碳纳米管负载金属催化剂的制备及其催化氯代硝基苯加氢反应性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代硝基苯加氢合成氯代苯胺是一类重要的有机合成单元反应,具有非常高的工业价值。多年来,高性能氯代硝基苯加氢催化剂的研制和开发一直是研究的热点之一,备受国内外学者的广泛关注。本论文研究了碳纳米管(CNTs)负载Pt及其双金属PtM(M=Fe、Co、Ni、Cu)催化剂催化氯代硝基苯加氢的催化性能,分析了影响Pt/CNTs和PtM/CNTs催化性能的关键因素。针对Pd/CNTs催化剂催化氯代硝基苯加氢选择性低的问题制备了复合型双金属催化剂Pd/SnO_2/CNTs,研究了该催化剂对氯代硝基苯选择加氢的催化性能,考察了影响其催化活性和选择性的主要参数,并分析了该催化剂选择性优于Pd/CNTs的主要原因。针对贵金属资源稀缺、价格昂贵的问题,制备了碳纳米管负载过渡非贵金属Ni、Co催化剂,研究了制备条件对其催化氯代硝基苯加氢活性的影响。此外,初步探讨了碳纳米管负载Ag催化剂在氯代硝基苯选择加氢反应中应用的可行性。
     研究结果表明,Pt/CNTs及PtM/CNTs双金属催化剂具有很好的邻氯硝基苯选择加氢反应性能。活化温度对Pt/CNTs催化剂粒径大小及氯代硝基苯选择加氢催化性能影响显著。随着活化温度的升高,Pt催化剂平均粒径逐渐增大,催化邻氯硝基苯加氢活性先增加后降低,400℃活化的Pt/CNTs催化剂催化活性最高。对于双金属PtNi/CNTs催化剂,浸渍顺序对其催化性能影响较大:共浸渍法制备的Pt-Ni/CNTs催化剂,其催化活性随着Ni含量的增加逐渐降低;而先浸渍Ni前驱体再还原后浸渍Pt前驱体再还原得到的Pt/Ni/CNTs催化剂催化活性高于单金属Pt/CNTs催化剂,当Ni含量为0.15%时Pt/Ni/CNTs催化剂催化活性最高。采用该方法制备的Pt/Fe/CNTs,Pt/Co/CNTs,Pt/Cu/CNTs催化剂也具有较高的氯代硝基苯加氢催化活性。
     Pd/SnO_2/CNTs能够有效的抑制o-CAN的脱氯,在保持较高催化活性的条件下,提高目标产物的选择性。Sn/Pd摩尔比是影响Pd/SnO_2/CNTs催化性能的主要参数。Sn/Pd=11时,Pd/SnO_2/CNTs催化剂具有最好的催化活性,在常压60℃反应60min,o-CNB转化率为96%,与相同载量浸渍法制备的2.4%Pd/CNTs催化活性相当。但当o-CNB完全反应完时,Pd/SnO_2/CNTs催化剂上o-CAN的选择性可以达到95%,而Pd/CNTs催化剂上o-CAN的选择性只有22%。SnO_2的调变作用是Pd/SnO_2/CNTs催化剂选择性高的主要原因。
     Ni/CNTs催化剂表现出较高的氯代硝基苯加氢活性。通过比较浸渍法、水溶液中沉积沉淀法以及多元醇溶剂中沉积沉淀法,发现催化剂的制备方法及条件对其催化加氢性能影响较大。多元醇溶剂中沉积沉淀法制备的Ni/CNTs催化剂催化活性最高。溶剂种类及沉淀温度是影响多元醇溶剂中沉积沉淀法制备NiCNTs催化剂的组成、粒径大小以及o-CNB加氢性能的重要参数。乙二醇为溶剂不同沉淀温度下制备的Ni/CNTs催化剂Ni含量相近;120℃和160℃制备的Ni/CNTs催化剂平均粒径最小,分别为5.1nm和5.7nm,80℃制备的Ni/CNTs催化剂平均粒径较大,为10.7 nm;而80℃制备的Ni/CNTs催化剂催化活性最高,在140℃,2 MPa下反应30 min,o-CNB的转化率达到91%,o-CAN的选择性为97%。丙三醇溶剂中沉积沉淀法制备Ni/CNTs催化剂,Ni含量随着沉淀温度升高而增加,但均低于相同温度下乙二醇溶剂中制备的Ni/CNTs催化剂中Ni含量;Ni/CNTs催化剂的催化活性随着沉淀温度升高而增加,160℃制备的Ni/CNTs催化剂催化活性最高,o-CNB的转化率为72%,o-CAN的选择性为97%。
     Ni/CNTs催化剂的催化性能优于Ni/AC,其可能的原因是载体与金属之间相互作用不同,并且碳纳米管独特的中孔结构有利于反应的传质。
     Ag/CNTs催化剂具有一定的氯代硝基苯加氢催化活性。采用沉积沉淀法可以制备催化活性较好的Ag/CNTs催化剂,制备过程中溶液pH值、AgNO_3浓度以及沉淀温度是影响Ag/CNTs催化性能的关键因素。
The hydrogenation of chloronitrobenzene to chloraniline is one of the most important organism unit reactions.It is of great industrial value.Therefore,much attention has been paid to the design and synthesis of catalysts with excellent catalytic properties for chloronitrobenzene hydrogenation reactions.In this thesis,the preparation of carbon nanotubes supported metal catalysts and their catalytic performances in the hydrogenation of CNBs have been investigated.
     Carbon nanotubes supported Pt and PtM(M=Ni,Co,Fe,Cu) catalysts exhibit good o-CNB hydrogenation properties.It is found that the activation temperature is one of the key factors that affect both the nanopartiele size and the catalytic performance of Pt/CNTs.The Pt particles size increases with temperature.Pt/CNTs catalyst activated at 400℃shows the highest catalytic activity in o-CNB hydrogenation reaction.For PtNi/CNTs bimetallic catalysts,the effect of impregnation sequence is found to influence the hydrogenation acitivty remarkably.The catalytic acitivity of Pt-Ni/CNTs catalysts prepared with a fixed Pt loading using the co-impregnation method decreases with Ni loading.However,for the Pt/Ni/CNTs catalysts with Ni loading ranging from 0.05~0.45%,prepared by impregnation of Ni precursor and reduction,followed by the impregnation of Pt precursor and reduction,the catalytic activity is higher than Pt/CNTs catalyst.The catalytic activity is the highest when Ni loading is 0.15%.Pt/Fe/CNTs,Pt/Co/CNTs and Pt/Cu/CNTs catalysts also have excellent activities for o-CNB hydrogenation.Moreover,Pt/CNTs and Pt/M/CNTs catalysts are found to have good selecticity toward o-CAN.
     Pd/SnO_2/CNTs catalysts with different Sn/Pd molar ratios have been synthesized and tested in the hydrogenation of CNBs.The results show that very good o-CAN selectivity can be obtained over Pd/SnO_2/CNTs catalysts,whereas the catalytic activity depends on the Sn/Pd ratio.Pd/SnO_2/CNTs with Sn/Pd is 11 has the highest activity,with 96%o-CNB conversion at 1 atm and 60℃,which is comparable to that of Pd/CNTs catalyst prepared via the impregnation method.However,the o-CAN selectivity over Pd/SnO_2/CNTs is much higher with 95%o-CAN selectivity when o-CNB is completely consumed,while the o-CAN selectivity is only 22%over Pd/CNTs catalyst.The coordination of SnO_2 is responsible for the relative high o-CAN selectivity.
     Ni/CNTs are also ideal catalysts for o-CNB hydrogenation reactions.Both the preparation methods and conditions influence the activity of the as-obtained Ni/CNTs catalysts greatly. Based on the comparison results of different methods,it is found that the Ni/CNTs catalyst prepared using deposition-precipitation(DP) in polyol shows the highest catalytic activity. The precipitation temperature and types of solvent are crucial factors that affect the properties of Ni/CNTs catalyst.For Ni/CNTs prepared using DP in ethylene glycol(EG),the Ni content are similar at different precipitation temperatures,however,the Ni particle sizes as well as the catalytic properties vary a lot.The Ni nanoparticle sizes are smaller for Ni/CNTs prepared via DP in EG at the precipitation temperature of 120℃and 160℃,5.1 and 5.7 nm respectively. Ni/CNTs catalysts obtained at 80℃exhibits the highest activity,the conversion of o-CNB can reach 91%with 97%o-CAN selectivity at 2 MPa,140℃in 30 min.Glycerol has also been used as a solvent to prepare Ni/CNTs catalyst,and the results show that both the Ni content and the catalytic activity increase with the precipitation temperatures.
     Ni/CNTs catalysts show better activity than Ni/AC,which is probably due to the different metal-support interaction and the unique electronic properties of CNTs.Moreover,the mesepore structure of CNTs also favors the mass transfer of the reactants.
     Ag/CNTs catalysts have been prepared via deposition precipitation method,and the feasibility of the as-synthesized Ag/CNTs catalysts for o-CNB hydrogenation has been investigated.The results show that the hydrodechlorination can be depressed to some degree over Ag/CNTs catalyst,implying that Ag/CNTs is of potential as selective catalyst for the hydrogenation of CNBs.
引文
[1]Kroto H W,Heath J R,O'Brien S C et al.C60:Buckyminister-fullerene.Nature,1985,318:162-163.
    [2]Iijima S.Helical microtubules of graphitic carbon.Nature,1991,354:56-58.
    [3]Wiles P G,Abrahamson J.Carbon fiber layers on arc electrodes—Ⅰ:Their properties and cool-down behavior.Carbon,1978,16(5):341-349.
    [4]Jung S M,Hahn J,Jung H,et al.Clean carbon nanotube field emitters aligned horizontally.Nano Letter.2006,6(7):1569-1573.
    [5]Yoon B J,Hong E H,Jee S E,et al.Fabrication of flexible carbon nanotube field emitter array by direct microwave irradiation on organic polymer substrate.Journal of the American Chemical Society.2005,127(23):8234-8235.
    [6]Hou P X,Yang Q H,Bai S,et al.Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes.Journal of Physical Chemistry B.2002,106 (5):963-966.
    [7]Yoo E,Gao L,Komatsu T,et al.Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts.Journal of Physical Chemistry B.2004(49),108:18903-18907.
    [8]Hu J Q,Bando Y,Zhan J H,et al.Carbon nanotubes as nanoreactor for fabrication of single-crystalline Mg_3N_2 nanowires.Nano Letter.2006,6(6):1136-1140.
    [9]Chambers A,Nemes T,Rodriguez N M,et al.Catalytic behavior of graphite nanofiber supported nickel particles.1.Comparison with other support media.Journal of Physical Chemistry B.1998,102(12):2251-2258.
    [10]Park C,Baker R.T.K.Catalytic behavior of graphite nanofiber supported nickel particles.2.The influence of the nanofiber structure.Journal of Physical Chemistry B.1998,102(26):5168-5177.
    [11]Planeix J M,Coustel N,Coq B,et al.Application of carbon nanotubes as support in heterogeneous catalysis.Journal of the American Chemical Society.1994,116(17):7935-7936.
    [12]Chen Y,Liu H P,Ye T,et al.DNA-directed assembly of single-wall carbon nanotubes.Journal of the American Chemical Society.2007,129(28):8696-8697.
    [13]Napier M E,Hull D 0,Thorp H H.Electrocatalytic oxidation of DNA-wrapped carbon nanotubes.Journal of the American Chemical Society.2005,127(34):11952-11953.
    [14]Qiu J S,Li Q X,Wang Z Y,et al.CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide.Carbon,2006,44(12):2565-2568.
    [15]Qiu J S,Wang Z Y,Zhao Z B,et al.Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere.Fuel,2007,86 (1-2):282-286.
    [16]Zhao Z B,Qu J Y,Qiu J S,et al.Water-assisted fabrication of aligned microsized carbon tubes made of self-assembled multi-wall carbon nanotubes.Chemical Communication.2006,6(6):594-596.
    [17]Nhut J M,Pesant L,Tessonnier J P,et al.Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis.Applied Catalysis A:General.2003,254 (2):345-363.
    [18]Bessel CA,Laubernds K,Rodriguez NM,et al.Graphite nanof ibers as an electrode for fuel cell applications.Journal of Physical Chemistry B.2002,105(6):1115-1118.
    [19]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [20]朱宏伟,吴德海,徐才录.碳纳米管.第一版ed.北京:机械工业出版社,2003.
    [21]Holt J K,Park H G,Wang Y M,et al.Fast mass transport through sub-2-nanometer carbon nanotubes.Science.2006,312:1034-1037.
    [22]郭贵全.聚合物改性碳纳米管及其在催化、生物学领域的应用:博士学位论文.上海:复旦大学,2007.
    [23]Zhao T J,Sun W Z,Gu X Y,et al.Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene.Applied Catalysis A:General.2007,323:135-146.
    [24]Luo J Z,Gao L Z,Leung Y L,et al.The decomposition of NO on CNTs and 1 wt%Rh/CNTs.Catalysis Letters.2000,66(1-2):91-97.
    [25]Chen H B,Lin J D,Cai Y,et al.Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure.Appllied Surface Science.2001,180(3-4):328-335.
    [26]Liang C H,Li Z L,Qiu J S,et al.Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis.Journal of Catalysis.2002,211(1):278-282.
    [27]Zhang Y,Zhang H B,Lin G D,et al.Preparation,Characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst.Applied Catalysis A:General.1999,187(2):213-224.
    [28]Bezemer G L,Bitter J H,Kuipers H P C E,et al.Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts.Journal of the American Chemical Society.2006,128(12):3956-3964.
    [29]Li W Z,Liang C H,Qiu J S.et al.Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell.Carbon.2002,40(5):787-803.
    [30]Li W Z,Liang C H,Zhou W J,et al.Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells.Journal of Physical Chemistry B.2003,107(26):6292-6299.
    [31]Liang Y M,Zhang B L,Zhang Z H,et al.Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells.Carbon,2005,43(15):3144-3152.
    [32]Pham-Huu C,Keller N,Charbonniere L J et al.Carbon nanofiber supported palladium catalyst for liquid-phase reactions.An active and selective catalyst for hydrogenation of C=C bonds.Chemical Communication.2000,(19):1871-1872.
    [33]Tessonnier J P,Pesant L,Ehret G,et al.Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde.Applied Catalysis A:General.2005,288(1-2):203-210.
    [34]Lordi V,Yao N,Wei J.Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst.Chemistry of Material.2001,13(3):733-737.
    [35]Li Y,Lai G H,Zhou R X.Carbon nanotubes supported Pt-Ni catalysts and their properties for the liquid phase hydrogenation of cinnamaldehyde to hydrocinnamaldehyde.Applied surface science.2007,253(11):4978-4984.
    [36]Li Y,Zhu P F,Zhou R X.Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts.Applied surface science.2008,254(9):2609-2614.
    [37]Li Y,Li Z G,Zhou R X.Bimetallic Pt-Co catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol:preparation and characterization.Journal of Molecular Catalysis A:Chemical,2008,279(1):140-146.
    [38]Ma H X,Wang L C,Chen L Y,et al.Pt nanoparticles deposited over carbon nanorubes for selective hydrogenation of cinnamaldehyde.Catalysis Communication.2006,8(3):452-456.
    [39]Liu Z T,Wang C X,Liu Z W,et al.Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes:Insights into the tube-size effects.Applied Catalysis A:General.2008,344(1-2):114-123.
    [40]Guo G H,Qin F,Yang D et al.Synthesis of platinum nanoparticles supported on poly(acrylic acid) grafted MWNTs and their hydrogenation of citral.Chemistry of Material.2008,20(6):2291-2297.
    [41]吕德义,徐铸德,徐丽萍等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用.浙江工业大学学报.2002,30(5):464-466.
    [42]Zhao Y,Li C H,Yu Z X,et al.Effect of microstructures of Pt catalysts supported on carbon nanotubes(CNTs) and activated carbon(AC) for nitrobenzene hydrogenation.Materials Chemistry and Physics.2007,103(2-3):225-229.
    [43]房永彬.载体对Ni-B催化剂邻氯硝基苯液相加氢性能的影响.工业催化.2006,14(10):59-61.
    [44]房永彬.负载Pt-B非晶态催化剂的氯代硝基苯加氢性能.工业催化.2007,15(11):35-37.
    [45]Han X X,Chen Q,Zhou R X.Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn,Fe,Co,Ni and Cu.Journal of Molecular Catalysis A:Chemical.2007,277(1-2):210-214.
    [46]Park C,Baker R T K.Catalytic behavior of graphite nanofiber supported nickel particles.3.The effect of chemical blocking on the performance of the system.Journal of Physical and Chemistry B.1999,103(13):2453-2459.
    [47]Dominguez S D,Murcia A B,Pradhan B K,et al.Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on carbon materials.Journal of Physical and Chemistry C.2008,112(10):3827-3834.
    [48]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification.Chemistry of Material.1998,10(3):718-722.
    [49]Bitter J H,Van der Lee M K,Slotboom A G T,et al.Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipitation.Catalysis Letter.2003,89(1-2):139-142.
    [50]Van der Lee M K,Van Dillen A J,Bitter J H,et al.Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts.Journal of the American Chemical Society.2005,127(39):13573-13582.
    [51]Li W Z,Liang C H,Zhou W J,et al.Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel ceils.Carbon.2004.42(2):436-439.
    [52]陈卫祥,韩贵,Yang L J,et al.Pt/CNT纳米催化剂的微波快速合成及其对甲醇电化学氧化的电催化性能.高等学校化学学报.2003,24(12):2285-2287.
    [53]Raghuveer M S,Agrawal S,Bishop N,et al.Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles.Chemistry of Material.2006,18(6):1390-1393.
    [54]Wang Y,Xu X,Tian Z Q,et al.Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution.Chemistry:A European Journal.2006,12(9):2542-2549.
    [55]Lu J S.Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles.Carbon.2007,45(8):1599-1605.
    [56]Ang L M,Hor T S A,Xu G Q,et al.Electroless plating of metals onto carbon nanotubes activated by a single-step activation method.Chemistry of Material.1999,11(8):2115-2118.
    [57]Ang L M,Hor T S A,Xu G Q,et al.Decoration of activated carbon nanotubes with copper and nickel.Carbon.2000,38(3):363-372.
    [58]Ma X C,Li X,Lun N,et al.Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique.Materials Chemistry and Physics.2006,97(2-3):351-356.
    [59]李静,孙晓刚,曹素芝.碳纳米管表面化学镀Ni的研究.材料导报.2007,21(7):153-155.
    [60]Liang C H,Xia W,Soltani-Ahmadi H,et al.The two-step chemical vapor deposition of Pd(allyl)Cp as an atom-efficient route to synthesize highly dispersed palladium nanoparticles on carbon nanofibers.Chemmical Communication.2005,2:282-284.
    [61]Serp P,Kalck P,Feurer R.Chemical vapor deposition methods for the controlled preparation of supported catalytic materials.Chemical Review.2002,102(9):3085-3128.
    [62]Jiang K Y,Eitan A,Schadler L S,et al.Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes.Nano Letter.2003,3(3):275-277.
    [63]Ou Y Y,Huang M H.High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker.Journal of Physical Chemistry B.2006,110(5):2031-2036.
    [64]许兴中,杨建锋,李小年等.激光溅射法制备Pt/CNFs催化剂用于邻氯硝基苯的液相加氢反应.物理化学学报.2008,24(1):121-126.
    [65]Choi H C,Shim M,Bangsaruntip S,et al.Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes.Journal of the American Chemical Society.2002,124(31):9058-9059.
    [66]Kim D S,Lee T,Geckeler Z E.Hole-doped single-walled carbon nanotubes:Ornamenting with gold nanoparticles in water.Angewandte Chemic International Edition.2006,45(1):104-107.
    [67]Kratky V,Kralik M,Mecarova M,et al.Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes.Applied Catalysis A:General.2002,235(1-2):225-231.
    [68]Haber F.Z.Elektrochem.1898,22:506-506.
    [69]Makaryan I A,Savchenko V I.n-Arylhydroxylamines Transformation in the Presense of Heterogeneous Catalysts.Studies in Surface Science and Catalysis.1993,75:2439-2442.
    [70]Visentin F,Puxty G,Kut O M,et al.Study of the hydrogenation of selected nitro compounds by simultaneous measurements of calorimetric,FT-IR,and gas-uptake signals.Industrial & Engineering Chemistry Research.2006,45(13):4544-4553.
    [71]Gelder E A,Jackson S D,Lok C M.The hydrogenation of nitrobenzene to aniline:a new mechanism.Chemical Communication.2005,4:522-524.
    [72]Corma A,Concepci(?)n P,Serna P.A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts.Angewandte Chemie International Edition.2007,46(38):7266-7269.
    [73]Pascoe W,Rylander in:P N,Greenfield H,et al.Catalysis of organic reactions.New York:Yarcel Dekker,1988.
    [74]Wang XD,Liang M H,Liu H Q,et al.Selective hydrogenation of bromonitrobenzenes over Pt/r-Fe_2O_3.Journal of Molecular Catalysis A:Chemical.2007,273(1-2):160-168.
    [75]Ning J B,Xu J,Liu J,et al.A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol.Catalysis Communication.2007,8(11):1763-1766.
    [76]Zhao F Y,Ikushima Y,Arai M.Hydrogenation of nitrobenzene with supported platinum catalysts in supercirtical carbon dioxide:effects of pressure,solvent,and metal particle size.Journal Catalysis.2004,224(2):479-483.
    [77]Xi C Y,Cheng H Y,Hao J M,et al.Hydrogenation of o-chloronitrobenzene to o-chloroaniline over Pd/C in supercritical carbon dioxide.Journal of Molecular Catalysis A:Chemical.2008,282(1-2):80-84.
    [78]Yang X L,Liu H F.Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters.Applied Catalysis A:General.1997,164(1-2):197-203.
    [79]Yu W W,Liu H F.Singular modification effects of metal cations and metal complex ions on the catalytic properties of metal colloidal nanocatalysts.Journal of Molecular Catalysis A:Chemical.2006,243(1):120-141.
    [80]Yang X L,Deng Z L,Liu H F.Modification of metal complex on hydrogenation of o-chloronitrobenzene over polymer-stabilized platinum colloidal clusters.Journal of Molecular Catalysis A:Chemical.1999,144(1):123-127.
    [81]Tu W X,Liu H F,Tang Y.The metal complex effect on the selective hydrogenation of m-and p-chloronitrobenzene over PVP-stablized platinum colloidal catalysts.Journal of Molecular Catalysis A:Chemical.2000,159(1):115-120.
    [82]Tu W X,kiu H F,Liew K Y.Preparation and catalytic properties of amphilic copolymer-stabilized platinum metals colloids.Journal of Colloid and Interface Science.2000,229(2):453-461.
    [83]Yu W W,Liu H F.Singular modification effects of metal cations and metal complex ions on the catalytic properties of metal colloidal nanocatalysts.Journal of Molecular Catalysis A:Chemical.2006,243(1):120-141.
    [84]Xiao C X,Wang H Z,Mu X D,et al.Ionic -liquid-like copolymer stabilized nanocatalysts in ionic liquids I.Platinum catalyzed selective hydrogenation of o-chloronitrobenzene.Journal of Catalysis.2007,250(1):25-32.
    [85]Han X X,Zhou R X,Zheng X M,et al.Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts.Journal of Molecular Catalysis A:Chemical.2003,193(1-2):103-108.
    [86]Coq B,Tijani A,Dutartre R et al.Influence fo support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts.Journal of Molecular Catalysis.1993,79(1-3):253-264.
    [87]韩晓祥,周仁贤,郑小明.负载Pt催化剂在卤代硝基苯氢化反应中的催化性能研究.复旦学报(自然科学版).2003,42(3):428-430.
    [88]Coq B,Tijani A,Figu(?)ras F.Particle size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum/alumina catalysts.Journal of Molecular Catalysis.1991,68(3):331-345.
    [89]Zhang J L,Wang Y,Ji H,et al.Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene.Journal of Catalysis.2005,229(1):114-118.
    [90]梅华,王欢,陈墨雨等.Pt/C催化剂的制备及其在对氯苯胺合成中的应用.工业催化.2007,15(4):37-41.
    [91]房永彬,严新焕,孙军庆等.碳纳米管负载Pt-Sn-B非晶态催化剂催化氯代硝基苯液相加氢反应的性能.催化学报.2005,26(3):233-237.
    [92]Zheng K Y,Liao S J,Xu Y,et al.A remarkable synergic effect of polymer-anchored bimetallic palladium-ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene.Journal of the Chemical Society.Chemical Communication.1995:1155-1156.
    [93]Theodoridis G.Catalytic reduction of dinitrobenzenes using a noble metal catalyst and iron or iron salts.USA,5105012,1992.
    [94]Sikhwivhilu L M,Coville N J,Publimaddi B M,et al.Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts.Catalysis Communication.2007,8(12):1999-2006.
    [95]Vishwanathan V,Jayasri V,Basha P M.Vapor phase hydrogenation of o-chloronitrobenzene(o-CNB) over alumina supported palladium catalyst-a kinetic study.Reaction Kinetics & Catalysis Letter.2007,91(2):291-298.
    [96]严新焕,许丹倩,楼芝英等.对氯硝基苯催化加氢合成对氯苯胺.中国医药工业杂志.2001,32(10):471-471.
    [97]李翔,张曼征,刘伍平.Pd-Sn/吸附树脂催化剂上对硝基氯苯选择加氢的研究.离子交换与吸附.1997,13(4):385-389.
    [98]刘新梅,樊光银,赵松林等.Sn~(4+)离子修饰的Pd/r-Al_2O_3催化卤代芳香硝基化合物选择性加氢.分子催化.2005,19(6):430-435.
    [99]刘新梅,周亚芬,陈骏如等.Sn~(4+)对Pd/r-Al_2O_3催化氯代硝基苯加氢反应影响.广西工学院学报.2007,18(2):85-88.
    [100]Yan X P,Liu M H,Liu H F,et al.Metal complex effect on the hydrogenation of o-chloronitrobenzene over polymer-stabilized colloidal ruthenium clusters.Journal of Molecular Catalysis A:Chemical.2001,170(1-2):203-208.
    [101]Yan X P,Liu M H,Liu H F,et al.Role of boron species in the hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts.Journal of Molecular Catalysis A:Chemical.2001,169(1-2):225-233.
    [102]Tijani A,Coq B,Figu(?)ras F.Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts.Applied Catalysis.1991,76(2):255-266.
    [103]Zuo B J,Wang Y,Wang Q L,et al.An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assemling ruthenium and tin oxide nanoparticles.Journal of Catalysis.2004,222(2):493-498.
    [104]Huber H,Mclntosh D,Ozin G A.A metal atom model for the oxidation of carbon monoxide to carbon dioxide.The gold atom-carbon monoxide-dioxygen reaction and the gold atom-carbon dioxide reaction.Inorganic Chemistry.1977,16(5):975-979.
    [105]Jia J F,Kondo J N,Domen K,et al.Infrared study of CO adsorption and oxidation over Au/Al_2O_3 catalyst at 150 K.Journal of Physical Chemistry B.2001,105(15):3017-3022.
    [106]Zhang C,Yoon B,Landman U.Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free Mgo film supported on a Mo(100) surface.Journal of the American Chemical Society.2007,129(8):2228-2229.
    [107]Grunert W,Bruckner A,Hofmeister H,et al.Structural properties of Ag/TiO_2catalysts for acrolein hydrogenation.Journal of Physical Chemistry B.2004,108(18):5709-5717.
    [108]Chen Y Y,Qiu J S,Wang X K et al.Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds.Journal of Catalysis.2006,242(1):227-230.
    [109]Chen Y Y,Wang C,Liu H Y,et al.Ag/SiO_2:a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes.Chemical Communication.2006,5(42):5298-5300.
    [110]He D P,Yu H S,Wu Y,et al.Synthesis of chloroanilines:selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst.Green Chemistry.2007,9(8):849-851.
    [111]Corma A,Serna P.Chemoselective hydrogenation of nitro compounds with supported gold catalysts.Science.2006,313:332-334.
    [112]Corma A,Serna P,Garcia H.Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of a,b-unsaturated nitrocompounds with H_2.Journal of the American Chemical Society.2007,129(20):6358-6359.
    [113]Smith G V,Brower W E,Matyjaszczyk M S,et al.Proceedings of the 7th International Congress on Catalysis.Amsterdam:Elsevier press,1981:355-355.
    [114]王文静,严新焕,许丹倩等.Ni-B非晶态合金催化剂用于卤代硝基苯液相加氢制卤代苯胺.催化学报.2004,25(5):369-372.
    [115]Li H,Zhang J,Li H X.Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticels for p-chloronitrobenzene hydrogenation.Catalysis Communication.2007,8(12):2212-2216.
    [116]Shen J H,Chen Y W.Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene.Journal of Molecular Catalysis A:Chemical.2007,273(1-2):265-276.
    [117]Yan X H,Sun J Q,Wang Y W,et al.A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene.Journal of Molecular Catalysis A:Chemical.2006,252(1-2):17-22.
    [118]雄峻,陈吉祥,张继炎.镍负载量对邻硝基氯苯加氢制邻氯苯胺Ni/TiO_2催化剂性能的影响.催化学报.2006,27(7):579-584.
    [119]Xiong J,Chen J X,Zhang J Y.Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts.Catalysis Communication.2006,8(3):345-350.
    [120]Lizana F C,Quero S G,Keane M A.Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts.Applied Catalysis A:General.2008,334(1-2):199-206.
    [121]Xing L,Qiu J S,Liang C H,et al.A new approach to high performance Co/C catalysts for selective hydrogenation of chloronitrobenzenens.Journal of Catalysis.2007,250(2):369-372.
    [122]Jord(?)o M H,Sim(?)es V,Cardoso D.Zeolite supported Pt-Ni catalysts in n-hexane isomerization.Applied Catalysis A:General.2007,319:1-6.
    [123]Malyala R V,Rode C V,Arai M,et al.Activity,selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives.Applied Catalysis A:General.2000,193(1-2):71-86.
    [124]Nishikawa J,Miyazawa T,Nakamura K,et al.Promoting effect of Pt addition to Ni/CeO_2/Al_2O_3 catalyst for steam gasification of biomass.Catalysis Communication.2008,9(2):195-201.
    [125]Simon L J,Kooyman P J,Van Ommen J G,et al.Effect of Co and Ni on benzene hydrogenation and sulfur tolerance of Pt/H-MOR.Applied Catalysis A:General.2003,252(2):283-293.
    [126]Shu Y Y,Murillo L E,Bosco J P,et al.The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts.Applied Catalysis A:General.2008,339(2):169-179.
    [127]Coq B,Planeix J M,Brotons V.Fullerene-based materials as new support media in heterogeneous catalysts by metals.Applied Catalysis A:General.1998,173(2):175-783.
    [128]Rodriguez-Reinoso,F.The role of carbon materials in heterogeneous catalysis.Carbon.1998,36(3):159-175.
    [129]Ros T G,van Dillen A J,Geus J W,et al.Surface oxidation of carbon nanofibers.Chemistry:A European Journal.2002,8(5):1151-1162.
    [130]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification.Chemistry of Material.1998,10(3):718-722.
    [131]杨占红,李新海,陈志国等.碳纳米管的纯化.材料导报.1999,13(3):29-30.
    [132]杨占红,李新海,王红强等.用空气氧化法高校纯化炭纳米管.新型炭材料.1999,14(2):67-70.
    [133]张雄伟,储伟,庄惠祥等.多壁碳纳米管的改性及其储氢性能研究.高等学校化学学报.2005,26(3):493-496.
    [134]Toebes M L,Van Heeswijk J M P,Bitter J H,et al.The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers.Carbon.2004,42(2):307-315.
    [135]Edwards H G M,Fawcett V J.Quantitative Raman spectroscopic studies of nitronium ion concentrations in mixtures of sulphuric and nitric acids.Journal of Molecular Stucture.1994,326:131-143.
    [136]Ros T G,van Dillen A J,Geus J W,et al.Surface oxidation of carbon nanofibers.Chemistry-A European Journal.2002,8(5):1151-1162.
    [137]周爱林,王红娟,傅小波等.酸氧化处理对碳纳米管表面基团的影响.化工新型材料.2007,35(7):37-39.
    [138]Torres G C,Jablonski E L,Baronetti G T,et al.Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalyats.Applied Catalysis A:General.1997,161(1-2):213-226.
    [139]Rode C V,Chaudhari R V.Hydrogenation of m-Nitrochlorobenzene to m-Chloroaniline:Reaction Kinetics and Modeling of a Non-lsothermal Slurry Reactor.Industrial & Engineering Chemistry Research.1994,33(7):1645-1653.
    [140]Coq B,Tijani A,Figu(?)ras F.Particle size effect on the kinetics of p-chloronitrobenzene hydrogenation over platinum/alumina catalysts.Journal of Molecular Catalysis A:Chemical.1991,68(3):331-345.
    [141]De Miguel S R,Vilella J I,Jablonski E L,et al.Preparation of Pt catalysts supporten on activated carbon felts(ACF).Applied Catalysis A:General.2002,232(1-2):237-246.
    [142]De Miguel S R,Scelza O A,Roman-Martinez M C,et al.States of Pt in Pt/C catalyst precursors after impregnation,drying an reduction steps.Applied Catalysis A:General.1998,170(1):93-103.
    [143]Wojcieszak R,Zielinski M,Monteverdi S,et al.Study of nickel nanopaticles supported on activated carbon prepared by aqueous hydrazine reduction.Journal of Colloid and Interface Science.2006,299(1):238-248.
    [144]Escribano A S,Coloma F,Reinoso F R.Platinum catalysts supported on carbon blacks with different surface chemical properties.Applied Catalysis A:General.1998,173(2):247-257.
    [145]Lueking A D,Yang R T.Hydrogen spillover to enhance hydrogen storage-study of the effect of carbon physicochemical properties.Applied Catalysis A:General.2004,265(2):259-268.
    [146]周振华,武小满,王毅等.氢气在碳纳米管基材料上的吸附-脱附特性.物理化学学报.2002,18(8):692-698.
    [147]Zhou M,Lin G D,Zhang H B.Pt catalyst supported on multiwalled carbon nanotubes for hydrogenation-dearomatization of toluene.Chinese Journal of Catalysis.2007,28(3):210-216.
    [148]沈炳顺,武小满,李海燕等.Ni修饰多壁碳纳米管材料的制备及表征研究.厦门大学学报(自然科学版).2004,43(6):810-815.
    [149]Arai M,Ebina T,Shirai M.Synergistic effects of supported Pt-Ni bimetallic catalysts in atmospheric gas-phase hydrogenation of acetonitrile.Applied Surface Science.1999,148(3-4):155-163.
    [150]Fu X B,Yu H,Peng F,Wang H J,Qian Y.Facile preparation of RuO_2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance.Applied Catalysis A:General.2007,321(2):190-197.
    [151]Han W Q,Zettl A.Coating single-walled carbon nanotubes with tin oxide.Nano Letter.2003,3(5):681-683.
    [152]Leela mohana teddy A,Ramaprabhu S.Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes.Journal of Physical Chemistry C.2007,111(21):7727-7734.
    [153]Li J,Tang S B,Lu L,et al.Preparation of nanocomposites of metals,metal oxides,and carbon nanotubes via self-assembly.Journal of the American Chemistry Society.2007,129(30):9401-9409.
    [154]Hammer N,Kvande I,Xu X,et al.Au-TiO_2 catalysts on carbon nanofibers prepared by deposition-precipitation and from colloid solutions.Catalysis Today.2007,123(1-4):245-256.
    [155]Xu Q,Liu X M,Chen J R,et al.Modification mechanism of Sn~(4+) for hydrogenation of p-chloronitrobenzene over PVP-Pd/γ-Al_2O_3.Journal of Molecular Catalysis A:Chemical.2006,260(1-2):299-305.
    [156]吴琼,李翔,张曼征等.Pd-Sn/吸附树脂催化剂上对硝基氯苯选择加氢的研究.离子交换与吸附.1997,13(4):385-389.
    [157]Han W Q,Zettl A.Functionalized boron nitride nanotubes with a stannic oxide coating:a novel chemical route to full coverage.Journal of the American Chemical Society.2003,125(8):2062-2063.
    [158]Kobayashi Y,Salgueiri(?)o-Maceira V,Liz-Marz(?)n L M.Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating.Chemistry of Material.2001,13(5):1630-1633.
    [159]Zhi C Y,Bando Y,Tang C C,et al.SnO_2 nanoparticle-functional boron nitride nanotubes.Journal of Physcal Chemistry B.2006,110(17):8548-8550.
    [160]Raney M.US1563787.1925.
    [161]Ayala P,Freire Jr F L,Gu L,et al.Decorating carbon nanotubes with nanostructured nickel particles via chemical methods.Chemical Physics Letters.2006,431(1-3):104-409.
    [162]Ochoa-Fern(?)ndez E,ChenD,Yu Z X,et al.Carbon nanofiber supported Ni catalyst:Effects of nanosturcture of supports and catalyst preparation.Catalysis Today,2005,102-103:45-49.
    [163]Poul L,Jouini N,Fi(?)vet F.Layered hydroxide metal acetates (metal=Zinc,Cobalt and Nickel):elaboration via hydrolysis in polyol medium and comparative study.Chemistry of Material.2000,12(10):3123-3132.
    [164]Telkar M M,Nadgeri J M,Rode C V,et al.Role of a co-metal in bimetallic Ni-Pt catalyst for hydrogenation of m-rdinitrobenzene to m-rphenylenediamine.Applied Catalysis A:General.2005,295(1):23-30.
    [165]Jeevanandam P,Koltypin Y,Gedanken A.synthesis of nanosized a-nickel hydroxide by a sonochemical method.Nano Letter.2001,1(5):263-266.
    [166]Silva L M S,(?)rf(?)o J J M,Figueiredo J L.Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts.Applied Catalysis A:General.2001,209(1-2):145-154.
    [167]Vu H,Goncalves F,Philippe R,et al.Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde.Journal of Catalysis.2006,240(1):18-22.
    [168]Chen J Y,Herricks T,Xia Y N.Polyol synthesis of platinum nanostructures:control of morphology through the manipulation of reduction kinetics.Angewandte Chemie International Edition.2005,44(17):2589-2592.
    [169]Im S H,Lee Y T,Wiley B,et al.Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube perfection and monodispersity.Angewandte Chemie International Edition.2005,44(14):2154-2157.
    [170]Qiu J S,Zhang H Z,Liang C H,et al.Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs:preparation and catalytic properties.Chemistry-A European Journal.2006,12(8):2147-2151.
    [171]Claus P,Hofmeister H.Electron microscopy and catalytic study of silver catalysts:structure sensitivity of the hydrogenation of crotonaldehyde.Journal of Physical Chemistry B.1999,103(14):2766-2775.
    [172]Grunert W.,Bruckner A.,Hofmeister H.et al.Structural properties of Ag/TiO_2 catalysts for acrolein hydrogenation.Journal of Physical Chemistry B.2004,108(18):5709-5717.
    [173]Dong H Y,Shuai S J,Li R L,et al.Study of NOx selective catalytic reduction by ethanol over Ag/Al_2O_3 catalyst on a HD diesel engine.Chemical Engineering Journal.2008,135(3):195-201.
    [174]Qu Z P,Cheng M J,Shi C,et al.Low-temperature selective oxidation of CO in H_2_rich gases over Ag/Si02 catalysts.Journal of Molecular Catalysis A:Chemical. 2005,239(1-2):22-31.
    [175]Rojluechai S,Chavadej S,Schwank J W,et al.Catalytic activity of ethylene oxidation over Au,Ag and Au-Ag catalysts:Support effect.Catalysis Communication.2007,8(1):57-64.
    [176]Yeom Y H,Li M J,Sachtler W M H,et al.Low-temperature NOx reduction with ethanol over Ag/Y:A comparison with Ag/γ-Al_2O_3 and BaNa/Y.Journal of Catalysis.2007,246(2):413-427.
    [177]Chen L M,Ma D,Li X Y,et al.Silver catalysts supported over activated carbon for the selective oxidation of CO in excess hydrogen:effects of different treatments on the supports.Catalysis Letter.2006,111(3-4):133-139.
    [178]Guo D J,Li H L.Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution.Carbon.2005,43(6):1259-1264.
    [179]Liu Y Y,Tang J,Chen X Q,et al.A wet-chemical route for the decoration of CNTs with silver nanoparticles.Carbon.2006,44(2):381-392.
    [180]陈为.碳纳米管的纯化及其作高分散金属催化剂载体的研究:硕士学位论文.武汉:华中科技大学,2003.
    [181]Van Dam H E,Van Bekkum H.Preparation of platinum on activated carbon.Journal of Catalysis.1991,131(2):335-349.
    [182]Chen S X,Zeng H M.Improvement of the reduction capacity of activated carbon fiber.Carbon.2003,41(6):1265-1271.
    [183]Dekanski A,Stevanovi(?) J,Stevanovi(?) R,et al.Glassy carbon electrodes Ⅱ.Modification by immersion in AgNO_3.Carbon.2001,39(8):1207-1216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700