uflyand I E, Ilchenko I A, Sheinker V N, et al. Heterogenization of palladium(II) chelates on a sibunite [J]. Transition Metal Chemistry,1991,16 (3):293-295.
    [66]Yu Z K, Liao S J, Xu Y, et al. Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions [J]. Journal of Molecular Catalysis a-Chemical,1997,120 (1-3): 247-255.
    [67]Yang X L, Liu H F, Zhong H. Hydrogenation of o-chloronitrobenzene over polymer-stabilized palladium-platinum bimetallic colloidal clusters [J]. Journal of Molecular Catalysis a-Chemical,1999,147(1-2):55-62.
    [68]严新焕,许丹倩,楼芝英,et al.对氯硝基苯催化加氢合成对氯苯胺[J].中国医药工业杂志,2001,32(10):471-473.
    [69]罗雄军,严新焕,孙军庆,et al.非晶态Pd-B/Al2O3催化剂用于邻氯硝基苯加氢合成邻氯苯胺的研究[J].高校化学工程学报,2006,20(03):476-480.
    [70]Ma L, Chen S, Lu C S, et al. Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors [J]. Catalysis Today, 2011,173(1):62-67.
    [71]Li X N, Ma L, Lu C S, et al. Production of 3,4-dichloroaniline catalyst with 3,4-mirbane oil dichloride hydrogenation [P]. CN1817455,2006.
    [72]吴琼,张翔,张曼征,et al.Pd-Sn吸附树脂催化剂上对硝基氯苯选择加氢的研究[J].离子交换与吸附,1997,13(4):385-389.
    [73]吴琼,李翔,张曼征.Pd-Fe/吸附树脂催化剂的结构及其对卤代芳香硝基化合物的催化加氢性能[J].催化学报,1997,18(4):338-340.
    [74]Liu M H, Zhang J, Liu J Q, et al. Synthesis of PVP-stabilized Pt/Ru colloidal nanoparticles by ethanol reduction and their catalytic properties for selective hydrogenation of ortho-chloronitrobenzene [J]. Journal of Catalysis,2011,278 (1):1-7.
    [75]Liu X M, Chen J R, Zhao S L, et al. Selective hydrogenation of 2,5-dichloronitrobenzene catalyzed by polymer-stabilized Ru-Pt/gamma-Al2O3 bimetallic catalyst [J]. Chinese Journal of Catalysis,2005,26 (4):323-328.
    [76]Oubenali M, Vanucci Q Machado B, et al. Hydrogenation of p-Chloronitrobenzene over Nanostructured-Carbon-Supported Ruthenium Catalysts [J]. Chemsuschem,2011, 4 (7):950-956.
    [77]Pietrowski M. Selective hydrogenation of ortho-chloronitrobenzene over Ru and Ir catalysts under the conditions of the aqueous-phase reforming of bioethanol [J]. Green Chemistry,2011,13 (7):1633-1635.
    [78]Pietrowski M, Wojciechowska M. An efficient ruthenium-vanadium catalyst for selective hydrogenation of ortho-chloronitrobenzene [J]. Catalysis Today,2009,142 (3-4):211-214.
    [79]Pietrowski M, Wojciechowska M, The influence of preparation procedure on structural and surface properties of magnesium fluoride support and on the activity of ruthenium catalysts for selective hydrogenation of chloronitrobenzene. In Scientific Bases for the Preparation of Heterogeneous Catalysts:Proceedings of the 10th International Symposium, Gaigneaux, E. M.; Devillers, M.; Hermans, S.; Jacobs, P. A. Martens, J. A.; Ruiz, P., Eds.2010; Vol.175, pp 505-508.
    [80]Pietrowski M, Zielinski M, Wojciechowska M. Selective Reduction of Chloronitrobenzene to Chloroaniline on Ru/MgF2 Catalysts [J]. Catalysis Letters,2009, 128 (1-2):31-35.
    [81]Pietrowski M, Zielinski M, Wojciechowska M. High-selectivity hydrogenation of chloronitrobenzene to chloroaniline over magnesium fluoride-supported bimetallic ruthenium-copper catalysts [J]. Chemcatchem,2011,3 (5):835-838.
    [82]Yan X P, Liu M H, Liu H F, et al. Metal complex effect on the hydrogenation of o-chloronitrobenzene over polymer-stabilized colloidal ruthenium clusters [J]. Journal of Molecular Catalysis a-Chemical,2001,170 (1-2):203-208.
    [83]Yu W W, Liu H F. Singular modification effects of metal cations and metal complex ions on the catalytic properties of metal colloidal nanocatalysts [J]. Journal of Molecular Catalysis a-Chemical,2006,243 (1):120-141.
    [84]Yan X P, Liu M H, Liu H F, et al. Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts [J]. Journal of Molecular Catalysis a-Chemical,2001,169 (1-2):225-233.
    [85]刘新梅,樊光银,赵松林,et al.Sn4+离子修饰的Pd/γ-Al2O3催化卤代芳香硝基化合物选择性加氢[J].分子催化,2005,19(06):430-435.
    [86]Hirai Y, Miyata K. Halogenated aromatic amines-prepd by liquid phase hydrogenation of halogenated aromatic nitro cpds [P]. US4070401,1978.
    [87]Galvagno S, Donato A, Neri Q et al. Nitrobenzene Hydrogenation on Pt-Sn Catalysts [J]. Journal of Molecular Catalysis a-Chemical,1987,42 (3):379-387
    [88]Yang X L, Liu H F. Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters [J]. Applied Catalysis a-General, 1997,164(1-2):197-203.
    [89]吕连海,方郭,杜文强,et al.一种氯代芳香硝基化合物高选择性催化加氢制备氯代芳胺的方法[P].CN1919832 2007.
    [90]吕连海,方郭,辛俊娜,et al.一种高活性加氢催化剂纳米Ru/C的制备方法[P].CN1970143,2007.
    [91]Chen R Z, Du Y, Xing W H, et al. The effect of titania structure on Ni/TiO2 catalysts for p-nitrophenol hydrogenation [J]. Chinese Journal of Chemical Engineering, 2006,14 (5):665-669.
    [92]Li H, Xu Y, Liu J, et al. Hollow Ni-B amorphous alloy with enhanced catalytic efficiency prepared in emulsion system [J]. Journal of Colloid and Interface Science, 2009,334(2):176-182.
    [93]Mahata N, Cunha A F, Orfao J J M, et al. Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles [J]. Catalysis Communications, 2009,10 (8):1203-1206.
    [94]Liu H, Li R Y, Zhang M, et al. Hydrogenation of nitro compounds catalyzed by urushibara nickel catalysts [J]. Chinese Journal of Catalysis,2009,30 (7):606-612.
    [95]Liu H, Deng J, Li W. Synthesis of Nickel Nanoparticles Supported on Boehmite for Selective Hydrogenation of p-Nitrophenol and p-Chloronitrobenzene [J]. Catalysis Letters,2010,137 (3-4):261-266.
    [96]胡拖平,陈宏博,张学俊.一种催化加氢制备3,4-二氯苯胺的方法[P].CN1962608,2007.
    [97]Baumeister P, Scherrer W. Halogenated aromatic amine prodn. from nitro cpds. by hydrogenation-over raney nickel in solvent contg. formamidine salt as dehalogenation inhibitor [P]. US4960936-A,1990.
    [98]Kelly T S, C.Chatfield. Hydrogenation of nitrocompounds over Raney nickel and nickel powder catalysts [J]. Journal of the American Chemical Society,1975,59 (10): 529-538.
    [99]Baltzly R, Phillips A P. The catalytic hydrogenolysis of halogen compound [J]. Journal of the American Chemical Society,1946,68:261-265.
    [100]Naama L M. Dehalogenation inhibitor in hydrogenation of halonitrobenzenes [P]. EP2441650,1987.
    [101]Kaz M K, Ge B. Catalytic reduction of chloronitrobenzene isomers in the liquid phase [P]. JP10190489,1984.
    [102]Aubas P, Godard P. Process for the preparation of halogenated aromatic amines by hydrogenation of halogenated aromatic nitro compounds [P]. JP7349728,1981.
    [103]Chen J X, Yao N, Wang R J, et al. Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO2 catalysts prepared by sol-gel method [J]. Chemical Engineering Journal,2009,148(1):164-172.
    [104]Xiong J, Chen J X, Zhang J Y. Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts [J]. Catalysis Communications, 2007,8 (3):345-350.
    [105]Yao N, Chen J X, Zhang J X, et al. Influence of support calcination temperature on properties of Ni/TiO2 for catalytic hydrogenation of o-chloronitrobenzene to o-chloroaniline [J]. Catalysis Communications,2008,9 (6):1510-1516.
    [106]Meng X C, Cheng H Y, Fujita S, et al. Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: Significance of molecular interactions [J]. Journal of Catalysis,2010,269 (1):131-139.
    [107]熊峻,陈吉祥,张继炎.镍负载量对邻氯硝基苯加氢制邻氯苯胺Ni/TiO2催化剂性能的影响[J].催化学报,2006,27(7):579-584.
    [108]Molnar A, Smith G V, Bartok M, et al., Advances in Catalysis [M].1998, p 329.
    [109]Wang H M, Yu Z B, Chen H Y, et al. High activity ultrafine Ni-Co-B amorphous alloy powder for the hydrogenation of benzene [J]. Applied Catalysis A:General,1995, 129:L143-149.
    [110]王文静,严新焕,许丹倩,et a1. Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺[J].催化学报,2004,25(4):369-372.
    [111]Lin M H, Zhao B, Chen Y W. Hydrogenation of p-chloronitrobenzene over Mo-modified NiCoB nanoalloy catalysts:effect of Mo content [J]. Industrial & Engineering Chemistry Research,2009,48 (15):7037-7043.
    [112]Zhao B, Chou C J, Chen Y W. Hydrogenation of p-chloronitrobenzene on tungsten-modified NiCoB catalyst [J]. Industrial & Engineering Chemistry Research, 2010,49(4):1669-1676.
    [113]Zhao B, Chen Y W. Hydrogenation of p-chloronitrobenzene on Mo, La, Fe, and W-modified NiCoB nanoalloy catalysts [J]. Journal of Non-Crystalline Solids,2010, 356 (18-19):839-847.
    [114]Liu Y C, Huang C Y, Chen Y W. Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts [J]. Industrial & Engineering Chemistry Research,2006,45 (1):62-69.
    [115]Chen L F, Chen Y W. Effect of additive (W, Mo, and Ru) on Ni-B amorphous alloy catalyst in hydrogenation of p-chloronitrobenzene [J]. Industrial & Engineering Chemistry Research,2006,45 (26):8866-8873.
    [116]Cardenas-Lizana F, Gomez-Quero S, Idriss H, et al. Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2[J]. Journal of Catalysis, 2009,268 (2):223-234.
    [117]Cardenas-Lizana F, Gomez-Quero S, Keane M. Gas phase hydrogenation of m-dinitrobenzene over alumina supported Au and Au-Ni alloy [J]. Catalysis Letters, 2009,127 (1-2):25-32.
    [118]Cardenas-Lizana F, Gomez-Quero S, Perret N, et al. Support effects in the selective gas phase hydrogenation of p-chloronitrobenzene over gold [J]. Gold Bulletin, 2009,42 (2):124-132.
    [119]Keane M A, Gomez-Quero S, Cardenas-Lizana F, et al. Alumina-supported Ni-Au: surface synergistic effects in catalytic hydrodechlorination [J]. Chemcatchem,2009,1 (2):270-278.
    [120]He D P, Shi H, Wu Y, et al. Synthesis of chloroanilines:selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst [J]. Green Chemistry,2007,9 (8):849-851.
    [121]Hao Y F, Liu R X, Meng X C, et al. Deactivation of Au/TiO2 catalyst in the hydrogenation of o-chloronitrobenzene in the presence of CO2 [J]. Journal of Molecular Catalysis a-Chemical,2011,335 (1-2):183-188.
    [122]Cardenas-Lizana F, Lamey D, Gomez-Quero S, et al. Selective three-phase hydrogenation of aromatic nitro-compounds over beta-molybdenum nitride [J]. Catalysis Today,2011,173 (1):53-61.
    [123]Cardenas-Lizana F, Gomez-Quero S, Perret N, et al. beta-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene [J]. Catalysis Science & Technology,2011,1 (5):794-801.
    [124]Xing L, Qiu J S, Liang C H, et al. A new approach to high performance Co/C catalysts for selective hydrogenation of chloronitrobenzenes [J]. Journal of Catalysis, 2007,250 (2):369-372.
    [125]Li B J, Li H B, Xu Z. Experimental evidence for the interface interaction in Ag/C(60) nanocomposite catalyst and its crucial influence on catalytic performance [J]. Journal of Physical Chemistry C,2009,113 (52):21526-21530.
    [126]Figueras F, Coq B. Hydrogenation and hydrogenolysis of nitro-, nitroso-, azo-, azoxy-and other nitrogen-containing compounds on palladium [J]. Journal of Molecular Catalysis a-Chemical,2001,173 (1-2):223-230.
    [127]Zeng Y K, Zeng L H, Zhang Z X. In Influence of adsorption process on Pt/C catalysts,第三届国际贵金属会议——“铂金在现代工业、氢能源及未来生活中的应用”,中国陕西西安,中国陕西西安,2008.
    [128]Chen Y C, Tan C S. Hydrogenation of p-chloronitrobenzene by Ni-B nanocatalyst in CO2-expanded methanol [J]. Journal of Supercritical Fluids,2007,41 (2):272-278.
    [129]Xiao C X, Wang H Z, Mu X D, et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids-I. Platinum catalyzed selective hydrogenation of o-chloronitrobenzene [J]. Journal of Catalysis,2007,250 (1):25-32.
    [130]Xi C Y, Cheng H Y, Hao J M, et al. Hydrogenation of o-chloronitrobenzene to o-chloroaniline over Pd/C in supercritical carbon dioxide [J]. Journal of Molecular Catalysis a-Chemical,2008,282 (1-2):80-84.
    [131]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3 [J]. Catalysis Communications,2008,9 (3):475-481.
    [132]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts [J]. Applied Catalysis a-General,2008,334 (1-2):199-206.
    [133]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3 [J]. Chemsuschem, 2008,1 (3):215-221.
    [134]Menini C, Park C, Brydson R, et al. Low-temperature (553 K) catalytic growth of highly ordered carbon filaments during hydrodechlorination reactions [J]. Journal of Physical Chemistry B,2000,104 (18):4281-4284.
    [1]Wang X D, Liang M H, Zhang J L, et al. Selective hydrogenation of aromatic chloronitro compounds [J]. Current Organic Chemistry,2007,11 (3):299-314.
    [2]Yuan X, Yan N, Xiao C X, et al. Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids [J]. Green Chemistry,2010,12 (2): 228-233.
    [3]Liang M H, Wang X D, Liu H Q, et al. Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes [J]. Journal of Catalysis,2008,255 (2):335-342.
    [4]Liang C H, Han J G, Shen K H, et al. Palladium nanoparticle microemulsions: Formation and use in catalytic hydrogenation of o-chloronitrobenzene [J]. Chemical Engineering Journal,2010,165 (2):709-713.
    [5]Quan L H, Hui L M, Chao X, et al. An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene [J]. Journal of Molecular Catalysis a-Chemical,2009,308 (1-2):79-86.
    [6]Sikhwivhilu L M, Coville N J, Pulimaddi B M, et al. Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts [J]. Catalysis Communications,2007,8 (12):1999-2006.
    [7]Meng X C, Cheng H Y, Fujita S, et al. Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2:Significance of molecular interactions [J]. Journal of Catalysis,2010,269 (1):131-139.
    [8]Chen J X, Yao N, Wang R J, et al. Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO2 catalysts prepared by sol-gel method [J]. Chemical Engineering Journal,2009,148 (1):164-172.
    [9]Zuo B J, Wang Y, Wang Q L, et al. An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles [J]. Journal of Catalysis,2004,222 (2):493-498.
    [10]Pietrowski M, Wojciechowska M. An efficient ruthenium-vanadium catalyst for selective hydrogenation of ortho-chloronitrobenzene [J]. Catalysis Today,2009,142 (3-4):211-214.
    [11]Liu M H, Yu W Y, Liu H F. Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts [J]. Journal of Molecular Catalysis a-Chemical,1999,138 (2-3):295-303.
    [12]Cardenas-Lizana F, Gomez-Quero S, Hugon A, et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au [J]. Journal of Catalysis,2009,262 (2):235-243.
    [13]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3 [J]. Catalysis Communications,2008,9 (3):475-481.
    [14]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and AU/Al2O3 [J]. Chemsuschem, 2008,1 (3):215-221.
    [15]Han X X, Chen Q, Zhou R X. Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu [J]. Journal of Molecular Catalysis a-Chemical,2007,277 (1-2):210-214.
    [16]Han X X, Zhou R X, Lai G H, et al. Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts [J]. Catalysis Today,2004,93 (5):433-437.
    [17]Tijani A, Coq B, Figueras F. Hydrogenation of para-chloronotrobenzene over suppored ruthenium-based catalysts [J]. Applied Catalysis,1991,76 (2):255-266.
    [18]Han X X, Zhou R X, Lai G H, et al. Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts [J].Journal of Molecular Catalysis a-Chemical,2004,209 (1-2):83-87.
    [19]Tu W X, Liu H F, Tang Y. The metal complex effect on the selective hydrogenation of m-and p-chloronitrobenzene over PVP-stabilized platinum colloidal catalysts [J]. Journal of Molecular Catalysis a-Chemical,2000,159(1):115-120.
    [20]Xiong J, Chen J X, Zhang J Y. Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts [J]. Catalysis Communications,2007,8 (3):345-350.
    [21]Yao N, Chen J X, Zhang J X, et al. Influence of support calcination temperature on properties of Ni/TiO2 for catalytic hydrogenation of o-chloronitrobenzene to o-chloroaniline [J]. Catalysis Communications,2008,9 (6):1510-1516.
    [22]Menini C, Park C, Shin E J, et al. Catalytic hydrodehalogenation as a detoxification methodology [J]. Catalysis Today,2000,62 (4):355-366.
    [23]Mckenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts [J]. Chemical Communications, 2011,47 (8):2351-2353.
    [24]Macnab J I, Anderson R B. The structure of Raney nickel:VII. Ferromagnetic properties [J]. Journal of Catalysis 1973,29 (2):328-337.
    [25]Renouprez A J, Fouilloux P, Coudurier Q et al. Different species of hydrogen chemisorbed on Raney nickel studied by neutron inelastic spectroscopy [J]. Journal of the Chemical Society, Faraday Transactions,1977,73 (1):1-10.
    [26]Shin E J, Spiller A, Tavoularis G, et al. Chlorine-nickel interactions in gas phase catalytic hydrodechlorination:catalyst deactivation and the nature of reactive hydrogen [J]. Physical Chemistry Chemical Physics,1999,1 (13):3173-3181.
    [27]Roland U, Salzer R, Braunschweig T, et al. Investigations on hydrogen spillover. Part 1.—Electrical conductivity studies on titanium dioxide [J]. Journal of the Chemical Society, Faraday Transactions,1995,91:1091-1095.
    [28]Shen J H, Chen Y W. Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene [J]. Journal of Molecular Catalysis A-Chemical,2007,273 (1-2):265-276.
    [29]胡拖平,陈宏博,李海泓.氯代芳香硝基化合物催化加氢研究[J].化学工程师,2000,(05):12-14.
    [30]王闯.碳纳米管负载金属催化剂的制备及其催化氯代硝基苯加氢反应性能.博士论文,大连理工大学,2009.
    [31]Baumeister P, Blaser H U, Scherrer W. Chemoselective hydrogenation of aromatic chloronitro compounds with amidine modified nickel catalysts [J]. Studies in Surface Science and Catalysis,1991,59:321-328.
    [32]Zaera F. Outstanding mechanistic questions in heterogeneous catalysis [J]. Journal of Physical Chemistry B,2002,106 (16):4043-4052.
    [33]Chen B, Dingerdissen U, Krauter J G E, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals [J]. Applied Catalysis A-General,2005,280 (1):17-46.
    [34]Wang X D, Liang M H, Liu H Q, et al. Selective hydrogenation of bromonitrobenzenes over Pt/gamma-Fe2O3 [J]. Journal of Molecular Catalysis A-Chemical,2007,273 (1-2):160-168.
    [1]Han X X, Zhou R X, Lai G H, et al. Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts [J]. Catalysis Today,2004,93 (5):433-437.
    [2]Han X X, Chen Q, Zhou R X. Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu [J]. Journal of Molecular Catalysis a-Chemical,2007,277 (1-2):210-214.
    [3]Liang M H, Wang X D, Liu H Q, et al. Excellent catalytic properties over nanocomposite catalysts for selective hydrogenation of halonitrobenzenes [J]. Journal of Catalysis,2008,255 (2):335-342.
    [4]Quan L H, Hui L M, Chao X, et al. An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene [J]. Journal of Molecular Catalysis a-Chemical,2009,308 (1-2):79-86.
    [5]Xu Q, Liu X M, Chen J R, et al. Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/gamma-Al2O3[J]. Journal of Molecular Catalysis a-Chemical,2006,260 (1-2):299-305.
    [6]Kratky V, Kralik M, Mecarova M, et al. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes [J]. Applied Catalysis a-General,2002,235 (1-2): 225-231.
    [7]Ukisu Y. Highly enhanced hydrogen-transfer hydrodechlorination and hydrogenation reactions in alkaline 2-propanol/methanol over supported palladium catalysts [J]. Applied Catalysis a-General,2008,349 (1-2):229-232.
    [8]Xia C H, Liu Y, Xu J, et al. Catalytic hydrodechlorination reactivity of monochlorophenols in aqueous solutions over palladium/carbon catalyst [J]. Catalysis Communications,2009,10 (5):456-458.
    [9]Coq B, Tijani A, Figueras F. Particle-size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum alumina catalysts [J]. Journal of Molecular Catalysis,1991,68 (3):331-345.
    [10]Chen S, Ma L, Lu C S, et al. Synthesis of 3,4-dichloroaniline via selective hydrogenation over Pd/C catalyst [J]. Industrial Catalysis,2007,15 (9):33-37.
    [11]Yang Y F, Zhou Y H, Cha C, et al. A new method for the preparation of highly dispersed metal/carbon catalyst—Pd/C catalyst and its properties [J]. Electrochemica Acta,1993,38 (15):2333-2341.
    [12]Pernicone N, Cerboni M, Prelazzi G, et al. An investigation on Pd/C industrial catalysts for the purification of terephthalic acid [J]. Catalysis Today,1998,44 (1): 129-135.
    [13]Matsunuma S. Theoretical simulation of resonance Raman bands of amorphous carbon [J]. Thin Solid Films,1997,306 (1):17-22.
    [14]Mernagh T P, Cooney R P, Johnson R A. Raman spectra of graphon carbon black [J]. Carbon,1984,22 (1):39-42.
    [15]Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobe studies on carbon materials [J]. Carbon,1994,32 (8):1523-1532.
    [16]梁秋霞,马磊,郑遗凡,et al.浸渍法制备Pd/C催化剂过程中Pd前驱体的平衡吸附量与吸附态[J].催化学报,2008,29(2):145-152.
    [17]Roman-Martinez M C, Cazorla-Amoros D, Linares-Solano A, et al. Metal-support interaction in Pt/C catalysts, influence of the support surface-chemistry and the metal precursor [J]. Carbon,1995,33 (1):3-13.
    [18]Czaran E, Finster J, Schnabel H K H. Die wechselwirkung zwischen trageroberflache und platinverbindungen bei der katalysatorherstellung [J]. Zeitschrift fur Anorganische und Allgemeine Chemie,1978,443(1):175-184.
    [19]Simonov P A, Romanenko A V, Prosvirin I P, et al. On the nature of the interaction of H2PdC14 with the surface of graphite-like carbon materials [J]. Carbon,1997,35 (1): 73-82.
    [20]Cabiac A, Cacciaguerra T, Trens P, et al. Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnarnaldehyde hydrogenation [J]. Applied Catalysis a-General,2008,340 (2):229-235.
    [21]Molnar A, Sarkany A, Varga M. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity [J]. Journal of Molecular Catalysis a-Chemical, 2001,173(1-2):185-221.
    [1]Cardenas-Lizana F, Lamey D, Gomez-Quero S, et al. Selective three-phase hydrogenation of aromatic nitro-compounds over beta-molybdenum nitride [J]. Catalysis Today,2011,173 (1):53-61.
    [2]Cardenas-Lizana F, Gomez-Quero S, Perret N, et al. beta-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene [J]. Catalysis Science & Technology,2011,1 (5):794-801.
    [3]Xiao C X, Wang H Z, Mu X D, et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids-Ⅰ. Platinum catalyzed selective hydrogenation of o-chloronitrobenzene [J]. Journal of Catalysis,2007,250 (1):25-32.
    [4]Meng X C, Cheng H Y, Fujita S, et al. Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: Significance of molecular interactions [J]. Journal of Catalysis,2010,269 (1):131-139.
    [5]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3 [J]. Catalysis Communications,2008,9 (3):475-481.
    [6]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3 [J]. Chemsuschem, 2008,1 (3):215-221.
    [7]Wang X D, Liang M H, Zhang J L, et al. Selective hydrogenation of aromatic chloronitro compounds [J]. Current Organic Chemistry,2007,11 (3):299-314.
    [8]Tang P K, Intermediate Chemistry and Technology [B]. Chemical Industry Press: Beijing,1984; p 160.
    [9]Pietrowski M, Zielinski M, Wojciechowska M. Selective Reduction of Chloronitrobenzene to Chloroaniline on Ru/MgF2 Catalysts [J]. Catalysis Letters,2009, 128 (1-2):31-35.
    [10]Ning J, Xu J, Liu J, et al. A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol [J]. Catalysis Communications,2007,8 (11):1763-1766.
    [11]Yeo G A, Ford T A. Abinitio molecular-orbital calculations of the infrared-spectra of hydrogenation-bonded complexes of water, ammonia and hydroxylamine:7. the water-hydroxylamine complex [J]. Theochem-J. Mol. Struct.,1991,81 (1-2):123-136.
    [12]Politzer P, Murray J S, Concha M C. Computational characterization of the hydroxylamino (-NH-OH) group [J]. J Phys Org Chem,2008,21 (2):155-162.
    [13]Maity P, Basu S, Bhaduri S, et al. Superior performance of a nanostructured platinum catalyst in water:Hydrogenations of alkenes, aldehydes and nitroaromatics [J]. Advanced Synthesis & Catalysis,2007,349 (11-12):1955-1962.
    [14]Jorge M, Natalia M, Cordeiro D S. Intrinsic structure and dynamics of the water/nitrobenzene interface [J]. Journal of Physical Chemistry C,2007,111 (47): 17612-17626.
    [15]Meng X C, Cheng H Y, Fujita S, et al. An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines [J]. Green Chemistry,2011,13 (3):570-572.
    [16]Yao N, Chen J X, Zhang J X, et al. Influence of support calcination temperature on properties of Ni/TiO2 for catalytic hydrogenation of o-chloronitrobenzene to o-chloroaniline [J]. Catalysis Communications,2008,9 (6):1510-1516.
    [17]Bertero N M, Trasarti A F, Apesteguia C R, et al. Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2:A comprehensive study of the phenomenon [J]. Applied Catalysis a-General,2011,394 (1-2):228-238.
    [18]Marcus Y. The properties of organic liquids that are relevant to their use as solvating solvents [J]. Chemical Society Reviews,1993,22 (6):409-416.
    [19]Reichardt C. Solvatochromic dyes as solvent polarity indicators [J]. Chemical Reviews,1994,94 (8):2319-2358.
    [20]Molnar A, Sarkany A, Varga M. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity [J]. Journal of Molecular Catalysis a-Chemical, 2001,173 (1-2):185-221.
    [21]Zuo B J, Wang Y, Wang Q L, et al. An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles [J]. Journal of Catalysis,2004,222 (2):493-498.
    [22]Spinace E V, Vaz J M. Liquid-phase hydrogenation of benzene to cyclohexene catalyzed by Ru/SiO2 in the presence of water-organic mixtures [J]. Catalysis Communications,2003,4 (3):91-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700