河北平原邯郸地区地下水硝酸盐污染来源及迁移转化过程的多元素同位素及微生物(E.coli)示踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、城市化、现代化的发展,工业和生活“三废”的大量排放导致土壤、地表水和地下水的污染日益加重。硝酸盐是地下水中最为普遍的污染组分之一,人们摄取过量硝酸盐容易引起高铁血红蛋白症,还会引发食管癌、胃癌和肠癌等。地下水中硝酸盐的污染具有多源性、隐蔽性及难治理性。为了防治硝酸盐污染、判断硝酸盐的来源,确定硝化和反硝化的氮循环转化过程至关重要,只有确定了硝酸盐的来源及迁移转化规律,防治措施才能对症下药,取得事半功倍的效果。但由于自然界氮循环复杂的物理、化学和生物过程,使得传统水文地球化学方法难以识别硝酸盐的污染来源。
     由于不同氮来源的硝酸盐的δ15N值存在重合,使得用其结果判断存在多解性,因此仅利用氮同位素示踪硝酸盐的污染仍不能准确判定硝酸盐污染来源,尤其是对于有机氮化物硝化作用形成的N03-更是如此。随着同位素测试技术的发展,利用N03-中的15N和18O同位素来研究N03-的来源、污染机理和氮循环过程在一定程度上弥补了仅利用δ15N值识别其来源的不足,但对于复杂的系统仍存在较大的局限性。因此,本研究依托导师周爱国教授国家自然科学基金项目“硝酸盐三氧同位素在线测试新技术及其在地下水污染研究中的应用”(N0.40972157)和马传明副教授国家自然科学基金项目“天然水中亚硝酸盐氮氧同位素测试技术及其在水文地质中的应用”(N0.40802057)的资助,在典型的食管癌高发区-河北邯郸地区,尝试应用多元素(N、O、C、Cl)同位素及微生物技术(E.coli)分析研究地下水的水质特征及其演化规律、地下水的NO3-的δ15N和δ18O同位素、溶解性有机碳的δ13C同位素、氯化物的δ37Cl同位素的分布特征和微生物技术(E.coli),识别地下水中硝酸盐的来源,为食管癌高发区地下水硝酸盐污染的防治和安全饮水提供科学依据。
     研究区位于河北省南部,西部紧邻太行山中低山及丘陵区,东部为山前和漳河冲积平原,地层出露较全。含水岩组划分为岩溶裂隙含水岩组、基岩裂隙含水岩组、碎屑岩类孔隙裂隙含水岩组和松散岩类孔隙含水岩组。地下水主要由大气降水、河流入渗、侧向径流、河渠灌溉回渗补给等,整体流向自西向东,排泄方式主要以侧向径流、蒸发和人工开采为主。本研究的对象主要为松散岩类孔隙含水岩组。
     通过地面调查,在研究区由西向东沿着地下水流向,选择不同地貌、地层、岩性和水文地质单元采集地下水样品32组,所有样品都进行了pH值、温度、电导率、主要阴阳离子、水的氧、氘同位素组成(δ18O、δ2H)、硝酸盐氮氧同位素组成(δ15N、δ18O)、溶解性有机碳的碳同位素(δ13C)、氯化物中的氯同位素组成(δ37Cl)及微生物技术(E.coli)测定。通过对测试结果的综合对比分析,取得以下认识:
     (1)河北平原邯郸地区地下水水化学特征具有明显的规律性
     西部山区水水化学类型一般为HC03-Ca和HCO3-Ca-Mg水,第四系孔隙水受到了轻微污染,出现了大面积HCO3SO4-Ca、HCO3·Cl-Ca-Mg、HCO3·Cl-Na-Mg、HCO3·Cl·SO4-Na·Mg、 HCO3·Cl-Na型水。主要离子含量由西向东逐渐递增,局部存在工业、生活和采矿污染。
     (2)地下水的补给来源主要为大气降水
     研究区地下水样品的δ180和δ2H都落在大气降水线附近,表明地下水的来源主要为大气降水。
     (3)地下水中硝酸盐的浓度与食管癌的发病率与死亡率呈正相关关系
     研究区西部地下水中硝酸盐含量高于东部平原,西部食管癌发病率和死亡率高于东部,这种情况表明了食管癌发病率和死亡率与地下水中硝酸盐含量呈正相关;磁县前史村(HD009) NO3含量达38.66mg/L,高于饮用水卫生标准的≤30mg/L。
     承压水中NO3-含量一般较低。东部属于地下水的微承压-承压区,地下水的隔水顶板对污染物的入渗起到了较好的阻隔作用,同时承压水含水层位于深部,属于厌氧条件,还原条件起主要作用,有利于反硝化作用的进行,因而N03-含量较低。
     武安市马家庄乡宋家井村(HD008) NO3含量高,据现场调查其附近是矿区,其主要污染源为工、矿企业排污废水。地表岩性的防污性能对浅层地下水的硝酸盐污染具有重要的作用,地表岩性颗粒粗,渗透性好,防污性能较差,各种来源的硝酸盐容易进入地下水造成污染。
     (4)δ13CDOC值及微生物(E·coli)特征
     ①研究区地下水中δ13CDOC与DOC呈现一定的负相关关系,即随着DOC浓度的减少,而δ13CDOC偏正,其原因可能是动物粪便和生活污水直接影响地下水中DOC的碳同位素值。
     ②杆菌E-coli检出点27、19、4的δ13CDOC值都较负,出现此现象的原因可能是这些样点附近有养殖区,动物粪便及城市污染输入,导致地下水微生物活动加剧,增强了生物成因碳的比重。
     (5)37Cl同位素特征
     ①氯化物与硝酸盐的分布规律
     研究区Cl-和N03-在空间上的分布具有高度的相关性,高值区分布在磁县,主要受工矿企业废水排放的影响;山前平原区(非承压水区)Cl-和N03-的分布关系基本上呈正相关关系,东部平原(承压水区)Cl-和N03-的分布是高Cl-和低N03-。
     ④δ37Cl与Cl-、δ18OH2O、δ2HH2O和地下水埋深的关系
     第四系孔隙水和岩溶水的δ37Cl值随着Cl-离子浓度增大而变小甚至变成负值;地下水的18OH2O和2HH2O同位素分馏机理与37Cl同位素的分馏机理不同,因而地下水中的δ37Cl值与水的δ180和δ2H值无明显的相关性;西部山区丘陵岩溶水Cl-浓度和δ37Cl值与岩溶水的埋深有明显的负相关性,Cl-含量随埋深的增大而减小,岩溶水的δ37Cl值随着埋深的增大而偏负;第四系孔隙水Cl-浓度和637Cl值与第四系孔隙水的埋深没有相关性,Cl-含量随深度变化不大。
     ③δ37Cl与δ15N的相关性
     δ37Cl值和δ15N值结合可以区分来源于大气降水中的硝酸盐和来源于土壤中的硝酸盐,同时利用δ37Cl值的差异判断泉水出露地层是碳酸盐还是非碳酸盐;利用δ15N值的差异和δ37Cl值的相关关系,识别出δ15N值来源是化肥还是动物粪便;碳酸盐分布区δ37Cl值和δ180值均较高,可能受到了化肥污染;第四系分布区δ37Cl值低和6180值较高,可能受到了养殖粪便污染。(6)N03-的来源识别
     利用N03-和δ15N的相关关系,结合水文地质条什和其他信息,对研究区地下水N03-的来源进行识别:①大气来源的氮:其特征是N03--N含量低于25mg/L,δ15N值为负数,其来源主要是生物体(植被腐烂),其分馏机理主要为生物固氮作用;②天然十壤来源的氮:其特征是N03--N含量低于10mg/L,δ15N值介于0-+8%o之间,其来源主要为天然土壤有机氮或腐殖质的硝化或降解;③粪便来源的氮:其特征是N03--N的含量变化范围较大,为24.86~72.16mg/L,δ15N值为高值,为+15.78~+18.35‰之间,其来源主要是禽畜粪便引起的污染,与氨的挥发作用较强所致;④混合来源的氮:其特征是N03-和δ15N含量变化范围较大,由于工业污水的氮同位素比值接近于氮化肥,因而仅靠N03-和δ15N的相关关系难以识别其来源时氮化肥还是工业废水或生活污水,需要结合其他同位素进行识别和区分。
     δ15NN03值与δ13DOC值基本上呈正相关关系,这表明有机碳同位素分馏与硝酸盐的氮同位素分馏都遵守瑞利(Ralaygh)分馏理论。不同来源的溶解有机碳(DOC)其碳同位素具有不同的变化范围。陆生植物的δ13CDOC平均值为-25‰,C3植物的平均值为-23‰(例如树木,小麦,水稻等),C4植物的δ13CDOC平均值为-13‰(例如玉米,高粱,黍和甘蔗等)。土壤有机质的δ13CDOC值与区域的植物类型有关,泥炭-腐殖士壤中有机物约为-27±5‰。垃圾填埋场受污染严重的地区,δ13CDOC值达-40‰。研究区地下水溶解性有机碳(DOC)的碳同位素范围为-30--38‰,平均值为-32.27‰,与C3植物和陆生植物的δ13DOC相对比有些偏负,根据上述不同来源的溶解有机碳(DOC)的碳同位素不同的变化范围可以判别,研究区地下水中溶解有机碳来自于土壤有机质。而δ15NNO3值与δ13CDOC值的正相关关系可进一步来判断研究区N03-可能来自于土壤有机质氮。
     研究区地下水δ37C1-δ15NNO3的关系的总趋势是:①岩溶水的δ15NNO3和637Cl呈正相关关系;②第四系孔隙水两者呈负相关关系;③粪便污染δ15NNO3值大δ37Cl值小。涉县岳城水库(HD019)属于地表水,其特点是δ15N值及δ37Cl值都较高。因为水库周边村庄畜牧业较发达,动物粪便是氮污染的主要来源。总的来说,研究区地下水硝酸盐主要来源于动物粪便和化肥。
     按Savard等(2010)报道,不同的氮源N03-具有不同的氮和氧同位素特征。根据我们的资料作出δ18O-NO3和δ15N-NO3关系图,在本研究区,饮用水中N03-主要有3个来源:①土壤有机质氮;②动物粪肥和污水氮;③化肥氮,其中以土壤有机质氮为主,43.47%,其次是动物粪便,为34.78%,化肥氮21.75%。特别是动物粪肥的来源,都由菌落和E·coli杆菌检出证实。本研究区西部山区、中部丘陵和山前平原均处于地下水补给区,这里正发生着有机质的矿化作用和硝化作用。只有在东部冲积平原浅层承压水区发生着反硝化作用,使地下水中N03-含量减少。此外,在土壤有机质氮、动物粪肥氮和化肥氮之间也会发生着混合作用。在本研究区,尚未发现大气成因的氮源。
     (7)研究区硝酸盐的迁移转化过程
     土壤的硝化作用与通气状况、土壤酸度、土壤水分、有机质含量密切相关:而土壤碳源的供应状况、土壤水分湿度、土壤氧供应等则对土壤反硝化作用有明显的影响。硝化作用是研究区氮循环的主要形式,从大气降雨开始,N即从大气经过植被进入岩(土),在固氮作用、同化作用、氨化作用、硝化作用下,不断形成N03-:研究区发生的反硝化作用有两类,一是发生在粪便来源的δ15N和N03-分布区(氨挥发);二是发生在氮肥生产与施用或工业污水源的N03-分布区;食管癌高发区主要分布在硝化作用为主的地区,反硝化作用区多为食管癌低发区。
     本研究紧密结合河北平原邯郸地区水文地质条件,以地下水循环演化为主线,运用多元素(N, O、C、Cl)同位素及微生物技术(E.coli)对河北平原邯郸地区浅层地下水硝酸盐氮氧同位素组成(δ15N、δ18O)、溶解性有机碳的碳同位素(δ13C)、氯化物中的氯同位素(δ37c1)组成的分布特征及微生物技术(E.coli)进行了系统研究,全方位揭示了地下水中硝酸盐的来源及其与食管癌高发的关系。首次利用δ15N与δ13C、δ15N与δ37Cl等相关关系,在研究区识别出土壤有机质氮、动物粪肥和污水氮和化肥氮这三种不同来源的硝酸盐;为研究区硝酸盐污染的防治和食管癌高发区的安全饮水科学依据,具有一定的科学价值和应用前景。
With the development of industrialization, urbanization, modernization, the emission of industrial and life wastes lead to soil, surface water and groundwater pollution is increasing. Nitrate is one of the most common components of pollution in the groundwater, and for people, excessive intake of nitrate is easy to cause methemoglobinemia, but also lead to esophageal cancer, gastric cancer and colon cancer. The nitrate contamination of groundwater with multi-sources, hidden and difficult control properties. In order to combat nitrate pollution, it is critical to judge the source of nitrate, determine the nitrogen cycle transformation process of the nitrification and denitrification, only to determine the source of nitrate and its migration transformation rule, the control measures can suit the problem, achieving a multiplier effect. However, due to the complex pgysical, chemical and biological processes of nitrogen cycle in nature, traditional hydrogeochemical methods is difficult to identify the source of nitrate pollution.
     Nitrate δ15N values of difficult nitrogen sources is overlap, making the results exist multiple solutions, using only the nitrogen isotope tracing nitrate contamination still can not accurately determine the nitrate pollution sources, especially for the NO3-formed from organic matter. With isotope test technology development, use the isotopic N and18O isotopes of NO3-to study NO3-source, pollution mechanism and nitrogen cycle, to a certain extent make up for the weaknell of using δ15N value to identify the sources, but there are still large limitations for complex system. Therefore, funded by National Natural Science Fund Project "The online testing new technology of nitrate triple oxygen isotope and its application in the study of groundwater contamination"(NO.40972157) by the Supervisor professor Aiguo Zhou and "The testing technology of the nitrate nitrogen and oxygen in the natural water and its application in hydrogeology"(NO. 40802057) by the associate professor Chuanming Ma, in the high incidence of esophageal cancer-Handan area in the north China plain, the multi-isotope (N> O, C, Cl) and microbial technology (E.coli) is tried to study groundwater quality characteristics and their evolution, the distribution characteristics of nitrogen and oxygen isotope of nitrate, carbon isotope of dissolved organic carbon and chlorine isotopic composition of chloride, to identify the sources of groundwater nitrate, and to provide a scientific basis for prevention and treatment of nitrate pollution of groundwater and safe drinking water in esophageal high incidence area.
     The study area is located in the southern part of Hebei Province, the west close to the low mountain and hilly area of Taihang Mountains, the east is piedmont and Zhang River alluvial plain, the strata exposed than the whole. The aquifer groups can be divided into the karst fissure aquifer, clastic rock pore fissure aquifer, and the loose rock pore aquifer group.Groundwater is mainly recharged by atmospheric precipitation, river infiltration, lateral flow, canals, irrigation seepage, the overall flow from west to east, and discharged mainly by the lateral runoff, evaporation, and labor exploitation. The object of this study is mainly for the loose rock pore aquifer group.
     Ground surveys in the study area, from west to east along the direction of groundwater flow, select the difficult landforms, stratigraphy, lithology and hydrogeology units, collect32groups groundwater samples, all samples are tested the pH value, temperature, conductivity, major ions, trace elements, oxygen and deuterium isotope (δ18OH2O、δ2H), nitrate nitrogen and oxygen (δ15N、 δ18O), carbon isotope of dissolved organic carbon (δ13C), chlorine isotope composition of chloride (δCl) and microbial technology (E.coli). Comprehensive comparative analysis of test results, we achieved the following understanding:
     (1)Hydrochemical characteristics of groundwater with apparent regularity in Handan area in the North China Plain
     The type of water chemistry of the western mountains is HCO3-Ca and HCO3-Ca·Mg, the large area of HCO3·SO4-Ca, HCO3·Cl-Ca·Mg, HCO3·Cl-Na·Mg, HCO3·Cl·SO4-Na·Mg and HCO3·Cl-Na type water appeared in the Quaternary pore water, due to the slight pollution. The major iron content progressively from west to east, with the loal existence of industrial, life and mining pollution.
     (2)The main recharge of groundwater is atmospheric precipitation
     The δ18O and δ2H values of groundwater samples fall near the meteoric water line, indicating that the main sources of groundwater is atmospheric precipitation.
     (3)The relationship between nitrate concentration and the incidence and mortality of esophageal cancer is positive
     The groundwater nitrate content in west is higher than eastern plains, and high rate of esophageal cancer in western is also higher than the east proved that the incidence and mortality of esophageal cancer was positively correlated with groundwater nitrate content; The NO3-content in the groundwater of Qianshi village in Cixian is higher than the drinking water health standards (≤30mg/L), with of38.66mg/L.
     The NO3-content in confined water is generally low. The eastern plains located in micro-confined and confined water zone, and the impermeable roof of confined groundwater can be anti-fouling, while the deep confined water is anaerobic reductive environment, conductive to denitrification and thus the content is generally low.
     The NO3-content of groundwater in Songjiajing village in Wuan city, and there is mine area near this place, and the main sources of nitrate pollution may be applied by industry and mining companies discharge of waste water. The antifouling performance of the surface lithology plays an important role of nitrate pollution in shallow groundwater, because the surface lithology is coarse, the infilitration is good, and the autifouling performance is poor, the various sources of nitrate is easy to access to groundwater pollution.
     (4)Characteristics of δ13CDOC values and microbial (E-coli)
     ①There is a generally negative correlation between DOC and δ13CDOC value, and as the concentration of DOC decrease, the δ13CDOC values are more positive, and the reason may be the carbon isotope of DOC is effected by animal manure and seawage.
     ②The δ13CDOC values of the samples detected by E-coli (27,19,4) are more negative, and the reason may be that the microbial activity in groundwater is serious due to the input of animal manure and city pollution, that to enhance the proportion of biogenic carbon.
     (5)The characteristics of37Cl isotopic
     ①The chlorine and nitrate distribution law
     Study area Cl-and NO3-with a high consistency in the spatial distribution, the high-value area distributes around Cixian, mainly impact of the industrial and mining wastewater discharge; The relationship of Cl-and NO3-distribution is basically a positive correlation in the piedmont area (unconfined water zone), while that of Cl-and NO3-distribution in he eastern plains (confined water zone) is high Cl-and low of NO3-.
     ②The correlation between δ37Cl and Cl-, δ18OH2O, δ2HH2O, groundwater depth
     The δ37C1value in Quaternary pore water and Karst water get smaller or become megative with the concentration of Cl-increases; The δ37C1value in
     ②The correlation between δ37Cl and Cl-, δ18OH2O δ2HH2O, groundwater depth
     The δ37C1value in Quaternary pore water and Karst water get smaller or become negative with the concentration of Cl-increases. The δ37Cl vaiue in groundwater is not correlated with δ18OH2O and δ2HH2O value, because the37C1isotope fractionation mechanism is different from δ18OH2O and δ2HH2O. The relationship of Cl-,δ37C1and depth is obviously negative correlation in Karst water in the western mountains, meaning the Cl-concentration decrease with the depth increase; the δ37Cl value become negative with the depth increase. There is no correlation between the Cl-,δ37Cl and depth in Quaternary pore water, and the Cl-concentration has no change with the depth increase.
     ③Relationship between δ37Cl and δ15N
     Combination of δ15N values and837C1values can be distinguished from nitrate from the precipitation and nitrate from the soil, which taking advantage of the differences of837C1values to judge springs exposed strata are carbonate or non-carbonate; using the differences of δ15N values and relationship of837C1values to identify δ15N values from fertilizer or animal manure; The δ37C1values and δ18O values in carbonate distribution area are higher, and may be subject to fertilizer pollution; Quaternary distribution δ37C1low and δ18O values higher, may be by the breeding faecal contamination.
     (6)Source identification of NO3-
     Use the relationship between NO3-and δ15N, combined with the hydrogeological conditions and other information, to identify NO3-sources of in groundwater.①Nitrogen from atmospheric: the characteristics is NO3--N content less than25mg/L, and the δ15N value is negative, its main source is the organism (decaying vegetation), and fractionation mechanism is biological nitrogen fixation.②Nitrogen from natural soil sources:the characteristic is NO3-N content less the10mg/L, and the δ15N value in the range of0~+8%o, its main source is nitrification or degradation of natural soil organic nitrogen or humans.③Nitrogen from fecal sources:the characteristic is that the range of NO3--N content change a lot,24.86to72.16mg/L, and the δ15N value is high, with the range of15.78~18.35%o, the main source is pollution caused by livestock manure and ammonia volatilization is strong.④Nitrogen from mixed sources:the characteristic is that the range of NO3--N content varied greatly, because nitrogen isotope ratios of industrial effluent close to nitrogen fertilizer, thus it is difficult to identify the source is nitrogen fertilizer or industrial waste water or sewage only by the relationship between NO3-and ε15N, so the combining with other isotope to identify and distinguish is needed.
     The correlation between δ13CDOC values and δ15NNO3values showed that both the isotope fractionation in dissolved organic carbon and the oxygen isotope fractionation in nitrate obeyed the Rayleigh fractionation theory. The carbon isotopic compositions of different sources of dissolved organic carbon (DOC) have different range. The average value of δ13C is-25%o for terrestrial plants,-23‰for C3plants (such as trees, wheat, rice, etc.),-13‰for the C4plants (such as corn, sorghum, millet, sugar cane, etc.). The13C value of soil organic matter was associated with the regional plant type, and was about-27±5%o for peat humic soil organic matter, and was up to-40‰in the serious pollution areas such as landfill. The δ13CDOC value in groundwater varied from-30‰o to-38‰, with the maximum frequency of-32‰-33‰and the average of-32.37‰, which was more negative than the δ13CDOC values of C3plants and terrestrial plants. According to the different range of the carbon isotopic compositions of different sources of dissolved organic carbon (DOC), the dissolved organic carbon in the groundwater of the study area is mainly soil organic matter. The positive correlation between δ13CDOC values and δ15NNO3values could be used to justify the source of NO3-further, and the main source of NO3-in groundwater is soil organic matter nitrogen.
     The general trend of the relationship between δ37Cl values and δ15NNO3values in groundwater are:①There is positive correlation between δ15NNO3values and δ37C1values in Karst water;②There is negative correlation between δ15NNO3values and837C1values in Quaternary pore water;③The ε15NNO3value is high with low δ37C1value in the waste pollution area. Overall, the mainly source of nitrate in groundwater of the study area is animal manure and chemical fertilizer.
     According to the nitrogen and oxygen isotopic composition values from different nitrate source reported by Savard et al.(2010), the relationship between the δ18ONO3values and the δ15NNO3values shows that the nitrate sources in the drinking water in the study area are:①The nitrogen from soil organic matter;②The nitrogen from animal manure and sewage;③the nitrogen from chemical fertilizer, which is given priority to with soil organic matter nitrogen,43.47%, followed by animal manure nitrogen,34.78%,21.75%for chemical fertilizer nitrogen. Especially the source of animal manure by colony and E-coli bacteria detection confirmed.This research area in central western mountains, hills and piedmont plain in groundwater recharge area, happening in the organic matter mineralization and nitrification. Only in the eastern alluvial plain of shallow confined water denitrification effect, the NO3-content in groundwater is reduced. In addition, the nitrogen of soil organic matter, animal manure can also occur between nitrogen and nitrogen fertilizer mixing action. In this research area, the atmospheric nitrogen source has not be found.
     (7)The transformation of nitrate in the study area
     The nitrification of soil is closely related to aeration of soil, soil acidity, soil moisture, organic matter content; The supply of soil carbon source, soil moisture and humidity, soil oxygen supply is a significant impact on soil denitrification. Nitrification is the main form of the nitrogen cycle in the study area, start with rainfall, N from the atmosphere after vegetation into the rock (soil), under the nitrogen fixation, assimilation, ammonification, nitrification, and continue to from the NO3-; There are two types of denitrification occurred in the study area. First, it occurred in the area of δ15N and NO3-distribution (ammonia volatilization) which from the fecal source; Second, it occurred in NO3-distribution area of the production and application of nitrogen fertilizer or industrial sewage source; Esophageal high incidence is mainly distributed in the nitrification-dominated areas, and denitrification zone and more low-incidence area for esophageal cancer, but also occurs in high incidence.
     Closely integraied with the hydrogeological conditions of Handan area in Hebei Plain, this study set groundwater circulation evolution as the main line, using a variety of isotope techniques (N、O、C、Cl) and microbial technology (E-coli) to carry out a systematic study of isotope composition, distribution characteristics and fractionation mechanism of the nitrate and oxygen in nitrogen, carbon of dissolved organic carbon, chlorine of chloride and microbial technology (E.coli) in shallow groundwater in Handan area, comprehensive reveals the nitrate source in groundwater and its relationship with esophageal cancer. For the first time use the related relationship between815N and δ13C,δ15N and δ7C1to identify the nitrogen from nitrogen from soil organic matter source, the nitrogen from animal manure and sewage and the nitrogen from chemical fertilizer; provide a scientific basis for control nitrate pollution in the study area and safe drinking water in esophageal high incidence area, with a certain scientific value and application prospect.
引文
[I]Goss M J, Barry D A J, and Rudolph D L. Contamination in Ontario farmstead domestic wells and its association with agriculture:-1. Results from drinking water wells. Journal of Contamination Hydrology.2005,32(3-4):267-293.
    [2]Ridley A M, Mele P M, Beverly C R. Legume-based farming in southern Australia:developing sustainable systems to meet environmental challenges. Soil Biol Biochem. 2004,36(8):1213-1221.
    [3]Xiao Huayun L C. Sources of nitrogen and sulfur in wet deposition at Guiyang southest China. Atmos Environ.2002,36(33):5121-5130.
    [4]李思亮,刘从强.贵阳地下水硝酸盐氧同位素特征及应用.中国岩溶.2006,25(2):108-111.
    [5]李思亮,肖化云,刘从强.δ15N在贵阳地下水氮污染来源和转化过程中的辨识应用.地球化学.2005,34(3):257-262.
    [6]肖化云,刘从强.氮同位素示踪贵州红枫湖河流季节性氮污染.地球与环境.2004,32(1):71-75.
    [7]肖化云,刘从强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征.地球化学.2003,32(3):248-254.
    [8]张翠云,郭秀红.氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析.地球化学.2005,34(5):530-533.
    [9]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究.干旱区资源与环境.2004,18(1):79-85.
    [10]高彦芳,沈立成,杨平恒.δ15N示踪检测重庆金佛山地下水的氮污染源.人民长江.2008,39(11):43-45.
    [11]Mariotti A, Landreau A, Simon B. N-15 Isotope Biogeochemistry and Natural Denitrification Process in Groundwater-Application to the Chalk Aquifer of Northern France. Geochim Cosmochim Ac.1988,52(7):1869-1878.
    [12]Bottcher J, Strebel O, Voerkelius S, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol. 1990,114(3-4):413-424.
    [13]Grischek T, Hiscock K M, Metschies T, et al. Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony, Germany. Water Res. 1998,32(2):450-460.
    [14]Mengis M, Schiff S L, Harris M, et al. Multiple geochemical and isotopic approaches for assessing ground water NO3- elimination in a riparian zone. Ground Water.1999,37(3):448-457.
    [15]Cey E E, Rudolph D L, Aravena R, et al. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol. 1999,37(1-2):45-67.
    [16]李佩成.试论干旱、中国干旱半干旱地区自然资源研究.中国自然资源研究会等六学会主编,北京:科学出版社.1985.
    [17]李佩成.关于水源问题及其解决途径的商榷.灌溉科技.1975:3-4.
    [18]游进军.水资源系统模拟理论与实践.北京:中国水利水电科学研究院.2005.
    [19]李佩成,刘燕.减灾增益强化地下水的研究和人才培养.地下水.2006,28(3):1-5.
    [20]毕二平,李政红.石家庄市地下水中氮污染分析.水文地质工程地质.2001,28(2):31-34.
    [21]Kreitler C W, Browning L A. Nitrogen-Isotope Analysis of Groundwater Nitrate in Carbonate Aquifers- Natural Sources Versus Human Pollution. J Hydrol.1983,61(1-3):285-301.
    [22]Heaton T H E. Isotopic Studies of Nitrogen Pollution in the Hydrosphere and Atmosphere-a Review. Chem Geol.1986,59(1):87-102.
    [23]Amberger A, Schmidt H L. The Natural Isotope Content of Nitrate as an Indicator of Its Origin. Geochim Cosmochim Ac.1987,51(10):2699-2705.
    [24]Wassenaar L I. Evaluation of the Origin and Fate of Nitrate in the Abbotsford Aquifer Using the Isotopes of N-15 and O-18 in No3-. Appl Geochem.1995,10(4):391-405.
    [25]Revesz K, Bohlke J K, Yoshinari T. Determination of delta O-18 and delta N-15 in nitrate. Anal Chem.1997,69(21):4375-4380.
    [26]Kornexl B E, Gehre M, Hofling R, et al. On-line delta O-18 measurement of organic and inorganic substances. Rapid Commun Mass Sp.1999,13(16):1685-1693.
    [27]Braber K L. Who leprosy elimination campaign-Beyond 2005. Leprosy Rev. 2000,71(3):389-391.
    [28]Silva S R, Kendall C, Wilkison D H, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol.2000,228(1-2):22-36.
    [29]蔡鹤生,刘存富,周爱国,等.硝酸盐中15N和180测试新技术.矿物岩石地球化学通报.2001,20(4):421-424.
    [30]尹德忠,肖应凯,逯海.正热电离质谱同时测定硝酸盐中氮和氧同位素组成.盐湖研究2001,9(3):17-22.
    [31]Sigman D M, Casciotti K L, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem.2001,73(17):4145-4153.
    [32]Casciotti K L, Sigman D M, Hastings M G, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 2002,74(19):4905-4912.
    [33]毛绪美,罗泽娇,刘存富.细菌反硝化法同时分析天然水中硝酸盐氮、氧同位素组成研究.JPhys Chem B.2006,25(5):97-100.
    [34]Meinardi C R, Beusen A H W, Bollen M J S, et al. Vulnerability to Diffuse Pollution and Average> Nitrate Contamination of European Soils and Groundwater. Water Sci Technol. 1995,31(8):159-165.
    [35]Tesoriero A J, Voss F D. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin:Implications for aquifer susceptibility and vulnerability. Ground Water. 1997,35(6):1029-1039.
    [36]Aravena R, Evans M L, and Cherry J A. Stable Isotopes of Oxygen and Nitrogen in Source Identification of Nitrate from Septic Systems. Ground Water.1993,31(2):180-186.
    [37]Durka W, Schulze E D, Gebauer G, et al. Effects of Forest Decline on Uptake and Leaching of Deposited Nitrate Determined from N-15 and 0-18 Measurements. Nature. 1994,372(6508):765-767.
    [38]Schiff S L, Devito K J, Elgood R J, et al. Two adjacent forested catchments:Dramatically different NO3- export. Water Resour Res.2002,38(12):76-79.
    [39]邵益生,纪杉.应用氮同位素方法研究污灌对地下水氮污染的影响.工程勘察.1992,4:37-41.
    [40]焦鹏程.环境氮同位素方法示踪石家庄市地下水中硝酸盐来源.地球学报.1996,17(增刊):181-188.
    [41]曹亚澄,孙国庆,施书莲.土壤中不同含氮组份的δ15N质谱测定法.土壤通报1993,24(2):87-90.
    [42]杜丽娟,施书莲.水体系中硝酸态氮的富集和δ15N值的测定.土壤1994,20(5):332-335.
    [43]周爱国,陈银琢,蔡鹤生.水环境硝酸盐氮污染研究新方法—15N和180相关法.Z Pflanzenk Pflanzen.2003,28(2):219-224.
    [44]杨琰,蔡鹤生,刘存富,等.N03-中1N和180同位素新技术在岩溶地区地下水氮污染研究中的应用——以河南林州食管癌高发区研究为例.中国岩溶.2004,23(3):206-212.
    [45]吴登定,姜月华,贾军远,等.运用氮、氧同位素技术判别常州地区地下水氮污染源.水文地质工程地质.2006,33(3):11-15.
    [46]张翠云,张俊霞,马琳娜,等.硝酸盐氮氧同位素反硝化细菌法测试研究.地球科学进展.2010,25(4):360-364.
    [47]李思亮,刘丛强,李军,等.长江硝酸盐氮氧同位素组成和影响因素.中国矿物岩石地球化学学会第13届学术年会论文集.2011.
    [48]Thiemens M H, Clayton R N. Nitrogen Contents and Isotopic-Ratios of Clasts from the Enstatite Chondrite Abee. Earth Planet Sc Lett.1983,62(1):165-168.
    [49]Thiemens M H. Atmosphere science-Mass-independent isotope effects in planetary atmospheres and the early solar system. Science.1999,283(5400):341-345.
    [50]Michalski G, Savarino J, Bohlke J K, et al. Determination of the total oxygen isotopic composition of nitrate and the calibration of a Delta 0-17 nitrate reference material. Anal Chem. 2002,74(19):4989-4993.
    [51]晁念英,刘存富,万军伟.硫酸盐中170和180同时测试技术.同位素水文学最新研究进展.Methods.2006:27-53.
    [52]Kaiser A, Schelfinger H, Spangl W, et al. Transport of nitrogen oxides, carbon monoxide and ozone to the Alpine Global Atmosphere Watch stations Jungfraujoch (Switzerland), Zugspitze and Hohenpeissenberg (Germany), Sonnblick (Austria) and Mt. Krvavec (Slovenia). Atmos Environ.2007,41(40):9273-9287.
    [53]Michalski G, Bohlke J K, Thiemens M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile:New evidence from mass-independent oxygen isotopic compositions. Geochim Cosmochim Ac.2004,68(20):4023-4038.
    [54]Kendall C, Grim E. Combustion Tube Method for Measurement of Nitrogen Isotope Ratios Using Calcium-Oxide for Total Removal of Carbon-Dioxide and Water. Anal Chem. 1990,62(5):526-529.
    [55]Silva C P, C. K, C. C C. A new method of preparing dissolved nitrate for nitrogen and oxygen isotopic analysis. EOS - Trans, Am Geophys Union.1994(75):280.
    [56]焦鹏程.兰州市傍河水源地环境同位素和水化学研究.中国地质科学院水文地质工程地质研究所所刊.1992,8(2):77-86.
    [57]邵益生.论当前我国水文地质勘察行业的战略转移.工程勘察.1995,21(3):35-44.
    [58]王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础.地球学报.1997(1-4):220-221.
    [59]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究.干旱区资源与环境.2004,18(1):79-85.
    [60]Fukada T, Hiscock K M, Dennis P F, et al. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res.2003,37(13):3070-3078.
    [61]Chen D J Z, MacQuarrie K T B. Correlation of delta N-15 and delta 0-18 in NO3-during denitrification in groundwater. J Environ Eng Sci.2005,4(3):221-226.
    [62]Einsiedl F, Maloszewski P, Stichler W. Estimation of denitrification potential in a Karst aquifer using the N-15 and 0-18 isotopes of NO3-. Biogeochemistry.2005,72(1):67-86.
    [63]H. K D, G. S, B. C. Fertilizer nitrogen:Contribution to nitrate in surface w ater in a corn beltwatershed. Science.1971,174:1331-1334.
    [64]Kreitler C W. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J Hydrol.1979,42(1-2):147-170.
    [65]Gormly J R, F. S R. Sources and Concentrations of Nitrate- Nitrogen in Ground Water of the Central Platte Region, Nebraska. Ground Water.1979,17(3):291-301.
    [66]Wilson G B, Andrews J N, Bath A H. The Nitrogen Isotope Composition of Groundwater Nitrates from the East Midlands Triassic Sandstone Aquifer, England. J Hydrol.1994,157:35-46.
    [67]金赞芳,王飞儿,陈英旭.城市地下水硝酸盐污染及其成因分析.土壤学报.2004,41(2):252-258.
    [68]张翠云,张胜,李政红.利用氮同位素技术识别石家庄市地下水硝酸盐污染源.地球科学进展.2004,19(2):183-191.
    [69]肖化云,刘从强,李思亮,等.强水动力湖泊夏季分层期氮的生物地球化学循环初步研究:以贵州红枫湖南湖为例.地球化学2002,24(4-6):571-576.
    [70]Aravena R, Robertson W D. Use of multiple isotope tracers to evaluate denitrification in ground water:Study of nitrate from a large-flux septic system plume. Ground Water. 1998,36(6):975-982.
    [71]Seiler R L. Combined use of N-15 and O-18 of nitrate and B-11 to evaluate nitrate contamination in groundwater. Appl Geochem.2005,20(9):1626-1636.
    [72]Shomar B. The Gaza Strip:politics and environment. Water Policy.2011,13(1):28-37.
    [73]Vitoria L, Soler A, Canals A, et al. Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters:Example of Osona (NE Spain). Appl Geochem.2008,23(12):3597-3611.
    [74]Chen D J Z, MacQuarrie K T B. Correlation of δ15N and δ180 in NO3- during denitrification in groundwater. J Environ Eng Sci.2005,4(3):221-226.
    [75]Panetta R J, Ibrahim M, Gelinas Y. Coupling a high temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta C-13-dissolved organic carbon in marine and freshwater samples. Anal Chem. 2008,80(13):5232-5239.
    [76]Squillace P J, Zogorski J S, Wilber W G, et al. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States,1993-1994. Environ Sci Technol. 1996,30(5):1721-1730.
    [77]Kaplan I R, Galperin Y, Lu S T, et al. Forensic Environmental Geochemistry:differentiation of fuel-types, their sources and release time. Org Geochem.1997,27(5-6):289-293.
    [78]Kelley C A, Hammer B T, Coffin R B. Concentrations and stable isotope values of BTEX in gasoline-contaminated groundwater. Environ Sci Technol.1997,31(9):2469-2472.
    [79]Hunkeler D, Aravena R, Butler B J. Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios:Microcosm and field studies. Environ Sci Technol.1999,33(16):2733-2738.
    [80]Lollar B S, Slater G F, Sleep B, et al. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base. Environ Sci Technol. 2001,35(2):261-269.
    [81]Kolhatkar R, Kuder T, Philp P, et al. Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site. Environ Sci Technol.2002,36(23):5139-5146.
    [82]Steinbach W J, Stevens D A, Denning D W. Combination and sequential antifungal therapy for invasive aspergillosis:Review of published in vitro and in vivo interactions and 6281 clinical cases from 1966 to 2001. Clin Infect Dis.2003,37:S188-S224.
    [83]Richnow H H, Annweiler E, Michaelis W, et al. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol.2003,65(1-2):101-120.
    [84]Lewandowski G, Mortimer G. Estimation of anaerobic biodegradation rate constants at MGP sites. Ground Water.2004,42(3):433-437.
    [85]Bosel D, Herfort M, Ptak T, et al. Design, performance, evaluation and modelling of a natural gradient multitracer transport experiment in a contaminated heterogeneous porous aquifer. In:Dassargues, A (ED) Tracer and Modeling in hydrogeology IAHS Press, Institute of Hydrology, Wallingford, Oxford shire OX108BB.2000,3(262):45-51.
    [86]Slater G F, Lollar B S, Sleep B E, et al. Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes:Implications for field applications. Environ Sci Technol. 2001,35(5):901-907.
    [87]Elsner M, Zwank L, Hunkeler D, et al. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol. 2005,39(18):6896-6916.
    [88]Christensen T H, Bjerg P L, Banwart S A, et al. Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol.2000,45(3-4):165-241.
    [89]Morasch B, Richnow H H, Schink B, et al. Stable hydrogen and carbon isotope fractionation during microbial toluene degradation:Mechanistic and environmental aspects. Appl Environ Microb.2001,67(10):4842-4849.
    [90]Jendrzejewski N, Eggenkamp H G M, Coleman M L. Sequential determination of chlorine and carbon isotopic composition in single microliter samples of chlorinated solvent. Anal Chem. 1997,69(20):4259-4266.
    [91]刘国卿,张干,黄世卿.水体中痕量挥发性有机物单体碳同位素组成分析.色谱.2004,22(4):441-449.
    [92]Nier A O, Hanson E E. A mass-spectrographic analysis of the ions produced in HC1 undereletron impact. Physical Review 1936,50(1):722-726.
    [93]Hoering T C, Parker P L. The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Ac.1961,23:186-199.
    [94]Owen H R, Schaeffer O A. The isotope abundance of chlorine from various sources. Journal of American Chemical Society.1954,77:898-899.
    [95]Kaufmalin R S, long A, Bentley H W. Natural chlorine isotope vatiations. Nature. 1984,309:338-340.
    [96]Long A, Eastoe C J, Kaufmann R S, et al. High-Precision Measurement of Chlorine Stable-Isotope Ratios. Geochim Cosmochim Ac.1993,57(12):2907-2912.
    [97]Owen H R, Schaeffer O A. The Isotope Abundances of Chlorine from Various Sources. J Am Chem Soc.1955,77(4):898-899.
    [98]Shields W R, Muprhy T J, Garner E L. Absolute isotopic abundance ratio and the atomic weight of chlorine. J Am Chem Soc.1962,84(4):1519-1522.
    [99]Vengosh A, Chivas A R, Mcculloch M T. Direct Determination of Boron and Chlorine Isotopic Compositions in Geological-Materials by Negative Thermal-Ionization Mass-Spectrometry. Chem Geol.1989,79(4):333-343.
    [100]Xiao Y K, Zhou Y M, Liu W G. Precise Measurement of Chlorine Isotopes Based on Cs2cl+by Thermal Ionization Mass-Spectrometry. Anal Lett.1995,28(7):1295-1304.
    [101]Magenheim A J, Spivack A J, Volpe C, et al. Precise Determination of Stable Chlorine Isotopic-Ratios in Low-Concentration Natural Samples. Geochim Cosmochim Ac. 1994,58(14):3117-3121.
    [102]Kaufmann R S, Long A, Campbell D J. Chlorine Isotope Distribution in Formation Waters, Texas and Louisiana. Aapg Bull.1988,72(7):839-844.
    [103]Eastoe C J, Guilbert J M. Stable Chlorine Isotopes in Hydrothermal Processes. Geochim Cosmochim Ac.1992,56(12):4247-4255.
    [104]Eastoe C J, Long A, Knauth L P. Stable chlorine isotopes in the Palo Duro Basin, Texas: Evidence for preservation of Permian evaporite brines. Geochim Cosmochim Ac. 1999,63(9):1375-1382.
    [105]Sie P M J, Frape S K. Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes. Chem Geol.2002,182(2-4):565-582.
    [106]Kaufmann R S, Frape S K, Mcnutt R, et al. Chlorine Stable-Isotope Distribution of Michigan Basin Formation Waters. Appl Geochem.1993,8(4):403-407.
    [107]Lavastre W, Jendrzejewski N, Agrinier P, et al. Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France):Cl-35 and C-37 evidence. Geochim Cosmochim Ac. 2005,69(21):4949-4961.
    [108]Bock E, Koops H P, Moller U C, et al. A New Facultatively Nitrite Oxidizing Bacterium, Nitrobacter-Vulgaris Sp-Nov. Arch Microbiol.1990,153(2):105-110.
    [109]Staley J T, Irgens R L, Herwig R P. Gas Vacuolate Bacteria from the Sea Ice of Antarctica. Appl Environ Microb.1989,55(4):1033-1036.
    [110]Purkhold U, Pommerening-Roser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:Implications for molecular diversity surveys. Appl Environ Microb.2000,66(12):5368-5382.
    [111]Staley S W, Vignon S A, Eliasson B. Conformational analysis and kinetics of ring inversion for methylene and dimethylsilyl-bridged dicyclooctatetraene. J Org Chem.2001,66(11):3871-3877.
    [112]Jiang Q Q, Bakken L R. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria. Appl Environ Microb.1999,65(6):2679-2684.
    [113]Bock E, Schmidt I, Stuven R, et al. Nitrogen Loss Caused by Denitrifying Nitrosomonas Cells Using Ammonium or Hydrogen as Electron-Donors and Nitrite as Electron-Acceptor. Arch Microbiol.1995,163(1):16-20.
    [114]Abeliovich A. Nitrifying Bacteria in Waste-Water Reservoirs. Appl Environ Microb. 1987,53(4):754-760.
    [115]Abeliovich A, Vonshak A. Anaerobic Metabolism of Nitrosomonas-Europaea. Arch Microbiol. 1992,158(4):267-270.
    [116]Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol.1997,167(2-3):106-111.
    [117]Schmidt I, Bock E, Jetten M S M. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology-Sgm.2001,147:2247-2253.
    [118]Schmidt I, Hermelink C, de Pas-Schoonen K, et al. Anaerobic ammonia oxidation in the presence of nitrogen oxides (NOx) by two different lithotrophs. Appl Environ Microb. 2002,68(11):5351-5357.
    [119]Focht D D, Searles D B, Koh S C. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders. Appl Environ Microb.1996,62(10):3910-3913.
    [120]Zumft W G, Korner H. Enzyme diversity and mosaic gene organization in denitrification. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 1997,71(1-2):43-58.
    [121]Zumft W G. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews.1997,61(4):533-+.
    [122]Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. Ferns Microbiol Ecol.1995,16(3):177-184.
    [123]Van de Graaf A A, Mulder A B P, Jetten M S, et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol.1995,61(4):1246-1251.
    [124]Strous M, Fuerst J A, Kramer E H, et al. Missing lithotroph identified as new planctomycete. Nature.1999,400(6743):446-449.
    [125]Kuenen J, Jetten M. Extraordinary anaerobic ammonium-oxidizing bacteria. ASM News-American Society for Microbiology.2001,67(9):456-456.
    [126]Van de Graaf A A, de Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology. 1997,143(7):2415-2421.
    [127]Schalk J, Oustad H, Kuenen J G, et al. The anaerobic oxidation of hydrazine:a novel reaction in microbial nitrogen metabolism. Fems Microbiol Lett.1998,158(1):61-67.
    [128]Schalk J, de Vries S, Kuenen J G, et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry-Us.2000,39(18):5405-5412.
    [129]Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomycetes:novel types of structural organisation for the bacterial cell. Arch Microbiol.2001,175(6):413-429.
    [130]Hellinga C, Schellen A, Mulder J, et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol.1998,37(9):135-142.
    [131]Mulder J, Van Loosdrecht M, Hellinga C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Science & Technology. 2001,43(11):127-134.
    [132]Van Kempen R, Mulder J, Uijterlinde C, et al. Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol.2001,44(1):145-152.
    [133]Van Dongen U, Jetten M, Van Loosdrecht M. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci Technol.2001,44(1):153-160.
    [134]Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology.2002,99(3):295-306.
    [135]Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews.1995,59(1):143-169.
    [136]Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol.1998,180(18):4765-4774.
    [137]Snaidr J, Amann R, Huber I, et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microb.1997,63(7):2884-2896.
    [138]Juretschko S, Timmermann G, Schmid M, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microb.1998,64(8):3042-3051.
    [139]Juretschko S, Loy A, Lehner A, et al. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol.2002,25(1):84-99.
    [140]Strous M, Kuenen J G, Fuerst J A, et al. The anammox case-a new experimental manifesto for microbiological eco-physiology. Antonie van Leeuwenhoek.2002,81(1-4):693-702.
    [141]Toh S, Webb R, Ashbolt N. Enrichment of autotrophic anaerobic ammonium-oxidizing consortia from various wastewaters. Microbial Ecology.2002,43(1):154-167.
    [142]Craig H. Istopic variations in meteoric waters. Science.1961,133:1702-1703.
    [143]Dansgaard W. Stable isotopes in precipitation. Tellus.1964,16(4):436-468.
    [144]Rozanski K, Araguas-Araguas L, Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science.1992,258(5084):981-985.
    [145]Araguas-Araguas L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process.2000,14(8):1341-1355.
    [146]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究.科学通报.1983,28(13):801-806.
    [147]刘进达,赵迎昌.中国大气降水稳定同位素时—空分布规律探讨.勘察科学技术.1997(3):34-39.
    [148]韩贵琳.喀斯特环境质量变化的自然与人文过程特征:博土论文;2002.
    [149]肖化云,刘丛强.水样硝酸盐氮同位素分析预处理方法探讨.岩矿测试.2002,21(2):105-108.
    [150]Murphy E M, Davis S N, Long A, et al.14C in fractions of dissolved organic carbon in ground water.1989.
    [151]Aravena R, Wassenaar L. Dissolved organic carbon and methane in a regional confined aquifer, southern Ontario, Canada:Carbon isotope evidence for associated subsurface sources. Appl Geochem.1993,8(5):483-493.
    [152]Tullborg E L, Gustafsson E.14C in bicarbonate and dissolved organics-a useful tracer? Appl Geochem.1999,14(7):927-938.
    [153]Clark I D, Fritz P. Environmental isotopes in hydrogeology:CRC press; 1997.
    [154]郑永飞,陈江峰.稳定同位素地球化学.科学出版社.2000:193-217.
    [155]Dalva M, Moore T. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry.1991,15(1):1-19.
    [156]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报.1998,4(3):201.
    [157]David M B, Vance G F, Fasth W J. Forest soil response to acid and salt additions of sulfate:II. Aluminum and base cations. Soil Science.1991,151(3):208-219.
    [158]Vance G F, David M B. Dissolved organic carbon and sulfate sorption by spodosol mineral horizons. Soil Science.1992,154(2):136-144.
    [159]Driscoll C T, Newton R M. Chemical characteristics of Adirondack lakes. Environ Sci Technol. 1985,19(11):1018-1024.
    [160]Christ M J, David M B. Dynamics of extractable organic carbon in Spodosol forest floors. Soil Biology and Biochemistry.1996,28(9):1171-1179.
    [161]Jardine P, McCarthy J, Weber N. Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci Soc Am J.1989,53(5):1378-1385.
    [162]McLaughlin J W, Lewin J C, Reed D D, et al. Soil factors related to dissolved organic carbon concentrations in a black spruce swamp, Michigan. Soil Science.1994,158(6):454&hyhen.
    [163]Nelson P N, Cotsaris E, Oades J M. Nitrogen, phosphorus, and organic carbon in streams draining two grazed catchments. J Environ Qual.1996,25(6):1221-1229.
    [164]Driscoll C, Van Breemen N, Mulder J. Aluminum chemistry in a forested spodosol. Soil Sci Soc Am J.1985,49(2):437-444.
    [165]Godde B, Spengler F, Dinse H R. Associative pairing of tactile stimulation induces somatosensory cortical reorganization in rats and humans. Neuroreport.1996,8(1):281-285.
    [166]Gigliotti G, Giusquiani P, Businelli D, et al. Composition changes of dissolved organic matter in a soil amended with municipal waste compost. Soil Science.1997,162(12):919-926.
    [167]Harvey R W, Barber Ⅱ L B. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater. J Contam Hydrol.1992,9(1):91-103.
    [168]Lindroos A J, Kitunen V, Derome J, et al. Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in Southern Finland. Water Res. 2002,36(20):4951-4958.
    [169]Leenheer J, Malcolm R, McKinley P, et al. Occurrence of dissolved organic carbon in selected ground-water samples in the United States. J Res US Geol Surv.1974.
    [170]Malcolm R L, Durum W H. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of the United States.1976.
    [171]Fisher S G, Likens G E. Energy flow in Bear Brook, New Hampshire:an integrative approach to stream ecosystem metabolism. Ecological monographs.1973,43(4):421-439.
    [172]Baker S P, O'Neill B, Haddon Jr W, et al. The injury severity score:a method for describing patients with multiple injuries and evaluating emergency care. Journal of Trauma-Injury, Infection, and Critical Care.1974,14(3):187-196.
    [173]McDowell W H, Fisher S G Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology.1976:561-569.
    [174]Comiskey C E. Aspects of the Organic Carbon Cycle on Walker Branch Watershed:A Study in Land/Water Interaction.1978.
    [175]Kaplan L A, Larson R A, Bott T L. Patterns of dissolved organic carbon in transport. Limnol Oceanogr.1980,25(6):1034.
    [176]Wallace J B, Ross D H, Meyer J L. Seston and dissolved organic carbon dynamics in a southern Appalachian stream. Ecology.1982,63(3):824-838.
    [177]Tate C M, Meyer J L. The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology.1983:25-32.
    [178]Fiebig D. A study of riparian zone and stream water chemistries, and organic matter immobilization at the stream-bed interface. Unpublished PhD Thesis.1988.
    [179]McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecological monographs.1988:177-195.
    [180]魏秀国.河流有机质生物地球化学研究进展.生态环境.2007,16(3):1063-1067.
    [181]Aravena R, Frape S K, VanWarmerdam E M, et al. Use of environmental isotopes in organic contaminants research in groundwater systems. P S Iaea.1996:31-42.
    [182]Annable W K, Frape S K, Shouakar-Stash O, et al. Cl-37, N-15, C-13 isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants. Appl Geochem.2007,22(7):1530-1536.
    [183]Mohammadzadeh H, Clark I. Bioattenuation in Groundwater Impacted by Landfill Leachate Traced with delta C-13. Ground Water.2011,49(6):880-890.
    [184]Kaufmann R, long A, Bentley H W. Natural chlorine isotope vatiations. Nature. 1984,309:338-340.
    [185]Campbell D R, Motten A F. The mechanism of competition for pollination between two forest herbs. Ecology.1985:554-563.
    [186]Philips H. Avoidance behaviour and its role in sustaining chronic pain. Behaviour research and therapy.1987,25(4):273-279.
    [187]Lavastre V, Jendrzejewski N, Agrinier P, et al. Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France):< sup> 35 Cl and< sup> 37 Cl evidence. Geochim Cosmochim Ac.2005,69(21):4949-4961.
    [188]Halling-Sorensen B, Jorgensen S. The removal of nitrogen compounds from wastewater: Elsevier; 1993.
    [189]Delwiche C C, Steyn P L. Nitrogen isotope fractionation in soils and microbial reactions. Environ Sci Technol.1970,4(11):929-935.
    [190]Wada E, Hattori A. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiol J.1978,1(1):85-101.
    [191]Brown L, Drury J. Exchange and Fractionation of Nitrogen Isotopes between NO and NO-2. J Chem Phys.1968,48:1400.
    [192]Huebner W, Giguere P. A model of comet comae. Ⅱ-Effects of solar photodissociative ionization. The Astrophysical Journal.1980,238:753-762.
    [193]Kendall C. Isotope tracers in catchment hydrology tracing nitrogen sources and cycling in catchments. In:Isotope Tracers in catchment Hydrology,eds. Kendall C, Mcdonnd J. Journal of Elsevier Science,Amsterdam.1998:519-576.
    [194]Savard M M, Somers G, Smirnoff A, et al. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J Hydrol. 2010,381(1-2):134-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700