白花丹醌对人肝星状细胞作用的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是指肝细胞发生坏死及炎症刺激时,肝脏中胶原蛋白等细胞外基质的增生与降解失去平衡,导致肝脏内纤维结缔组织异常沉积的病理过程,它是一种可逆性病变。目前认为,肝星状细胞激活、增殖并大量生成(extracellular matrix, ECM)的过程是肝纤维化病理机制的中心环节,肝星状细胞(hepatic Stellate cell,HSC)的激活和增殖受多种细胞因子的调控。因此,阻断细胞因子的促增殖作用,有望成为肝纤维化治疗的有效手段。近几年来中医药抗肝纤维化治疗研究取得较大进展。前期在国家自然科学基金的资助下(N0:30760321)证实白花丹具有抗肝纤维化作用,白花丹的主要抗肝纤维化药物活性成分是白花丹醌,白花丹醌具有很强的活血化瘀作用。瘦素(leptin)是新发现的促肝纤维化的细胞因子,最近研究显示,leptin具有诱导HSC活化和增殖作用。
     目的:本课题将以人HSC为对象,从细胞和分子水平深入开展白花丹醌对外源性leptin刺激后HSC之生物学特性和细胞内信号分子活化方面的研究,主要从抑制HSC激活、增殖、分泌、凋亡及胶原合成等几方面集中探究白花丹醌减少(抑制)HSC-LX2分泌胶原蛋白的靶位点和可能的作用分子机制,为开发广西特色民族药材抗肝纤维化提供理论和实验依据。
     方法:
     1. MTT法检测白花丹醌对HSC-LX2和人胚肝细胞(L-O2)毒性的影响以及leptin与HSC-LX2作用的时间和浓度的选择。
     2. ELISA法检测HSC-LX2细胞培养上清液中leptin的分泌;检测白花丹醌对HSC-LX2细胞培养上清液TGF-β1,α-SMA, TNF-α, PDGF-BB, I型胶原表达的影响。
     3.流式细胞术检测肝星状细胞细胞周期分布及细胞凋亡的变化。
     4透射电镜观察肝星状细胞凋亡超微结构。
     5.免疫细胞化学法检测HSC-LX2凋亡相关蛋白p53, Bax, Bcl-2的表达。
     6.实时荧光定量PCR法检测白花丹醌对HSC-LX2 TGF-β1、α-SMA等细胞因子表达。
     7. Western blot法检测白花丹醌对HSC-LX2细胞周期相关蛋白p53、Bax、Bcl-2;细胞因子TGF-β1,α-SMA, TNF-α, PDGF-BB;leptin刺激HSC-LX2信号转导通路相关蛋白OB-Rb, JAK2, STAT3, ERK1/2等蛋白表达的影响。
     结果:
     1.白花丹醌对HSC-LX2 IC50值平均为5.016μg/ml,对人正常胚肝细胞L-O2 IC50值为18.852μg/ml。白花丹醌对HSC-LX2毒性选择指数(SI)为3.76,说明白花丹醌对HSC-LX2具有一定的选择性毒性作用。
     2.给药12 h、24 h后,与空白对照组比较,白花丹醌低、中剂量组细胞上清液SOD、MDA、LDH含量均无显著性差异(P>0.05),白花丹醌高剂量组与空白对照组比较有显著性差异(P<0.05),给药48 h后白花丹醌高剂量组与空白对照组比较有显著性差异(P<0.05或P<0.01)。实验结果表明白花丹醌对人肝细胞L-O2有一定的毒性作用,且药物浓度越高,作用的时间越长,毒性越大。考虑到白花丹醌的毒性作用,在后续实验选择白花丹醌2μmol/L、8μmol/L作为实验浓度。
     1. HSC自分泌leptin的浓度随着培养时间的延长而递减,24 h达到最低,48 h又上升到原来水平,每个时间点分泌的leptin浓度比较无显著性差异(P>0.05),说明HSC自分泌leptin的量变化仍不明确。
     2.流式细胞术PI染色法检测各周期细胞的DNA含量,结果显示,白花丹醌作用HSC-LX2 24 h后,HSC-LX2细胞G0/G1期细胞的百分比均明显增高,而S期+G2/M期细胞总数的百分比明显降低;并且随着药物剂量的增加,G0/G1期细胞的百分比增高,而S期+G2/M期细胞总数的百分比降低,呈剂量依赖性。白花丹醌阻断HSC细胞由G0/G1期向S期、G2/M期转变,从而抑制细胞DNA合成,抑制细胞分裂,使细胞周期进程减缓,阻止其发生增殖。
     3.与空白对照组比较,leptin刺激显著增加了HSC-LX2细胞周期蛋白Cyclin DI、Cyclin E的含量,阻断了抑制蛋白p21的表达;白花丹醌则明显降低了Cyclin Dl、Cyclin E蛋白水平,增加了p21的蛋白表达。
     4.细胞流式术结果显示,白花丹醌作用HSC-LX2 24 h,HSC-LX2凋亡率明显增加,白花丹醌2, 8μmol/L组和秋水仙碱组HSC凋亡率分别为(3.07±0.30)%,(5.21±0.41)%,(10.1±1.08)%,均显著高于空白对照组(1.40±0.13)%(P<0.01)。表明白花丹醌对HSC-LX2有一定的促凋亡和致坏死的作用。
     5.电镜结果显示,空白对照组细胞形态清晰,细胞膜、核膜完整,细胞表面有大量微绒毛。白花丹醌组可见少量坏死细胞和许多不同程度的凋亡细胞。阳性对照组可见少量坏死细胞和许多不同程度的凋亡细胞,其细胞体积变小,核膜消失,胞质浓缩,胞质内出现大量空泡,染色质边集,核固缩。
     6.受leptin刺激后HSC-LX2胞浆内表达少量的bax, Bcl-2, p53,可见少量的棕黄色颗粒,经白花丹醌2.8μmol/L干预后, HSC-LX2促凋亡基因Bax, p53蛋白表达明显升高,抗凋亡基因Bcl-2蛋白表达显著降低,与leptin对照组相比,差异均有统计学意义(P<0.01)。
     1. ELISA法检测细胞上清液中细胞因子分泌情况,结果显示,与空白对照组比较,leptin组HSC培养上清液中TGF-β1、α-SMA、TNF-α、PDGF-BB含量显著增加(P<0.01)。与leptin组比较,白花丹醌各药物浓度组上清液中TGF-β1、α-SMA、TNF-α、PDGF-BB的含量明显降低(P<0.05或P<0.01),且随着白花丹醌作用浓度增加,对TGF-β1、α-SMA、TNF-α、PDGF-BB的活性抑制越显著。
     2.用2-△△CT方法的公式进行计算,得到相对于leptin对照组的TGF-β1、α-SMA、TNF-α、PDGF-BB mRNA相对表达量。荧光实时定量PCR反应结果显示:空白对照组HSC有一定量TGF-β1、α-SMA、TNF-α、PDGF-BB mRNA表达,白花丹醌和秋水仙碱作用24 h后,活化的HSC-LX2内TGF-β1、α-SMA、TNF-α、PDGF-BBmRNA含量较leptin对照组均明显下降(P<0.05或P<0.01)。
     3. Western blot结果显示,leptin与HSC-LX2孵育24 h,可刺激的HSC-LX2 TGF-β1、α-SMA、PDGF-BB蛋白表达明显升高,轻微增加TNF-α蛋白的表达,白花丹醌与HSC-LX2孵育24 h后,明显减少HSC-LX2TGF-β1、α-SMA、PDGF-BB蛋白表达,对TNF-α表达无明显影响。
     1.以最佳刺激浓度(100 ng/ml)的leptin作用于HSC-LX2,检测不同时间点OB-Rb的表达水平。结果显示,leptin(100 ng/ml)可诱导HSCOB-Rb的表达,并呈现一定的时相变化。leptin刺激HSC 6 h后,即见OB-Rb表达增强,但无统计学意义;24 h时达到高峰(P<0.01); 36 h时仍保持较高的活化状态P<0.01);48 h后则基本接近初始水平。
     2. Western blot法研究白花丹醌对leptin刺激HSC-LX2后蛋白酪氨酸激酶(JAK)-信号转导子和转录激活子(STAT)信号转导通路中相关信号因子:OB-Rb、JAK2、STAT3、ERK1/2及其磷酸化蛋白、MMP-1、MMP-13的影响。
     ①leptin刺激显著地增加了OB-Rb受体蛋白的表达,白花丹醌处理则明显地降低了OB-Rb受体蛋白的表达。
     ②与空白对照组比较,leptin刺激显著地增加了JAK2、pJAK2蛋白的表达。与leptin对照组比较,白花丹醌处理则明显地降低了pJAK2蛋白的表达水平(P<0.01),但对JAK2蛋白表达无明显影响(P>0.05)。
     ③与空白对照组相比较,leptin刺激更加显著地增加了STAT3、pSTAT3受体蛋白表达水平(P<0.01)。白花丹醌处理则明显地降低了STAT3、pSTAT3受体蛋白的表达(P<0.05)。
     ④与空白对照组相比较,leptin刺激更加显著地增加了ERK1/2、pERK1/2蛋白的丰度(P<0.01或P<0.05)。白花丹醌处理则明显地降低了ERK1/2、pERK1/2蛋白的表达(P<0.01或P<0.05)。
     ⑤与空白对照组比较,leptin刺激可明显降低HSC-LX2 MMP-1的表达,MMP-13表达水平无显著变化(P>0.05)。白花丹醌作用HSC-LX224h后MMP-l蛋白表达水平升高,MMP-13无显著变化(P>0.05)。
     ⑥.与空白对照组比较,leptin(100 ng/ml)可刺激HSC-LX2 I型胶原的增生和表达显著增加,白花丹醌处理组可明显抑制HSC胞内I胶原的表达和分泌。
     3. ELISA检测白花丹醌对leptin刺激HSC-LX2I型胶原表达。结果显示:与空白对照组比较,leptin对照组HSC培养上清液中I型胶原的含量显著增加(P<0.01),与leptin对照组比较,白花丹醌各药物浓度组上清液中I型胶原的含量明显降低,差异有显著性(P<0.05)。
     结论:
     1.白花丹醌对正常人肝细胞L-O2具有一定的毒性作用,且药物浓度越高,作用时间越长,毒性越大。该药对HSC-LX2的毒性作用具有一定的选择性。
     2.外源性leptin可促进HSC增殖和活化,并呈现剂量、时间依赖性。
     3.白花丹醌可通过阻止HSC-LX2由G0/G1期进入S期,而抑制leptin所致的细胞增殖,其作用机制可能是与其降低cyclin D1、cyclin E1蛋白表达,提高P21蛋白表达有关。
     4.白花丹醌对HSC-LX2有一定的促凋亡和致坏死的作用。白花丹醌诱导HSC凋亡具体机制在于上调活化的HSC中p53、bax蛋白表达,下调Bcl-2蛋白表达。
     5.白花丹醌从基因和蛋白水平抑制外源性leptin刺激HSC-LX2的TGF-β1、α-SMA、PDGF-BB分泌,从基因水平抑制TNF-α的表达。
     6.白花丹醌从细胞膜受体水平抑制外源性leptin刺激HSC的增殖,降低HSC-LX2OB-Rb蛋白的表达。
     7.白花丹醌可通过阻断HSC-LX2细胞内JAK2-STAT3信号通路,降低JAK2、STAT3蛋白磷酸化水平,从而抑制外源性leptin刺激的HSC-LX2增殖。
     8.白花丹醌阻断leptin诱导MAPK信号转导途径相关因子ERK蛋白磷酸化,在HSC的MAPK信号转导途径上显著抑制HSC的增殖。
     9.白花丹醌抑制leptin诱导I型胶原、MMP-1的表达。
Hepatic fibrosis is a pathological process of abnormal deposition of fibrous connective tissue in liver resulted from the loss of balance between the proliferation and degradation of extracellular matrix(ECM), like collagen protein, when hepatocytes necrosis and inflammation stimulation occur in liver; it is a reversible lesion. At present, it is considered that the activation and proliferation of hepatic satellite cells and the great production of ECM play key roles in the pathological mechanism of hepatic fibrosis. The activation and proliferation of HSC are subject to the regulation of many cytokines. Therefore, to block the pro-proliferation effect of cytokine shows promise as an effective therapeutic measure for hepatic fibrosis. In recent years, anti-hepatic fibrosis treatment with TCM has achieved greater progress.In the previous work funded by National Natural Science Foundation of China, this topic team has confirmed the anti-hepatic fibrosis effect of Baihuadan (Ceylon Leadword Root or Leaf) and the main active ingredient of Baihuadan (Ceylon Leadword Root or Leaf) for resisting hepatic fibrosis is plumbagin.Plumbagin, as the main active ingredient of Baihuadan, had robust effect on activating blood circulation to dissipate blood stasis. Leptin is a new cytokine with the effect of pro-hepatic fibrosis and recent studies show that leptin can induce the activation and proliferation of HSC.
     Objective This topic is to thoroughly explore the effects of plumbagin on biological features and the activation of signaling molecule in HSC after stimulation by external leptin at cellular and molecular level, which is mainly focused on its inhibition effect on activation, proliferation, secretion, apoptosis and collagen synthesis with the aim to determine the target sites and potential molecular mechanism of plumbagin in reducing the secretion of collagen by HSC-LX2.The actually mechanism of plumbagin in resisting hepatic fibrosis will be explored at cellular and molecular level, and thus to provide theoretical and experimental evidences for developing ethnic drugs in resisting hepatic fibrosis with characteristics of GuangXi region.
     Methods 1.To test the effects of plumbagin on the toxicities of HSC-LX2 and human embryonic hepatocyte (L-O2) by MTT method; to determine the content of SOD, MDA and LDH in supernate of HSC-LX2 by ELIASA after action of plumbagin.
     2. Test the secretion of leptin by ELISA method in culture supernate of HSC-LX2 cells; test the acting timing and concentration choice of leptin when acting with HSC-LX2; test changes of cell cycle by flow cytometry; test the effect of plumbagin on the expression of proteins related to HSC-LX2 cell cycle by Western blot ;test the effects of plumbagin on apoptosis of HSC-LX2 cells by V-FITC and PI double staining; observe the ultrastructure of apoptotic HSC cells by transmission electron microscope; test the expressions of apoptosis-associated proteins p53, Bax and Bcl-2 by cell immunohistochemistry.
     3. Test the effect of plumbagin on the expression of HSC-LX2TGF-β1 and other cytokines by ELISA, Real-time quantitative PCR and Western blot. 4. Test the secretion of type-1 collagen in supernate of HSC culture by western blot; observe the activation phase of OB-Rb, JAK2, STAT3, ERK1/2 after stimulation by leptin by Western blot; test the effects of ; test the effect of plumbagin on the expression of proteins related to HSC-LX2 signal transduction after stimulation by leptin by Western blot.
     Results
     1. The average IC50 of plumbagin to HSC-LX2 is 5.016μg/ml and 18.852μg/ml to human normal embryonic hepatocyte. The toxic selective index (SI) of Plumbagin to plumbagin is 3.76, which indicates a certain selective toxic effect of plumbagin towards HSC-LX2.
     2. There are no significant differences of the contents of SOD, MDA and LDH in supernate of low-, and middle-dose groups from blank control at 12h and 24h after addition of drug (p>0.05); there are significant differences in supernate of high-dose group from blank control (p<0.05); and there are significant differences in supernate of high-dose group from blank control at 48h after addition of drug (P<0.05 or P<0.01).The results show certain toxicity of plumbagin to human heptocytes L-O2 and the toxicity will be greater with higher concentration of plumbagin and longer acting duration. In light of the toxicity of plumbagin, 2umol/L and 8μmol/L of plumbagin are selected for subsequent experiments.
     1. The concentration of leptin auto-secreted by HSC is to decrease with time and to the minimum at 24h and recovery of original level at 48h (P>0.05). There is no significant difference between the concentrations at each point, which shows the ambiguity of the change of auto-secretion amount of leptin by HSC.
     2. Test the DNA content at each phase of cell cycle by PI staining for Flow cytometry: at 24h after addition of plumbagin, the percentage of HSC-LX2 cells at G0/G1 phase is apparent increased and the total percentage of HSC-LX2 cells at S phase+G2/M phase is apparent decreased; and with the increase of dose, the percentage of HSC-LX2 cells at G0/G1 phase becomes higher and the total percentage of HSC-LX2 cells at S phase+G2/M phase becomes lower, indicating dose-dependency. Plumbagin may block the transformation of HSCs from G0/G1 to S, G2/M phase and further inhibit the synthesis of DNA and cell division, which finally slow the cellular cycle progress and block cell proliferation.
     3. Compared to blank control, the stimulation by leptin may significantly increase the content of HSC Cyclin DI and Cyclin E, and block the expression of inhibiting protein P21; however, plumbagin may significantly decrease the level of Cyclin DI and Cyclin E and increase the expression of p21 protein.
     4. The results of flow cytometry show significant increased apoptotic rates of HSCs at 24h after addition of plumbagin to HSC-LX2; the apoptotic rates in 2 , 8μmol/L and colchicine groups are(3.07±0.30)%,(5.21±0.41)%,(10.1±1.08)% respectively, which are both significantly higher than blank control (1.40±0.13) %, (P<0.01).The result indicates that plumbagin can promote the apoptosis and necrosis of HSC-LX2.
     5. The results from electron microscope show that HSCs in blank control group have clear forms, intact nuclear membrane and cell membrane. There is lots of microvillus on cell surface. After addition of plumbagin, a few of necrotic cells and many apoptotic cells of various degrees can be observed in HSC-LX2.
     6. Small quantities of bax, Bcl-2 and p53 are expressed and a few of brownish particles may be seen after stimulation by leptin; after intervention by 2 and 8μmol/l of plumbagin, the expression of pro-apoptotic genes , Bax and P53, are significantly increased and the expression of anti-apoptotic gene, Bcl-2, is significantly decreased. All these differences are statistically significant compared to leptin-stimulation group (P<0.01).
     1. Test the secretion of cytokins in supernate by ELISA method. Compared to blank control group, the contents of TGF-β1,α-SMA, TNF-αand PDGF-BB are significantly increased (P<0.01). Compared to leptin group, the contents of TGF-β1,α-SMA, TNF-αand PDGF-BB in each plumbagin groups are significantly decreased (P<0.05 or P<0.01). Additionally, the activity inhibition effect of plumbagin to TGF-β1,α-SMA, TNF-αand PDGF-BB becomes stronger with the increasing concentration of plumbagin.
     2. Acquire the expression amount of TGF-β1,α-SMA, TNF-αand PDGF-BB relative to leptin group through 2-△△CT formula. The result of real-time PCR shows: certain quantity of expressions of TGF-β1,α-SMA, TNF-α, PDGF-BB mRNAa are observed in HSC of blank control group; at 24h after addition of plumbagin and colchicin, the quantities of TGF-β1,α-SMA, TNF-αand PDGF-BB mRNA in activated HSC-LX2 are all significantly decreased from leptin group(P < 0.05 or P <0.01).
     3. Result of Western blot shows that, after incubation of HSC-LX2 with leptin for 24h, the expressions of HSC-LX2TGF-β1,α-SMA and PDGF-BB are all apparently increased and the expression of TNF-αis slightly increased. After incubation of HSC-LX2 with plumbagin for 24h, the expressions of HSC-LX2TGF-β1,α-SMA and PDGF-BB are all decreased and the expression of TNF-αis not affected apparently.
     1. Test the expression level of OB-Rb at different point after addition of leptin of optimal stimulation concentration (100 ng/ml), and the result shows that leptin (100 ng/ml) can induce the expression of HSCOB-Rb with the manner of phase changing. At 6h after leptin stimulation, the expression of OB-Rb is increased without statistical significance; at 24, it reaches to the peak concentration (P<0.01); at 36h, it remains relative high activity (P<0.01); and after 48h, it returns to the initial level.
     2. The study on the regulation effect of plumbagin on the expression of OB-Rb after stimulation by leptin through Western blot shows that leptin can significantly stimulate the expression of OB-Rb receptor protein and the treatment by plumbagin can significantly decrease the expression of OB-Rb receptor protein.
     3. The study on the effects of plumbagin on the expression of JAK2 and PJAK2 through western blot, leptin can significantly increase the expression of JAK2 and pJAK2 compared to blank control group, however, the treatment by plumbagin can apparently decrease the expression level of pJAK2 (P<0.01) and has no significant effect on the expression of JAK2 (P<0.05).
     4. The study on the regulation effect of plumbagin on the expression of STAT3 and pSTAT3 after stimulation of HSC-LX2 by leptin through Western blot, leptin can significantly increase the expression of STAT3 and pSTAT3 compared to blank control group (P<0.01), however, the treatment by plumbagin can apparently decrease the expression level of STAT3 and pSTAT3 receptor proteins (P<0.05).
     5. The study on the regulation effect of plumbagin on the expression of ERK1/2 and pERK1/2 after stimulation of HSC-LX2 by leptin through Western blot, the result of western blot shows that leptin can significantly increase the abundances of ERK1/2 and pERK1/2 compared to blank control group(P<0.01 or P<0.05). However, the treatment by plumbagin can apparently decrease the expression level of ERK1/2 and pERK1/2 proteins (P<0.01 or P<0.05).
     6. The study on the effect of plumbagin on the expressions of HSC-LX2 MMP-1 and MMP-13 after stimulation by leptin through Western blot, the analysis result shows that leptin can significantly decrease the expression of HSC-LX2MMP-1 and has no effect on the expression of MMP-13 compared to blank control group(P<0.05). However, after addition of plumbagin for 24h, the expression level of MMP-1 protein is increased and the expression of MMP-13 has no significantly alteration (P>0.05).
     7. The study on the effect of plumbagin on the expression of HSC-LX2 type-1 collagen after stimulation by leptin through ELISA, the result shows that the content of type-1 collagen in HSC culture supernate is significantly increased compared to blank control group (P<0.01). However, the content of type-1 collagen in HSC culture supernate in each concentration group of plumbagin is apparently decreased compared to leptin group and the difference is of statistical significance(P<0.05).
     8. In the test of the effect of plumbagin on the expression of HSC-LX2 type-1 collagen after stimulation by leptin through western blot, the result shows that leptin can increase the proliferation and expression of type-I collagen compared to control group (100 ng/ml) and the proliferation and expression of type-I collagen in HSCs are significantly inhibited in plumbagin treatment group.
     Conclusions
     1. Plumbagin shows some toxicity to human normal hepatocytes L-O2 and the toxicity will be greater with higher concentration of plumbagin and longer acting duration.
     2. External leptin can promote the proliferation and activation of HSC with dose- and time-dependent manner. Plumbagin can inhibit the stimulatory effect of external lepton on the proliferation of HSC-LX2, which indicates that plumbagin can decrease the inflammation amplification effect and such effect may inhibit the development of hepatic fibrosis.
     3. Plumbagin can block HSC-LX2 entering S phase from HSC-LX2 and in this way to inhibit the proliferation induced by leptin. Its mechanism may be related to the decrease of the expressions of cyclin D1 and cyclin E1 and the increase of P21 protein.
     4. Plumbagin shows certain functions in promotions of apoptosis and necrosis of HSC-LX2. The actual mechanism of plumbagin in induction of HSC apoptosis relies on up-regulating the expressions of p53 and bax and down-regulating the expression of Bcl-2.
     5. Plumbagin can inhibit the stimulation of external leptin on the secretions of HSC-LX2 TGF-β1,α-SMA, PDGF-BB at the level of gene and protein; it also can inhibit the expression of TNF-αat the level of gene.
     6. Plumbagin can inhibit the proliferation of HSC induced by external leptin at the level of membrane receptor and decrease the expression of HSC-LX2 OB-Rb protein.
     7. Plumbagin can decrease the protein phosphorylation level of JAK2 and STAT3, and inhibit the proliferation of HSC-LX2 induced by external leptin through blocking the signal transduction of JAK2-STAT3 in HSC-LX2.
     8. Plumbagin also can block the protein phosphorylation of the protein factor, ERK, of the leptin-dependent MAPK signal transduction, and by this way, it can significantly inhibit the proliferation of HSC induced by HSC MAPK signal transduction.
     9. Plumbagin can inhibit the expressions of type-I collagen and MMP-1.
引文
[1]韦燕飞,彭岳,谢海源,等.基于肝星状细胞分子机制的抗肝纤维化研究进展[J].世界华人消化杂志,2009, 17(17): 1745-1748
    [2]张绪富,吕志平,刘晓燕.以肝星状细胞为靶标的抗肝纤维化治疗进展[J].中国药理学通报,2003, 19 (6): 622– 6
    [3]霍仕霞,闫明.白花丹的研究进展[J].中国医药导报,2008, 5(28):17-18
    [4]韦敏,刘华钢,刘丽敏.白花丹素的体外肝毒性研究[J].时珍国医国药,2010, 21(6): 1312-1314
    [5]郭启煜,高妍,丛琳,等.瘦素对大鼠肝细胞瘦素受体蛋白、基因表达及酪氨酸磷酸化的影响[J].首都医科大学学报,2007, 63(28): 305-306
    [6] Marra F.Leptin and liver fibrosis: a matter of fat [J]. Gastroenterology 2002, 122(5): 1529-1532
    [7] Lang T, Ikejima K, YoshikawaM, et al. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor [J]. Biochem Biophys Res Commun, 2004, 323(3): 1091
    [1]赵艳丽,陆道培.白花丹醌对人急性早幼粒细胞白血病细胞的体外效应[J].中国实验血液学杂志,2006, 14(2): 208-211
    [2]刘超,刘圆,颜晓燕.白花丹醌对人乳腺癌细胞mda-mb-231的体外效应[J].华西药学杂志,2008, 23(1): 42-44
    [3] Mosman T. Rapid colorimetric assay for cellular growth and survival:Application and cytotxicity assays [J]. Immunol Methods, 1983, 65(4): 55-63
    [4]章静波,黄东阳.细胞生物学实验技术[M].长春:化学工业出版社,2006, 70-74
    [5] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays [J]. J Immunol Methods. 1983, 65(1-2): 55-63
    [6] Kauschke SG, Knoor A, Heke M, et al. Two assays for measuring fibrosis: reverse transcriptase-polymerase chain reaction of collagen alpha(I)(III) mRNA is an early predictor of subsequent collagen deposition while a novel serum N-terminal procollagen(III) propeptide assay reflects manifest fibrosis in carborn tetrachloride-treated rats[J]. Anal Biochem, 1999, 275(2): 131-140
    [7]程明亮,杨长春.肝纤维化的基础研究及临床[M].北京:人民卫生出版社,2002: 120-121
    [8] Friedman SL. The cellular basis of hepatic fibrosis: mechanisms and treatment strategies [J]. N Engl J Med, 1993, 328(25): 1828-1835.
    [9] Rockey DC. Antifibrotic therapy in chronic liver disease [J]. Clin Gastroenterol Hepatol, 2005, 3(2): 95-107
    [10]陈晓红.细胞因子对肝纤维化形成的影响[J].国外医学内科学分册,2001, 28(1): 21-24
    [11]王健,牛建昭,何福金,等.脂多糖诱导肝星状细胞增殖与提高其胶原表达水平的细胞模型研究[J].中西医结合肝病杂志,2003, 13(2): 92-94
    [12]叶永安,田德禄,朱陵群,等.乙醛所致肝星状细胞增殖的离体模型的研究[J].中国中医基础医学杂志,2003, 9(8): 48-50
    [13]缪剑华.广西药用植物资源的保护与开发利用[J].广西科学院学报,2007, 23 (2) : 113-116
    [14]国家中医药管理局《中华本草》编委会.中华本草(6)[M].上海:上海科学技术出版社,2000, (6): 132
    [15] Wang Y C, Huang T L. Anti-Helicobacter pylori activity of Plumbago zeylanica L [J]. Immunology and Medical Mi-crobiology, 2005, 43: 407-412
    [16]左风.白花丹乙醇提取物升高血糖的生化机制[J].国外医学中医中药分册,2001, 23(2): 124-125
    [17]张吉仲,刘圆,焦涛.白花丹不同有机溶剂提取物和白花丹醌对移植性乳腺癌和S180肉瘤的作用[J].中国药理学通报,2008, 24(8): 1040-3
    [18]刘圆,刘超,颜晓燕,等.白花丹不同提取部位体外抗肿瘤及急毒研究[J].中国药理学通报,2007, 23(4): 557-9
    [19]覃贵伦,黄振国,涂荫国,等.五莲益肝汤抗肝纤维化的实验研究[J].实用中西医结合杂志,1996, 9(3): 157-158
    [20]李荣华,彭岳,谢海源,等.白花丹对大鼠肝星状细胞增殖、凋亡及细胞周期的影响[J].世界华人消化杂志,2009, 17(12): 1171-1177.
    [21]赵铁建,钟振国,方卓,等.白花丹水煎液对小鼠四氯化碳肝损害的影响[J].广西中医学院学报,2004, 7(4): 43-45
    [22]赵铁建,钟振国,方卓,等.白花丹提取物对实验动物模型肝组织的脂质过氧化作用的研究[J].广西医科大学学报,2006, 23(5): 725-726
    [23]赵铁建,钟振国,方卓,等.白花丹提取物抗小鼠肝纤维化作用的研究[J].广西中医药,2005, 25(4): 50-52
    [24]汪晓军,张奉学,郭兴伯.肝星状细胞、机体血浆纤溶系统与活血化瘀法[J].中西医结合肝病杂志,2002, 12(6): 383-385
    [25] Lin LC, Yang LL, Chou CJ. Cytotoxic naphthoquinones and plumbagic acid glucosides from plumbago zeylanica [J]. Phytochemistry, 2003, 62: 619-622
    [26] Krishnaswamy M, Purushothaman KK. Plumbagin: a study of its anticancer, antibacterial and antifungal properties [J]. Indian J Exp Bio, 1980, 18: 876-877
    [27] Srinivas P, Gopinath G, Banerji A, et al. Plumbagin induces reac-tive oxygen species, which mediate apoptosis in human cervical cancer cells [J]. Mol Carcinog, 2004, 40: 201-211
    [28]韦敏,刘华钢,刘丽敏.白花丹素的体外肝毒性研究[J].时珍国医国药,2010, 21(6): 1312-1314 .
    [1]韦燕飞,彭岳,谢海源,等.基于肝星状细胞分子机制的抗肝纤维化研究进展[J].世界华人消化杂志,2009, 17(17): 1745-1748
    [2]张绪富,吕志平,刘晓燕.以肝星状细胞为靶标的抗肝纤维化治疗进展[J].中国药理学通报,2003, 19(6): 622-6
    [3]饶慧瑛,魏来.肝星状细胞的生物学特性及活化调控机制[J].世界华人消化杂志,2005, 13(5): 671-674
    [4] Panasiuk A, Dzieciol J, Panasiuk B, et al. Expression of P53, Bax and bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2006, 12: 6198-6202
    [5]席文娜,孙水林,李方春,等.α-2a干扰素对大鼠肝组织bcl-2基因表达的影响及意义[J].世界华人消化杂志,2009, 17(31): 3237-3240.
    [6]王博龙.氯化两面针碱体外抗肿瘤效应及其分子机制研究[D].中国博士学位论文全文数据库,2007, 10
    [7] Bipin C. Dash and Wafik S. El-Deiry. Phosphorylation of p21 in G2/M Promotes Cyclin B-Cdc2 Kinase Activity [J]. Mol Cell Biol. 2005, 25(8): 3364–3387
    [8] Jaiswal AS, Bloom LB, Narayan S. Long-patch base excision repair of apurinic / apyrimidinic site DNA is decreased in mouse embryonic fibroblast cell lines treated withplumbagin: involvement of cyclin-dependent kinase inhibitor p21 Waf-1/Cip-1[J]. Oncogene, 2002, 21: 5912-5922
    [9]张怡,平洁,汪晖.肝星状细胞凋亡信号途径及其药物治疗的研究进展[J].中国药理学通报,2009, 25(1): 16-18
    [10] De Villiers WJ, Song Z, Nasser MS, et al. 4-Hydroxynonenal-induced apoptosis in rat hepatic stellate cells: mechanistic approach [J]. J Gastroenterol Hepatol 2007, 22:414–422.
    [11] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer, 1972, 26(4): 239-57
    [12] Hacker G. The morphology of apoptosis [J]. Cell Tissue Res, 2000, 301(1): 5-17
    [13]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社,2000, 153-155
    [14] Srinivas P, Gopinath G, Banerji A, et a.l Plumbagin induces reactive oxygen Species, which mediate apoptosis in human cervical cancer cells [J]. Mol Carcinog 2004, 40: 201-211
    [15]赵铁建,钟振国,方卓,等.白花丹提取物抗小鼠肝纤维化作用的研究[J].广西中医药,2005, 28(4): 50-52
    [16]李荣华,彭岳,谢海源,等.白花丹对大鼠肝星状细胞增殖、凋亡及细胞周期的影响[J].世界华人消化杂志,2009, 17(12): 1171-1177
    [17]赵和平,解燕茹.Bcl-2、Bax蛋白表达在非酒精性脂肪性肝病中的作用[J].世界华人消化杂志,2009, 17(23): 2409-2412
    [18]李继强,柳怿,刘文忠,等.依那普利对肝组织bax和bcl-2基因表达的影响[J].中华消化杂志,2006, 26: 539-543
    [19] Isabella Aprigliano, Joszef Dudas, Giuliano Ramadori, et al. Atorvastatin induces apoptosis by a caspase-9-dependent pathway: an in vitro study on activated rat hepatic stellate cells [J]. Liver Int 2008, 28: 546-557
    [1] Schmittgen T D, Jiang J, Liu Q, et al. A high-throught method to monitor the expression of microRNA precursors [J]. Nucleic Acids Res. 2004, 32(4): 43
    [2]聂青和.肝纤维化的逆转策略及研究现状[J].世界华人消化杂志,2005, 13(10): 1165-1174
    [3]程明亮,杨长春.肝纤维化的基础研究及临床[M].第1版.北京:人民卫生出版社,200, 09: 9-10
    [4] Eng FJ, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex [J]. Am J Physiol Gastrointestinal Liver Physiol, 2000, 279: 7-11
    [5] Kim WH, Matsumoto K, Bessho K, et al. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis [J]. Am J Pathol 2005, 166: 1017-1028
    [6] Ikejima K, Honda H, Yoshikama M. leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals [J]. Hepatology, 2001, 34: 288-97
    [7] Neeraj K. Saxena, Kazuo Ikeda, et al. Friedman.Leptin in Hepatic Fibrosis: Evidence for Increased Collagen Production in Stellate Cells and Lean Littermates of ob/ob Mice [J].Hepatology, 2002 April, 35(4): 762–771
    [8] Tang M, Potter JJ, Mezey E. Leptin enhances the effect of transforming growth factor beta in increasing type I collagen formation [J]. Biochem Biophys Res Commun 2002, 297(4): 906-911
    [9] Potter JJ, Rennie-Tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration [J]. Hepatol 2003, 38(3): 281-8
    [10] Potter JJ, Mezey E. Leptin deficiency reduces but does not eliminate the development of hepatic fibrosis in mice infected with Schistosoma mansoni [J]. Liver 2002, 22(2): 173-177
    [11] Leclercq IA, Farrell GC, Schriemer R. leptin is essential for the hepatic fibrogenic response to chronic liver injury [J]. Hepatol, 2002, 37(2): 206-13
    [12] Piche T, Vandenbos F, Abakar-Mahamat. The severity of liver fibrosis is associated with high levels in chronic hepatitis [J].Viral Hepatol, 2004, 11(1): 91-6
    [13] Reeves HL, Friedman SL. Activation of hepatic stellate cells-a key issue in liver fibrosis [J].Front Biosci, 2002, 7: d808-26
    [14] L Xu, A Y Hui, E Albanis, et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis [J]. Gut, 2005, 54(1): 142-151
    [15]高斌,刘敬忠.实时荧光PCR技术的研究及其应用进展[J].诊断学理论与实践,2006, 4(6): 507-509
    [16]马慧莉,陈彪.基因定量检测方法研究进展[J].中华医学遗传学杂志,2007, 24 (1):76-79
    [17] Neeraj K. Saxena, Dipali Sharma, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells [J]. Cancer Res. 2007, 15, 67(6): 2497–2507
    [18] Lin Wang, Bao-En Wang, Jian Wang, et al. Herbal compound 861 regulates mRNA expression of collagen synthesis-and degradation-related genes in human hepatic stellate cells [J]. World J Gastroenterol. 2008, 21, 14(11): 1790–1794
    [19] Herrmann J, Haas U, Gressner AM, et al. TGF-beta up-regulates serum response factor in activated hepatic stellate cells [J]. Biochim Biophys Acta. 2007, 1772: 1250–1257
    [20] Ikejima K, Horda H, Hirose M, et al. leptin angments profibrojenic response in the liver through regulation of TGF-beta [J]. Hepatology, 2000, 32: 301
    [21] Victoria M. Rimkunas, Mark J. Graham et al. TNF-αplays a role in hepatocyte apoptosis in Niemann-Pick type C liver disease [J]. Lipid Res, 2009, 50(2): 327–333
    [22] Campbell JS,Hughes SD,Gilbertson DG, et al. Platelet-derived growth factor C induces liver fibrosis, steatosis and hepato-cellular carcinoma [J]. Proc Natl Acad Sci USA, 2005, 102(9): 3389-3394
    [1] Guo JS, Friedman SL. Hepatic fibrosis [J]. Semin Liver Dis, 2007, 27: 413-426
    [2] Ahima RS, Osei SY. Leptin signaling [J]. Physiol Behav, 2004, 81: 223-241
    [3] Zwirska-Korczala K, Dziambor AP, Wiczkowski A, et al. Hepatocytes growth factor(HGF), leptin, neopterin serum concentrations in patients with chronic hepatitis [J]. Przegl Epidemiol 2001, 55, Supp l3: 164-169
    [4] Giannini E, Ceppa P, Botta F, et al. Leptin has no role in determining severity of steatosis and fibrosis in patients with chronic hepatitis [J]. Am J Gastroenterol, 2000, 95(11):3211-3217
    [5] Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity [J] Hepatology, 2002, 36(2): 403-409
    [6] Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese and its human homologue [J]. Nature, 1994, 372: 425-432
    [7] Kanoski SE, Walls EK, Davidson TL. Interoceptive“satiety”signals produced by leptin and CCK [J]. Peptides, 2007, 28: 988-1002
    [8] Otte C, Otte JM, St Rodt hoff D, et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis [J]. Exp Clin Endocrinol Diabetes, 2004, 112: 10-17
    [9] Zhang X, Danell JE JR. Functional importance of Stat3 tetramerization in activation of the alpha2-macroglobulin gene [J]. Biol Chem, 2001, 276(36): 33576-33581
    [10] Marieke R, Patricia D, Steven S, et al. Increased hypothalamic signal transducer and activator of transcription 3 Phosphorylation after hindbrain leptin injection [J]. Endocrinology, 2010, 151(4): 1509–1519
    [11] Saxena NK, Saliba G, Floyd JJ, et al. Leptin induces increased alpha 2 (Ⅰ) collagen gene expressions in cultured rat hepatic stellate cells [J]. Cell Biochem, 2003, 89: 311-320
    [12] Tang M, Potter JJ, Mezey E. Leptin enhances t he effect of transforming growth factor beta in increasing typeⅠcollagen formation [J]. Biochem Biophys Res Commun, 2002, 297: 906-911
    [13] Saxena NK, Titus MA, and Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation [J]. FASEB J, 2004, 18: 1612-1614
    [14] Cao Q, Mak KM, Ren CL, et al. Leptin stimulates tissue inhibitor of metalloproteinase-1in human hepatic stellate cells: respective roles of t he JAK/ STAT and JAK2 mediated H2O2-dependant MAPK pathways [J]. Biol Chem, 2004, 279: 4292-4304
    [15]韦燕飞,刘雪梅,唐爱存,等.白花丹醌对瘦素刺激人肝星状细胞转化生长因子-β1表达的影响[J].中国药理学通报,2010, 26(6): 421-424
    [16]刘雪梅,韦燕飞,彭岳,等.白花丹醌对瘦素诱导人肝星状细胞增殖与α-SMA表达的影响[J].中国药理学通报,2010, 26(9): 1154-1157
    [17] Neeraj K. Saxena NK, Dipali S, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin mediated promotion of invasion and migration of hepatocellular carcinoma cells [J]. Cancer Res. 2007, 15, 67(6): 2497–2507
    [18]牛丽文,曹琦,李俊,等.JAK/STAT途径调节瘦素诱导的肝星状细胞Ⅰ型胶原基因的表达[J].中国药理学通报,2007, 23(10): 1280-5
    [1]中国科学院中国植物志编辑委员会,中国植物志·60卷1第一分册·北京:科学出版社,1987: 4-5
    [2]江苏新医学院·中药大辞典·上海:上海人民出版社,1977: 4181
    [3]赵铁建,钟振国,方卓,等.白花丹水煎液对四氯化碳慢性肝损伤小鼠肝组织脂质过氧化的影响[J].广西医科大学学报,2006, 23(5): 725-726
    [4]赵铁建,钟振国,方卓,等.白花丹提取物抗小鼠肝纤维化作用的研究.广西中医药[J],2005, 28(4): 50-52
    [5]张倩睿,梅之南,杨光忠,等.白花丹化学成分的研究[J].中药材,2007, 30(5): 558-560
    [6]梅之南,赵应红,李效宽,等.HPLC法测定云南不同产地白花丹的不同部位中白花丹醌的含量[J].药物分析杂志,2007, 27(6): 901-903
    [7]刘圆,邓放,刘超,等.RP-HPLC测定不同产地白花丹中白花丹醌的含量[J].中国药学杂志,2007, 42(18): 1429-1430
    [8]刘圆,邓放,刘超,等.RP-HPLC测定民族药材白花丹不同药用部位中白花丹醌的含量[J].中国中药杂志,2006, 3l(20): 1684- 1686
    [9]刘圆,刘超.RP-HPLC测定不同采收期白花丹中白花丹醌[J].中草药,2007, 37(8): 1258-1259
    [10]杜泽乡,潘租鑫.白花丹鲜叶与干叶中白花丹醌含量测定[J].安徽农业科学,2010, 38(22): 11789-11790
    [11]杜泽乡.白花丹鲜茎与干茎中白花丹醌含量测定[J].安徽农业科学,2009, 37(33): 16363-16364
    [12]韦敏,刘华钢,刘丽敏.白花丹素的体外肝毒性研究[J].时珍国医国药,2010, 21(6): 1312-1314
    [13]韦敏,刘华钢,刘丽敏,等.白花丹素的体外肾毒性及酸性成纤维细胞生长因子对白花丹素所致肾损伤的保护作用[J].药物服务与研究,2009, 9(4): 272-274
    [14]曾颖,邓燕明,姚教元,等.白花丹的药理研究及在眼科中的应用中国药房[J].中国药房,1997, 8(4): 161-162
    [15]黄慧学,刘华刚.白花丹素脂质体给药系统研究[D].中国博士学位论文全文数据库,2008, 10
    [16]黄慧学,梁秋云,刘华钢,等.白花丹素在小鼠体内的药代动力学和组织分布特性[J].广西中医学院学报,2008, 11(1): 38-41
    [17]赵霞,陆阳.不同剂量白花丹醌对猪多形白细胞中花生四烯酸的代谢产生相反作用[J].中草药,1996, 27(5): 315
    [18]甘炳春,杨新全,李榕涛.黎族民间治疗外伤药用植物的收集整理[J].中国民族民间医药杂志,2005, 77: 357-360
    [19]朱芳,伍钢,何远桥,等.白花丹醌对肝癌细胞HepG2增殖及血管内皮生长因子表达的影响[J].中草药,2010, 41(5): 775-778
    [20]赵艳丽,陆道培.白花丹醌对人急性早幼粒细胞白血病细胞的体外效应[J].中国实验血液学杂志,2006, 14(2): 208 - 211
    [21] Srinivas P, Gopinath G, Banerji A, et al. Plumbagin induces reactive oxygen Species ,which mediate apoptosis in human cervical cancer cells [J]. Mol Carcino, 2004, 40: 201-211
    [22]刘超,刘圆,颜晓燕.白花丹醌对人乳腺癌细胞mda-mb-23的体外效应[J].华西药学杂志,2008, 23(1): 044-047
    [1]明亮,杨长春.肝纤维化的基础研究及临床[M].第1版,北京:人民卫生出版社,2002, 09: 9-10
    [2] Lai CL. Therapeutic advances in chronic hepatitis [J]. Gastroenterol Hepatol. 2004, 19(Suppl): S5-9
    [3] Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to the amplification of the ibrogenic hepatic stellate cell [J]. Front Biosci 2003, 8: 69-77
    [4]李莉娜,贾心善.肝脏星状细胞与细胞外基质、金属蛋白酶的研究进展[J].日本医学介绍,2002, 23: 139-141
    [5] Kim WH, Matsumoto K, Bessho K, et al. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis [J]. Am J Pathol 2005, 166: 1017-1028
    [6] Gressner AM Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis [J]. Front Biosci, 2002, 7: d793-d807
    [7] Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myoibroblasts [J]. Hepatology, 2000, 31: 1094-1106
    [8] Nakamura T, Ueno T, Sakamoto M, et al. Suppression of transforming growth factor-beta results in upregulation of transcription of regeneration factors after chronic liver injury [J]. J Hepatol, 2004, 41: 974-982
    [9] Paradis V, Dargere D, Bonvoust F, et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells [J]. Lab Invest, 2002, 82: 767-774
    [10] Chen YX, Lu CH, Xie WF, et al. Effects of ribozyme targeting platelet-derived growth factor receptor beta subunit gene on the proliferation and apoptosis of hepatic stellate cells in vitro [J]. Chin Med J (Engl), 2005, 118: 982-988
    [11] Yang C, Zeisberg M, Mosterman B, et al. Liver ibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors [J]. Gastroenterology, 2003, 124: 147-159
    [12] Shao R, Shi Z, Gotwals PJ, et al. Cell and molecular regulation of endothelin-1 production during hepatic wound healing [J]. Mol Biol Cell , 2003, 14: 2327-2341
    [13]张绪富,吕志平.以肝星状细胞为靶标的抗肝纤维化治疗进展[J].中国药理学通报.2003, 19(6): 622-626
    [14] Jia JD,Bauer M,Cho JJ, et al. Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen alphal (I) and TIMP-1 [J]. J Hepatol, 2001, 35(3):392-8
    [15] Friedman SL. The cellular basis of hepatic fibrosis: mechanisms and treatment strategies [J]. N Engl J Med, 1993, 328(25): 1828-1835
    [16]周斌,姚乃礼.肝星状细胞中药血清药理学实验研究概况[J].中国中西医结合杂志.2004, 24: 376-377
    [17] Saile B, Matthes N, Knittel T, et al. Transforming growth factor beta and tumor necrsis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells [J]. Hepatology, 1999, 30(1): 196-202
    [18] Li-Juan Zhang, Jie-Ping Yu, Dan Li, et al. Effects of cytokines on carbon tetrachloride-induced hepatic fibrogenesis in rats [J]. World J Gastroenterol, 2004, 10: 77-81
    [19]王勇,席军生,谢世平.肝纤维化相关细胞因子研究集析[J].中医药学刊.2003, 27: 725-728
    [20]孙妩弋,魏伟.中药和天然药物治疗肝纤维化的研究[J],中国药理学通报,2004, 20(7): 741-746
    [21]廖丹,罗光汉,吴继周.TGF-β1和smad4mRNA在慢性肝炎、肝硬化、肝癌癌旁组织的表达及意义[J].世界华人消化杂志,2004, 11(9): 2091-2094
    [22]陈晓红.细胞因子对肝纤维化形成的影响[J].国外医学内科学分册,2001, 28(1): 21-24
    [23]叶国荣,舒建昌.肝星状细胞在肝纤维化中的作用[J].国外医学内科学分册,2006, 12(33): 522-525
    [24] Chang XM, Chang Y, Jia A. The Kupffer cell of hepatic fibrosis [J]. World J Gastroenterol, 2005, 11(17): 2634-2636
    [25] Albanis E, Friedman SL. Hepatic fibrosis. Pathogenesis andprinciples of therapy [J]. ClinLiver Dis, 2001, 5(2):315-334
    [26] Safadi R, Friedman SL. Hepatic fibrosis: role of hepatic stellate cell activation [J]. Med Gen Med , 2002, 15(3): 419-427
    [27]梁志清,徐新宝,何振平.反义Smad4对大鼠纤维化肝脏金属蛋白酶及其抑制剂的调节[J].重庆医学,2004, 33: 716-717
    [28]崔红燕,刘成,刘成海.基质金属蛋白酶与肝纤维化的研究进展[J].国外医学消化系疾病分册,2003, 23: 37-40
    [29] Inuzuka-S, Ueno-T, Torimura-T, et al. The significance of colocalization of plasminogen activator inhibitor-1 and vitronectin in hepatic fibrosis [J]. Scand J Gastroenterol, 1997, 32(10): 1052
    [30]汪晓军,张奉学,郭兴伯.肝星状细胞、机体血浆纤溶系统与活血化瘀法[J].中西医结合肝病杂志,2002, 12(6): 383-385
    [31] Leyland H, Gentry J, Arthur M, et al.The plasminogen-activatingsysterm in hepatic stellate cells [J]. Hepatology, 1996, 24(5): 1172
    [1] Reeves HL, Friedman SL. Activation of hepatic stellate cells-a key issue in liver fibrosis [J]. Front Biosei. 2002, 7: d808-26
    [2] Anania FA. Leptin, liver, and obese mice-fibrosis in the fat lane [J]. Hepatology 2002, 36(1): 246-248
    [3] Marra F. Leptin and liver fibrosis: a matter of fat [J]. Gastroenterology, 2002, 122(5): 1529-1532
    [4] Henriksen, Holsi. JJ, Mollers, et al. lnereasrd circulaying leptin in alcoholic cirrhosis: realation to release and disposal [J]. Hepatology: 1999, 29(6): 1818-1824
    [5] Piche T, Vandenbos F, Abakar MA, et al. The severity of liver fibrosis is associated with high leptin levels in chronic hepatitis [J]. J Viral Hepat, 2004, 11(1): 91
    [6] Camp illo B, Sherman E, Richardet JP, et al. Serum leptin levels in alcoholic liver cirrhosis: relationship with gender, nutritional status, liver function and energy metabolism [J]. Eur J Clin Nutr, 2001, 55(11): 980
    [7] Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is ssential for the hepatic fibrogenic response to chronic liver injury [J]. J Hepatol, 2002, 37(2): 206-213
    [8] Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver [J]. Hepatology, 2002, 36(1):12-21
    [9] Ikejima K, Honda H, Yoshikawa M, et al. Leptin augments flammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals [J]. Hepatology, 2001 Aug, 34(2): 288-297
    [10] Siegmund B, Lear-Kaul KC, Faggioni R, et al. Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis [J]. Eur J Immunol, 2002, 32(2): 552-560
    [11] Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat [J]. Gastroenterology, 2002, 122(5): 1399-1410
    [12] Saxena NK, Ikeda K, Rockeydc M, et al. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice [J]. Hepatology, 2002, 35: 762-771
    [13] Tang M, Pott ER JJ, Mezey E, et al. Leptin enhances the effect of transforming growth factor beta in increasing typeⅠcollagen formation [J]. Biochem Biophys Res Commun, 2002, 297: 906-911
    [14] Gyi K, Fulop K, Kovacs K, et al. Leptin induced signal transduction pathways [J]. Cell Biol Int, 2004, 28(3): 1592-1691
    [15]郭启煜,高妍,丛琳,等.瘦素对大鼠肝细胞瘦素受体蛋白、基因表达及酪氨酸磷酸化的影响[J].首都医科大学学报,2007, 63(28): 305-306
    [16] Grilardi N, Skodar C. The leptin receptor activates Januskinase and signals for proliferation in a factor dependentcell line [J]. Mol Endocrinol, 1997, 11: 393-399
    [17]郭启煜.瘦素的信号转导机制[J].国外医学:分子生物学分册,2002, 24: 105-108
    [18] Potter JJ, Womaek L, Mezey E, et al. Transdifferentiation of rat hepatic stellate cells results in leptin expression [J]. Bioehem Biophys Res Commun, 1998, 248(2): 441
    [19]牛丽文.瘦素在日本血吸虫肝纤维化的作用及分子机制的实验研究[D].华中科技大学博士论文2007
    [20]司洪芳.来氟米特对肝星状细胞增殖的抑制及分子作用机制[D].安徽医科大学博士学位论文2007
    [21] Cao Q, Mak KM, Ren CL, et al. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways [J]. J Biol Chem, 2004, 279(6): 4292-304
    [22] Lang T, Ikejima K, Yoshikawa M, et al. Leptin facilitates proliferation of hepatic stellate cells through up-regulation of platelet-derived growth factor receptor [J]. Biochem Biophys Res Commun, 2004, 323(3): 1091
    [23]王要军,张忠兵,朱颖炜等.细胞外信号调节激酶信号传导通路调控瘦素刺激的肝星状细胞Ⅲ型胶原分泌[J].肝脏,2006, 12, 11(6)
    [24] Sakaida I, Jinhua S, Uchida K, et al. Leptin receptor deficientucker (fa/ fa) rat retards the development of pig serum-induced liver fibrosis with Kupffer cell dysfunction [J]. Life Sci, 2003, 73(19): 2491-2501
    [25] Honda H, Ikejima K, Hirose M, et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine Liver [J]. Hepatology, 2002, 36(1): 12221
    [26]赵进军,吕志平,张绪富.核转录因子在肝星状细胞激活中的作用[J].中华肝脏病杂志,2002, 10(3): 22720
    [27]赵宗豪.核因子KB与肝纤维化的研究进展[J].实用肝脏病杂志,2004, 7(2): 119
    [28]赵铁建,钟振国,方卓,等.白花丹提取物抗小鼠肝纤维化作用的研究[J].广西中医药,2005, 25(4): 50-52
    [29]赵进军,吕志平,刘永刚,等.保肝宁对过氧化氢损伤大鼠肝细胞的保护作用[J].广州中医药大学学报,2002, 19(3): 211-213
    [30]张绪富,吕志平,周迎春,等.保肝宁对HSC-T6细胞增殖及Ⅰ型胶原表达的影响[J].中医药学刊,2003, 21(2): 207
    [31]刘晓燕,吕志平,张绪富,等.保肝宁对HSC中NF-kB影响的实验研究[J].陕西中医,2004, 25(6): 569
    [32] Bryson JM, huyal JL, Swan V, et al. Leptin has acute effects on glucose and lipid metabolism in both lean and gold thioglucose-obese mice [J]. Am J Physiol, 1999, 277(3Pt 1): E417-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700