成骨肉瘤血清/尿液代谢组学相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究旨在通过建立代谢组学实验平台,对照分析动物成骨肉瘤(Osteosarcoma;OS)实验模型与临床OS、良性骨肿瘤患者的血清/尿液特征代谢产物,分别应用偏最小方差判别分析法(Partial least square-discriminate analysis;PLS-DA)等方法建立OS代谢谱数学模型,采用相应的可视化技术,通过对动物模型及OS患者的血液及尿液中的代谢产物参比研究,建立分辨率高,重复性好的OS血清、尿液代谢标志物组,并试图从机体的动态代谢途径寻找OS诊断标志物。
     方法:
     本研究分3部分进行
     1.建立模型动物OS的代谢谱。通过实验建立MG-63(人成骨肉瘤细胞株)C3H鼠模型和健康对照组,采用氯甲酸乙酯(Ethyl Chloroformate;ECF)衍生的气质联用(Gas chromatography/mass spectrometry;GC/MS)技术平台,分别观察模型鼠荷瘤后第3、5、7周的内源性小分子代谢谱相对于健康对照组尿液的变化。用主成分分析(Principal component analysis, PCA)的方法,判断荷瘤鼠同一时间点的尿液样本代谢谱轮廓和趋势;通过分析影响PLS-DA模型中的权重较大的变量(Variable importance inprojection;VIP),鉴定差异代谢产物中主成分。
     2.建立临床骨肿瘤(Benign /Osteosarcoma)的代谢谱。将13名OS患者,18名良性肿瘤患者和20名健康对照人群分成3组,通过ECF衍生GC/MS技术平台对三组尿液样本代谢进行分析;同步基于三甲基硅烷(Trimethylsilyl;TMS)衍生的气相色谱飞行时间质谱联用分析(Gas chromatography/Time-of-flight mass spectrometry;GC/TOF-MS)分析的方法,考察三组血清样本。以此分别得到三组血清/尿液样本的代谢物谱变化。继而通过PCA的方法和PLS-DA,首先对比骨肿瘤组与健康对照组,进一步区分良性骨肿瘤和OS组,并判断模型中的VIP,鉴定出代谢产物中比较明显的成分(Principal components;PC)。
     3. OS代谢标记物与代谢通路相关的综合分析。将实验鼠和临床研究的结果予以对比,得出交集的代谢产物,在Metabolic Pathway以及KEGG(Kyoto Encyclopedia ofGenes and Genomes)数据库进行代谢通路的查询。通过综合分析,获得OS在发生发展过程中内源性小分子比较明显的代谢变化,推测OS代谢诊断标记物、主要代谢通路以及影响其代谢通路的关键酶。
     结果:
     1.实验中发现伴随着OS的形成与进展,PCA和PLS-DA等多维统计方法结果显示小鼠在实验第3周开始出现偏移、第5周已经初步显现分离趋势,第7周已经完全可以区分。利用PLS-DA模型实验中找出的与OS形成相关的37个差异代谢物,并利用NIST谱库等数据库,鉴定了其中10个代谢物。其中马尿酸,尿素,L-鸟氨酸在荷瘤组中含量较健康对照组低,而腐胺,亚精胺,异柠檬酸等含量较健康对照组高。
     2.利用非监督的PCA方法,得到健康对照组与骨肿瘤患者(Benign /Osteosarcoma)代谢谱的分离趋势。进一步利用监督的正交偏最小方差判别分析(Orthogonal Partialleast square-discriminant analysis OPLS-DA)的方法能清晰地观察到OS、良性骨肿瘤患者与正常对照之间的代谢轮廓的差异,得到与OS临床病理相关的代谢通路的变化。血清代谢组学分析中:核糖醇、D-果糖、2 -酮戊二酸、乳酸、丁醛、丁酸、甘氨酸、a-氨基己二酸、L-鸟氨酸、甲基组氨酸、L-缬氨酸、十二烷酸等代谢物在OS患者血清中明显低于良性骨肿瘤患者;而瓜氨酸、L-酪氨酸、尿素、半乳糖、2-脱氧-D-半乳糖、硬脂酸、α-羟基丁酸等代谢物在OS患者血清中含量明显高于良性骨肿瘤。在尿液代谢组学分析中:甘氨酸、亮氨酸、赖氨酸、高香草酸、乳酸、柠檬酸等代谢物在OS患者尿液中含量明显低于良性骨肿瘤患者;马尿酸、谷氨酸、组胺、胱氨酸、腐胺等代谢物在OS患者尿液中含量明显高于良性骨肿瘤患者。
     3.我们发现了OS代谢产物的主要共同通路异常为肿瘤能量代谢异常和鸟氨酸循环-多胺代谢的异常。在OS尿液代谢组学研究中,柠檬酸、马尿酸盐、腐胺、亚精胺,鸟氨酸可能成为代谢诊断的标志物,关键酶推测是鸟氨酸脱羧酶(Ornithimedecarboxylase,ODC),谷胱甘肽-S-转移酶(Gultathione S transferases;GST)的同工酶和GSTM1、GSTT1。OS血清代谢组学研究结果显示,苹果酸、十二烷酸、羊毛硫氨酸、有可能成为代谢诊断的标志物,推测的关键酶是鸟氨酸循环中负责调控/转运N-乙酰谷氨酸合酶(N-acetylglutamatesynthetase;NAGAS)和鸟氨酸转移酶(Ornithinecarbamyl transferase;OCT)。
     4.代谢差异结果表明:OS不仅影响了糖类、脂类和蛋自质三大物质的代谢,还对能量代谢、鸟氨酸循环-多胺代谢等多个生理系统产生显著影响,并且可能直接导致代谢通路损伤。
     结论:
     1.基于ECF和TMS衍生的GC/MS的OS代谢组学实验平台,进行OS动物模型和临床OS患者的血/尿液的代谢组学研究,能够初步得到良性,恶性和健康对照人群组别代谢轮廓的分离趋势,表明基于色谱/质谱的尿样代谢组学方法在OS的早期诊断上有很大的潜力。
     2.本研究中基于GC/TOF-MS的血清代谢组学方法同样比较稳定,可以清楚的区分OS、良性肿瘤和正常人的血清代谢轮廓。
     3.本实验证明:在模型动物实验和OS临床患者的尿液/血清的代谢组学研究中,证实能量代谢异常和鸟氨酸循环-多胺代谢等代谢通路碍在OS发生、发展病理过程中具有重要作用,与OS形成、恶化和转移具有重要相关性,有待于后续验证。
     本论文创新性研究成果:
     1.首次通过GC/MS和GC/TOF-MS实验平台对OS代谢组学进行研究,不但可以得到健康组与OS组代谢轮廓分离趋势,并可以进一步鉴别区分良性骨肿瘤与OS代谢模式。
     2.探索性地将动物实验与临床研究获得的结果进行整合分析,血清/尿液样本代谢组学分析结果交互验证,可以得到相对稳定的OS代谢标记物,可能启发基于色谱/质谱技术的代谢组学方法在OS的早期诊断的新思路。
     3.发现人与动物OS共同代谢通路为能量代谢,鸟氨酸循环-多胺代谢障碍为主导,得出重要结论:能量代谢障碍、鸟氨酸循环-多胺代谢等代谢通路障碍可能是OS的发生、发展、转移病理过程中重要的代谢模式,为OS代谢通路纵深研究提供了重要科学证据。
Objective:
     This study is designed to learn through the metabonomics test platform, analyze animalmodels with healthy control group urine specimens through the experiments, and clinicallyresearch into patients with osteosarcoma, benign bone tumors and healthy control serum /urine specimens. It was established a spectral mathematical model of osteosarcomarespectively by the application of the Partial least square-discriminate analysis (PLS-DA)method and other methods. Relevant analysis techniques and statistical methods were usedto analysis and comparison of animal experiment and clinical study of samples of the endproduct of metabolism. High resolution, reproducible osteosarcoma serum and urinemetabolism markers matter group were established to try to find osteosarcoma diagnosticmarkers by the body dynamic metabolic pathways .Methods:
     This study was divided into three parts.
     1. Experiments of animal models of osteosarcoma metabolic spectrum.The MG-63 (humanosteosarcoma cell line) of C3H mouse model and the healthy control group wereestablished , the use of ECF derivative by GC / MS technology platforms were observedin a rat model of tumor-bearing after 3, 5 and 7 weeks of endogenous small moleculemetabolic spectrum relative to the changes in the urine of healthy control group. usingthe principal of the component analysis (PCA) method determine the tumor-bearing miceat the same time point urine samples metabolic spectrum profile and trends.Through theanalysis of variable importance in projection (VIP) of PLS-DA model, we could identifythe differences in metabolites of the main ingredients.
     2. Experiments of the metabolic spectrum of clinical bone tumors (Benign /osteosarcoma).13 patients with osteosarcoma, 18 patients with benign bone tumor and 20healthy controls were divided into three groups. ECF derivative by GC / MS technologyplatform to analyze three groups of urine samples of metabolism;Synchronization basedon the use Trimethylsilyl (TMS) derivatives by gas chromatography time-of-flight massspectrometry (GC / TOF-MS) analysis method to study three groups of serum samples.This metabolite spectral changes of serum / urine samples, respectively. Then, by themethod of PCA and PLS-DA/OPLS-DA, we compared the bone tumor group and thehealthy control group and further distinguished between benign bone tumors and osteosarcoma group. Through the analysis of VIP, we could identify the differences inmetabolites of the main ingredients.
     3. Comprehensive analysis of osteosarcoma metabolism markers and metabolic pathway.The results of animal experiment and clinical study were combined analysis, to come tothe intersection of metabolites in the Metabolic Pathway and the KEGG (KyotoEncyclopedia of Genes and Genomes) database query of the metabolic pathway.Throughcomprehensive analysis, we can get into osteosarcoma in a more obvious metabolicchanges during the development of endogenous small molecule, presumably into the theosteosarcoma metabolic biomarkers, major metabolic pathways, as well as its metabolicpathway enzymes.
     Results:
     1. The result of Animal experiment showed that model in three weeks of the experimentbegan to offset the first five weeks have been initially apparent separation, the first sevenweeks can distinguish.The formation of 37-related differences in metabolite identified inthe PLS-DA model experiments with osteosarcoma, and using the NIST library and otherdatabases identified 10 metabolites.Hippuric acid, Urea, L-ornithine content in the tumorgroup than the healthy control group is lower;The content of putrescine, spermidine,isocitrate is higher.
     2. By the unsupervised PCA method, we got the metabolic spectrum separation trend of thehealthy controls and patients with bone tumors (Benign / osteosarcoma),We furtherused the orthogonal the partial least square-discriminant analysis (OPLS-DA) method toobserve clearly in the metabolic profile differences between the osteosarcoma, benignbone tumors and normal controls, and get the change of the metabolic pathways relatedto the clinical pathology of osteosarcoma.Serum metabonomics analysis: Ribitol、D-Fructose、2-Ketoglutaric acid、lactate、Butanal、Butanoic acid、Glycine、à-Aminoadipicacid、L-Ornithine、methylhistidine、L-Valine、Dodecanoic acid in the serum of patientswith osteosarcoma was significantly lower than in patients with benign bone tumors;Citrulline、L-Tyrosine、Urea、Galactopyranose、2-Deoxy-galactopyranose、Octadecanoicacid、α-Hydroxybutyric acid and other metabolites in the serum of patients withosteosarcoma were significantly higher than that of benign bone tumors. Urinemetabonomics analysis: glycine、leucine、lysine、homovanillate、lactate、citrate and othermetabolites in the urine of patients with osteosarcoma were significantly lower than in patients with benign bone tumors;hippurate、glutamate、histamine、Cystine、putresinein the urine of patients with osteosarcoma were significantly higher than in patients withbenign bone tumors
     3. We found abnormal osteosarcoma metabolites common pathway for tumor energymetabolism and ornithine cycle - polyamine metabolism abnormalities. Osteosarcomaurine metabonomics studies, citric acid, hippurate, putrescine, spermidine, ornithine maybecome the markers of the metabolic diagnosis, speculated that a key enzyme ornithinedecarboxylase (Ornithime decarboxylase ODC), S-transferases Gultathione (GST)isozyme of GSTM1, GSTT1.Into osteosarcoma serum metabonomics study results showthat malic acid, dodecanoic acid, Lanthionine may become the markers of the metabolicdiagnosis, speculated that a key enzyme responsible for the regulation of ornithine cycle /transit N-acetyl glutamate synthetase (NAGAS) and ornithine carbamyl transferase(OCT)。
     4. Metabolic differences: osteosarcoma not only affects the metabolism of carbohydrates,lipids and proteins in the three substances, and also have a significant impact on energymetabolism and ornithine cycle - polyamine metabolism and other physiologicalsystems,and may be a direct result of the metabolic pathways.
     Conclusion:
     1. Osteogenic sarcoma metabonomics experimental platform, based on ECF and TMSderivative by GC / MS study of the osteosarcoma animal models and clinicalmetabonomics into the blood / urine of patients with osteosarcoma, we can initially beenhealthy. malignant and healthy control population group separation of metabolicprofiling trends.This indicates that there is great potential in the early diagnosis ofosteosarcoma, based on chromatography / mass spectrometry method of urinemetabonomics.
     2. In this study, GC / TOF-MS-based serum Metabonomics also relatively stable, we canclearly divided into osteosarcoma, benign and normal serum metabolic profile.
     3. Model animal experiments and osteosarcoma clinical patient urine / serum metabonomicsconfirmed that the metabolic pathway for energy metabolism and ornithine cycle - andpolyamine metabolism obstruction occurred in osteosarcoma, the development ofpathological processes play an important role, and osteosarcoma formation, degradationand transfer to an important need to be follow-up verification.
     Contributions and innovations:
     1. The first time we osteosarcoma metabonomics learn by GC / MS and GC / TOF-MSexperiment platform, not only can the healthy group and into the trend of metabolicprofiling of osteosarcoma group separation and can be further distinguishingbetween benign bone tumors with osteosarcoma metabolism mode.
     2. We exploratory results obtained in animal experiments and clinical studies tointegrate analysis, serum / urine samples metabonomics analysis results of crossvalidation can be relatively stable osteosarcoma metabolic markers. This mayinspire new ideas in the early diagnosis of osteosarcoma chromatography / massspectrometry-based metabonomics.
     3. We found that human and animals into osteosarcoma, a common metabolic pathwayfor energy metabolism and ornithine cycle - polyamine metabolic disorder led toimportant conclusions: the metabolic pathways of energy metabolism, ornithinecycle - and polyamine metabolism disorder may be osteogenic sarcoma,development, transfer pathological process of metabolism, for osteosarcomametabolic pathway in-depth studies provide important scientific evidence.
引文
[1] L. Mirabello, R. J. Troisi, S. A. Savage. Osteosarcoma incidence and survival rates from1973 to 2004: data from the surveillance, epidemiology, and end results program.Cancer.[J].2009;115(7):1531–1543.
    [2] H.D.DorfmanandB.Czerniak.Bone cancers. Cancer, [J].1995,75(1):203–210.
    [3] C. A. Stiller, S. S. Bielack,G. Jund.et al.Bone tumours in European children andadolescents,1978–1997. Report from the Automated Childhood Cancer InformationSystemproject.European Journal of Cancer, 2006, 42 (13):2124–2135.
    [4] S. S. Bielack, B. Kempf-Bielack, G. Delling, et al,. Prognostic factors in high-gradeosteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated onneoadjuvant cooperative osteosarcoma study group protocols. Journal of ClinicalOncology, 2002, 20(3):776–790.
    [5] K. K. Unni, Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases,Lippincott-Raven, Philadelphia, Pa, USA,1996.
    [6] A. M. Linabery and J. A. Ross.Trends in childhood cancer incidence in the U.S.(1992–2004). Cancer,2008,112(2): 416–432.
    [7] D.M. Parkin, E. Kramarova,G. J.Draper et al. International Incidence of ChildhoodCancer, IARC Scientific Publication, Lyon, France, 1998.
    [8] J.B.Blackwell,T.J.Threlfall,K.A.McCaul.Primary malignant bone tumours in WesternAustralia,1972–1996.Pathology,2005,37(4): 278–283.
    [9] E. Steliarova-Foucher, C. Stiller, P. Kaatsch et al.Geographical patterns and time trendsof cancer incidence and survival among children and adolescents in Europe since the1970s(the ACCIS project): an epidemiological study. Lancet, 2004, 364(9451):2097–2105,
    [10]R. Eyre, R. G. Feltbower, P. W. James, et al.The epidemiology of bone cancer in 0–39year olds in northern England,1981–2002. BMC Cancer, 2010,10: 357.
    [11] C. A. Stiller, S. J. Passmore, M. E. Kroll, et al.Patterns of care and survival for patientsaged under 40 years with bone sarcoma in Britain,1980-1994.British Journal of Cancer,2006,94(1):22–29.
    [12]J. C. M. Clark, C. R. Dass, P. F. M. Choong.A review of clinical and molecularprognostic factors in osteosarcoma.Journal of Cancer Research and Clinical Oncology,2008,134(3):281–297.
    [13]R. J. Grimer, S. R. Cannon, A. M. Taminiau et al.Osteosarcoma over the age of forty.European Journal of Cancer, 2003,39(2):157–163.
    [14]T. A. Damron,W. G. Ward, A. Stewart.Osteosarcoma,chondrosarcoma, and Ewing’ssarcoma: national cancer data base report.Clinical Orthopaedics and Related Research,2007,459:40–47.
    [15]H. D. Dorfman,B. Czerniak.Bone cancers. Cancer, 1995,75(1) 203–210.
    [16][11] C. A. Stiller, S. J. Passmore, M. E. Kroll, et al.Patterns of care and survival forpatients aged under 40 years with bone sarcoma in Britain,1980-1994.British Journal ofCancer, 2006,94(1):22–29.
    [17]M. M. Sampo, M. Tarkkanen, A. H. Kivioja,et al.Osteosarcomain Finland from 1971through 1990: a nationwide study of epidemiology and Outcome.Acta Orthopaedica,2008,79(6)861–866.
    [18]G. Gatta, R. Capocaccia, M. P. Coleman,et al.Childhood cancer survival in Europe andtheUnited States.Cancer, 2002,95(8).1767–1772.
    [19]L. Foster, G. F. Dall, R. Reid,et al.Twentieth-century survival from osteosarcoma inchildhood: trends from 1933 to 2004.Journal of Bone and Joint Surgery. 2007,89(9):1234–1238.
    [20]M. T. Harting, K. P. Lally, R. J. Andrassy et al. Age as a prognostic factor for patientswith osteosarcoma: an analysis of 438 patients. Journal of Cancer Research and ClinicalOncology, 2010,136(4): 561–570.
    [21]B. Carsi and M. G. Rock.Primary osteosarcoma in adults older than 40 years,”ClinicalOrthopaedics and Related Research, 2002,397: 53-61.
    [22]G. Gatta, R. Capocaccia, C. Stiller et al.Childhood cancer survival trends in Europe: aEUROCARE working group study.Journal of Clinical Oncology,2005,23(16):3742-3751.
    [23]V.Arndt, B.Lacour, E.Steliarova-Foucher et al.Up-todate monitoring of childhood cancerlong-term survival in Europe: tumours of the sympathetic nervous system,retinoblastoma,renal and bone tumours, and soft tissue sarcomas.Annals of Oncology,2007,18(10):1722–1733.
    [24]G. L. Bond, W. Hu, E. E. Bond et al.A single nucleotide polymorphism in the MDM2promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formationin humans. Cell,2004,119(5):591–602.
    [25]A.Patino-Garcia, E.Sotillo-Pineiro,C.Modesto.Analysis of the human tumour necrosisfactor alpha (TNFα) gene promoter polymorphisms in children with bone cancer.Journalof Medical Genetics, 2000,37(10):789–791.
    [26]E. Ruza, E. Sotillo, C. Azcona,et al.Analysis of polymorphisms of the vitamin Dreceptor, estrogen receptor, and collagen Iα1 genes and their relationship with height inchildren with bone cancer.Journal of Pediatric Hematology/Oncology, 2003,25(10):780–786.
    [27]Chen W,Ooper TK,Ahnow CA,et a1.Epigenetic and genetic loss of HIC1 functionaccentuates the role of p53 in tumorigenesis.Cel1,2004,6(8):387-398.
    [28]胡丹,郑雄伟,李一伟.P53蛋白三维空间结构改变与人骨肉瘤的关系.临床与实验病理学杂志,2011,1:63-66
    [29]李永昊,肖玉周,俞岚等.P53,P16基因在骨肉瘤中表达及临床相关性研究.中国骨肿瘤骨病.2007,3:162-166
    [30]Martelli L,Di Marlo F,Botti P,et a1.Accumulation,platinum-DNA adduct form ationan d cytotoxicity of cisplatin,oxaliplatin and satraplatin in sensitive and resistant humanosteosarcoma cell lines,characterized by p53 wild-type status.BiochemPharmaco1.2007.74(1):20-27.
    [31]S. A. Savage, L. Burdett, R. Troisi,et a1.Germ-line genetic variation of TP53 inosteosarcoma.Pediatric Blood and Cancer.2007.49(1):28-33.
    [32]C. Whibley, P.D.P.Pharoah,M. Hollstein.p53 polymorphisms:cancer implications.NatureReviews Cancer, 2009,9(2)95–107.
    [33]G. Bougeard, S. Baert-Desurmont, I. Tournier et al.Impactof the MDM2 SNP309 andp53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome.Journalof Medical Genetics,2006,43(6)531–533.
    [34]S. A. Savage, K. Woodson, E. Walk et al.Analysis of genes critical for growth regulationidentifies insulin-like growth factor 2 receptor variations with possible functionalsignificance as risk factors for osteosarcoma.Cancer Epidemiology Biomarkers andPrevention. 2007. 16 (8):1667–1674,
    [35]S. I. Berndt, J. D. Potter, A. Hazra et al.Pooled analysis of genetic variation atchromosome 8q24 and colorectal neoplasia risk. Human Molecular Genetics, 2008. 17(17): 2665–2672.
    [36]O. Fletcher, N. Johnson, L. Gibson et al.Association of genetic variants at 8q24 withbreast cancer risk.Cancer Epidemiology Biomarkers and Prevention, 2008.17(3):702-705.
    [37]C. A. Haiman, N. Patterson,M. L. Freedman et al.Multiple regions within 8q24independently affect risk for prostate cancer.Nature Genetics, 2007.39(5)638–644.
    [38]L. Mirabello, S. I. Berndt, G. F. Seratti et al.Genetic variation at chromosome 8q24 inosteosarcoma cases and controls. Carcinogenesis,2010,31(8)1400–1404.
    [39]M. M. Pomerantz, N. Ahmadiyeh, LI. Jia et al.The 8q24 cancer risk variant rs6983267shows long-range interaction with MYC in colorectal cancer.Nature Genetics,2009,41(8):882–884.
    [40]M. Jain, C. Arvanitis, K. Chu et al.Sustained loss of a neoplastic phenotype by briefinactivation of MYC.Science, 2002.297(5578): 102–104.
    [41]Z. Zhang, H. Xue, W. Gong et al.FAS promoter polymorphisms and cancer risk: a10meta-analysis based on 34 casecontrol studies.Carcinogenesis, 2009.30(3):487–493.
    [42]J. Zhu, C. Qin, M. Wang et al.Functional polymorphisms in cell death pathway genesand risk of renal cell carcinoma.Molecular Carcinogenesis, 2010.49(9):810–817.
    [43]N. V. Koshkina, E. S. Kleinerman, G. Li,et al.Exploratory analysis of Fas genepolymorphisms in pediatric osteosarcoma patients.Journal of PediatricHematology/Oncology, 2007.29(12)815–821.
    [44]Ozaki T, Flege S, Liljenqvist U, et al.Osteosarcoma of the spine: experience of theCooperative Osteosarcoma Study Group, Cancer, 2002;94:1069–77.
    [45]Franchi A, Arganini L, Baroni G, et al., Expression of transforming growth factor betaisoforms in osteosarcoma variants: association of TGF beta 1 with high-gradeosteosarcomas, J Pathol, 1998;185:284–289.
    [46]R. Y. Liao, C. Mao, L. X. Qiu, et al.TGFBR1 6A/9A polymorphism and cancer risk: ameta-analysis of 13,662 cases and 14,147 controls. Molecular Biology Reports,2010.37:3227–3232,
    [47]Y.-S. Hu, Y. Pan, W.-H. et al.Association between TGFBR1 6A and osteosarcoma: aChinese case-control study.BMC Cancer,2010.10:169,
    [48]丘钜世,朱全胜,王连唐.骨肿瘤的分子、细胞遗传学研究.中华外科杂志[J],2000,38(5):340-343.
    [49]王井,李鸣,宋之明.MMP-9和bcl-2在骨肉瘤中的表达及其临床意义.中国实验诊断学[J].2011,3: 441-443.
    [50]Hanada M, Aime Sempe C, Sato T, et al. Structure function analysis of Bcl22 protein
    [ J ]. J Biol Chem, 1995, 270: 11962
    [51]Eiji Osaka, Takashi Suzuki, Shunzo Osaka et al. Survivin as a Prognostic Factor forOsteosarcoma Patients.Acta Histochem Cytochem. 2006,39(3):95-100.
    [52]Shoeneman JK, Ehrhart EJ Eickhoff JC,et al Expression and function of Survivin incanine osteosarcoma. Cancer Res. 2012,72(1):249-59.
    [53]Trieb K, Lehner R, Stulnig T, et al.Survivin expression in human osteosarcoma is amarker for survival. Eur J Surg Oncol.2003 29(4):379-82.
    [1] S. Byrum, C. O.Montgomery, R. W. Nicholas,et al.The promise of bone cancerproteomics[J].Annals of the New York Academy of Sciences, 2010,1192:222–229.
    [2] F. Xie, T. Liu, W.J.et al.Liquid chromatography-mass spectrometry-based quantitativeproteomics[J].Journal of Biological Chemistry, 2011,286(29):25443–25449.
    [3] S. Ray, P. J. Reddy, R. Jain, et al.Proteomic technologies for the identification of diseasebiomarkers in serum: advances and challenges ahead[J].Proteomics, 2011,11(11):2139–2161.
    [4] V. Tambor, A. Fuc kova, J. Lenco et al.Application of proteomics in biomarkerdiscovery: a primer for the clinician[J].Physiological Research, 2010,59(4)471–497.
    [5] D. Gaso-Sokac, S. Kovac, J. Clifton,et al.Therapeutic plasma proteins—application ofproteomics in process optimization, validation, and analysis of the finalproduct[J].Electrophoresis, 2011,32(10):1104–1117.
    [6] H. G. Stunnenberg , M. Vermeulen.Towards cracking the epigenetic code using acombination of high-throughput epigenomics and quantitative mass spectrometry-basedproteomics[J].BioEssays,33(7):547–551, 2011.
    [7] V. J. Gauci, E. P. Wright, J. R. Coorssen.Quantitative proteomics: assessing the spectrumof in-gel protein detection methods[J].Journal of Chemical Biology, 2010, 4:3–29.
    [8] J. Zheng, R. J. Sugrue, K. Tang.Mass spectrometry based proteomic studies on virusesand hosts-a review[J].Analytica Chimica Acta, 2011,702(2):149–159.
    [9] Q. C. Guo, J. N. Shen, S. Jin et al. Comparative proteomic analysis of humanosteosarcoma and SV40-immortalized normal osteoblastic cell lines[J],ActaPharmacologica Sinica, 2007,28(6):850–858.
    [10]K. N. Niforou, A. K. Anagnostopoulos, K. Vougas,et al.The proteome profile of thehuman osteosarcoma U2OS cell line[J].Cancer Genomics and Proteomics, 2008,5(1):63–77.
    [11] J. M. M. Cates, D. B. Friedman, E. H. Seeley et al. Proteomic analysis of osteogenicsarcoma: association of tumour necrosis factor with poor prognosis[J]. InternationalJournal of Experimental Pathology, 2010,91(4):335–349.
    [12]Y. Li, Q. Liang, Y. Q. Wen et al.Comparative proteomics analysis of humanosteosarcomas and benign tumor of bone[J],Cancer Genetics and Cytogenetics,2010,198(2): 97–106.
    [13]J. N. Shen, S. Jin, J.Wang et al.Detection of serumbiomakers of osteosarcoma byproteomic profiling[J].Chinese Journal of Oncology, 2008,30(7):519–522.
    [14]M. P. Washburn, D. Wolters, J. R. Yates.Large-scale analysis of the yeast proteome bymultidimensional protein identification technology[J].Nature Biotechnology,2001,19(3):242–247.
    [15]S. Elschenbroich, V. Ignatchenko, P. Sharma, et al.Peptide separations by on-lineMudPIT compared to isoelectric focusing in an off-gel format: application to amembrane-enriched fraction from C2C12 mouse skeletal muscle cells[J].Journal ofProteome Research, 2009,8(10):4860–4869.
    [16]A. J. Link, J. Eng, D. M. Schieltz et al.Direct analysis of protein complexes using massspectrometry[J].Nature Biotechnology, 1999,17(7):676–682.
    [17]D. A. Wolters, M. P. Washburn, J. R. Yates.An automated multidimensional proteinidentification technology for shotgun proteomics[J].Analytical Chemistry, 2001,73(23):5683–5690.
    [18]C. C. Wu,M. J. MacCoss.Shotgun proteomics: tools for the analysis of complexbiological systems[J].Current Opinion in Molecular Therapeutics, 2002,4(3): 242–250.
    [19]R. C. Jones, J. Deck, R. D. Edmondsonet al.Relative quantitative comparisons of theextracellular protein profiles of Staphylococcus aureus UAMS-1 and its sarA, agr, andsarA agr regulatory mutants using one-dimensional polyacrylamide gel electrophoresisand nanocapillary liquid chromatography coupled with tandem massspectrometry[J].Journal of Bacteriology, 2008,190(15)5265–5278.
    [20]S. Byrum, N. L. Avaritt, S. G.MacKintosh et al. A quantitative proteomic analysis ofFFPE melanoma[J].Journal of Cutaneous Pathology, 2011,38(11):933–936.
    [21]D. B. Friedman, S. Hill, J. W. Keller et al.Proteome analysisof human colon cancer bytwo-dimensional difference gel electrophoresis and mass spectrometry[J].Proteomics,2004,4(3):793–811.
    [22]D. B. Friedman, S. E. Wang, C.W.Whitwell, et al.Multivariable difference gelelectrophoresis and mass spectrometry: a case study on transforming growth factor-βandERBB2 signaling[J], Molecular and Cellular Proteomics, 2007,6,(1):150–169.
    [23]Y. Li, Q. Liang, Y. Q. Wen et al.Comparative proteomics analysis of humanosteosarcomas and benign tumor of bone[J].Cancer Genetics and Cytogenetics, 2010,198, (2):97–106.
    [24]Z. Zhang, L. Zhang, Y. Hua et al.Comparative proteomic analysis of plasma membraneproteins between human osteosarcoma and normal osteoblastic cell lines[J]. BMCCancer, 2010,10:206-210.
    [25]F. Engin, T. Bertin, O. Ma et al.Notch signaling contributes to the pathogenesis ofhuman osteosarcomas[J].Human Molecular Genetics, 2009,18(8):1464–1470.
    [26]U. Koch and F. Radtke. Notch and cancer: a double-edged sword[J].Cellular andMolecular Life Sciences, 2007,64(21):2746–2762.
    [27]E. J. Allenspach, I. Maillard, J.C. Aster, et al.Notch signaling in cancer[J].CancerBiology & Therapy, 2002. 1(5):466–476.
    [28]M. Roy, W. S. Pear, J. C. Aster.The multifaceted role of Notch in cance[J]r.CurrentOpinion in Genetics and Development, 2007,7(1):52–59.
    [29]T. Gridley.Notch signaling and inherited disease syndromes[J].Human MolecularGenetics, 2003,12(1):R9–R13.
    [30]A. P. Weng,J. C. Aster.Multiple niches for notch in cancer: context is everything[J].Current Opinion in Genetics and Development, 2004,14(1):48–54.
    [31]F. Radtke ,K. Raj.The role of Notch in tumorigenesis:oncogene or tumour suppressor[J].Nature Reviews Cancer, 2003,3(10):756–767.
    [32]Z. Li, M. Kreutzer, S. Mikkat, et al.Proteomic analysis of the E2F1 response inp53-negative cancer cells: new aspects in the regulation of cell survival anddeath[J].Proteomics,2010,6(21):5735–5745.
    [33]D. J. Papachristou, A. Batistatou, G. P. Sykiotis, et al.Activation of the JNK-AP-1 signaltransduction pathway is associated with pathogenesis and progression of humanosteosarcomas[J], Bone, 2003,32(4):364–371.
    [34]Y. Li, T. A. Dang, T.-K. Man.Plasma proteomic profilingof pediatric osteosarcoma[J].Methods in Molecular Biology, 2012,818: 81–96.
    [1] Yunping Qiu, Mingming Su, Yumin Liu, et al. Application of ethyl chloroformatederivatization for gas chromatography–mass spectrometry based metabonomicprofiling[J]. Anal Chim Acta. 2007;583(2):277-83
    [2] Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presenceand severity of coronary heart disease using 1H-NMR-based metabonomics[J]. Nat Med.2002;8(12):1439-44.
    [3] Perroud B, Lee J, Valkova N, et al. Pathway analysis of kidney cancer using proteomicsand metabolic profiling[J]. Mol Cancer. 2006;5:64.
    [4] Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic profilingreveals different metabolite patterns in invasive ovarian carcinomas and ovarianborderline tumors[J]. Cancer Res. 2006;66(22):10795-804.
    [5] Yang J, Xu G, Zheng Y, et al. Diagnosis of liver cancer using HPLC-basedmetabonomics avoiding false-positive result from hepatitis and hepatocirrhosisdiseases[J]. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;25;813(1-2):59-65.
    [6] Zheng YF, Xu GW, Liu DY, et al. Study of urinary nucleosides as biological marker incancer patients analyzed by micellar electrokinetic capillary chromatography[J].Electrophoresis. 2002;23(24):4104-9
    [7] Leonard P, Sharp T, Henderson S, et al. Gene expression array profile of humanosteosarcoma[J]. Br J Cancer. 2003;89(12): 2284-8.
    [8] Hunter KW. Ezrin, a key component in tumor metastasis[J]. Trends Mol Med.2004;10(5):201-4.
    [9] Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin is necessaryfor osteosarcoma metastasis[J]. Nat Med. 2004;10(2):182-6.
    [10]Mintz MB, Sowers R, Brown KM, et al. An expression signature classifieschemotherapy- resistant pediatric osteosarcoma[J]. Cancer Res. 2005;65(5):1748-54.
    [11]Tang H, Wang Y, Nicholson JK, et al. Use of relaxation- edited one-dimensional andtwo dimensional nuclear magnetic resonance spectroscopy to improve detection of smallmetabolites in blood plasma[J]. Anal Biochem. 2004;325(2):260-72.
    [12]李国东,蔡郑东.基因微矩阵技术在骨肉瘤发病相关基因研究中的应用[J].中华实验外科杂志,2005,22(9):1094-1098
    [13]孙庆,杨小玉.骨肉瘤蛋白质组双向电泳图像分析方法的建立[J],中国实验诊断学2006,10(7):730-733.
    [14]范德刚,范清宇,张惠中等,联合应用基因芯片和反义寡核苷酸技术筛选骨肉瘤转移相关基因[J].中国现代医学杂志,2004,14(1):64-68.
    [15]贾伟,王晓艳,邱云平等.医学代谢组学.上海科学技术出版社,2011.
    [1] Eriksson, E. Johansson, Umetrics AB. Multi and Megavariate Data Analysis: Principlesand Applications[M].2001,121-138.
    [2] Qiu Y.et al.Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling[J].Anal ChimActa,2007;583(2):277-83.
    [3] The Standard Metabolic Reporting Structure, Version 2.3, http://www.smrsgroup.org/,Jan uary 13,2006.
    [4] Wold S,Kettaneh N,Tjessem K.PLS and PC models for easier model interpretation andas an alternative to variable selection[J].Chemom.1996;10(5-6):463-482.
    [5] Trygg J.Wold S. Orthogonal projections to latent structures (OPLS) [J].Chemom.2002;16:119-128
    [6] Http://www.genome.jp/kegg/.
    [7] Tisdale M. Molecular pathways leading to cancer cachexia[J].Physiology( Beth esda) ,2005, 20: 340- 348.
    [8] RydenM, Arner P. Fat loss in cachexia-is there a role for adipocyte lipolysis? [J]. ClinNutr, 2007, 26 (1):1-6.。
    [9] Garber K. Energy deregulation: licensing tumors to grow[J]. Science, 2006; 312( 5777) :1158-1159.
    [10]Kim JW, Gao P, Liu YC, et al.Hypoxia.inducible factor1 and dysregulated c-Myccooperatively induce vascular endothelial growth factor and metabolic switcheshexokinase 2 and pyruvate dehydrogenas ekinase 1[J].Mol Cell Biol, 2007;27( 21) :7381-7393.
    [11]Stubbs M, Bashford CL, Grif f iths JR. Understanding the tumor metabolic phenotype inthe genomicera [J].Curr Mol Med, 2003; 3( 1) : 49-59.
    [12]Vera N,Martínez E,Sanfeliu C.Spermine induces cell death in cultured humanembryonic cerebral cortical neurons through N-methyl-D-aspartate receptor activation[J]J Neurosci Res,2008,86( 4) : 861-872.
    [13]Casero RA Jr , Mar ton LJ. Targeting poly amine metabolism and function in cancer andother hyperprolifer ative diseases. [J] .Nat Rev Drug Discov ,2007,6(5):373-390.
    [14]Muller C,Herberth H,Cosquer B,et al.Structural and functional recovery elicited bycombined putrescine and aminoguanidine treatment after aspirative lesion of thefimbria-fornix and overlying cortex in the adult rat[J].Eur J Neurosci,2007,25(7) :1949-1952.
    [15]Velloso NA,Dalmolin GD,Fonini G,et al.Spermine attenuates behavioral andbiochemical alterations induced by quinolinic acid in the striatum of rats[J].BrainRes,2008;1198: 107-114.
    [16]Raul F. Revival of 2-( difluoromethyl ) or nithine( DFMO) , an inhibitor of poly aminebiosynthesis, as a cancer chemo preventive agent [J].Bio chem Soc Trans, 2007,35( 2):353-3555.
    [17]Lan L, Trempus C, Gilmour S K.Inhibition of or nithinedecar-boxy lase ( ODC) decreases tumor vascula rization and reverses spontaneous tumors in ODC/ Ras transgenicmice[ J] . Cancer Res, 2000, 60( 20) : 5696-5703.
    [18]Babbar N, Gerner EW. Targeting polyamine and inflammation for cancer prevention[J].Recent Results .Cancer Res, 2011(1): 49-64
    [1] Fletcher CDM, Unni KK, Mertens F. WHO classification of tumours,pathology andgenetics of tumours of soft tissue and bone.Lyon:IARC Press 2002.
    [2] Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging ofmusculoskeletal sarcoma[J]. Clin Orthop 1980;153:106-120.
    [3] Qiu Y.et al.Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling[J].Anal ChimActa,2007;583(2):277-83.
    [4] Neal, M.J.,Goodacre,R.&Kell,D.B (1994) On the analysis of pyrolysis mass spectrausing artificial neural networks. Individual input scaling leads to rapid learning.Proceedings of the World Congress on Neural Networks 1994, San Diego, California,318-323.
    [5] Eriksson, E. Johansson, Umetrics AB. Multi and Megavariate Data Analysis: Principlesand Applications[M].2001,121-138.
    [6] Wold S.Pattern recognition by means of disjoint principal components models[J]. PatternRecognition.1976.8(3):127-139.
    [7] Wold S,Kettaneh N,Tjessem K.PLS and PC models for easier model interpretation andas an alternative to variable selection[J]. Chemom.1996;10(5-6):463-482.
    [8] Trygg J.Wold S. Orthogonal projections to latent structures (OPLS)J.Chemom.2002;16:119-128
    [9] Trygg J.Wold S.O2-PLS,a two-block (X-Y) latent variable regression (LVR) methodwith an integral OSC filter.J.Chemom. 2003,17:53-64.
    [10]The Standard Metabolic Reporting Structure, Version 2.3, http://www.smrsgroup.org/,Jan uary 13,2006.
    [11]Http://www.genome.jp/kegg/.
    [12]Aydillo C,Avenoza A,Busto JH,et al.A biomimetic approach to lanthionines[J].OrgLett.2012;14(1):334-7.
    [13]Hensley K,Venkova K,Christov A.Emerging biological importance of central nervoussystem lanthionines[J]. Molecules.2010;13;15(8):5581-94
    [14]Suzuki S, Hayase S, Nakano M, et al.Analysis of glucuronolactone and glucuronic acidin drug formulations by high-performance liquid chromatography[J]. J Chromatogr Sci.1998;36(7):357-60.
    [15]Gray AC,McLeod JD,Clothier RH.A review of in vitro modelling approaches to theidentification and modulation of squamous metaplasia in the human tracheobronchialepithelium[J]. Altern Lab Anim.2007;35(5):493-504.
    [16]Piette M,Durand G, Cadiou-Guillerm M,et al.Study of malic acid and malatedehydrogenase cytochemically detectable during human leukemia[J].Nouv Rev FrHematol.1972;12(4):409-22
    [17]Fujita M,Khazenzon NM,Ljubimov AV,Inhibition of laminin-8 in vivo using a novelpoly(malic acid)-based carrier reduces glioma angiogenesis[J].Angiogenesis.2006;9(4):183-91
    [18]Lu M,Banerjee S,Saidel GM,et al.2 Regulation of cytosolic and mitochondrial oxidationvia malate-aspartate shuttle: an observation using dynamicC13NMR spectroscopy[J].Adv Exp Med Biol. 2011;701:185-9
    [19]Mazurek S,Boschek CB,Eigenbrodt E.The role of phosphometabolites in cellproliferation, energy metabolism, and tumor therapy.J Bioenerg Biomembr[J].1997;29(4):315-30.
    [20]Young SZ,Bordey A.GABA's control of stem and cancer cell proliferation in adultneural and peripheral niches[J]. Physiology (Bethesda).2009;24:171-85.
    [21]Hijova E,Chmelarova A.Short chain fatty acids and colonic health[J]. Bratisl Lek Listy.2007;108(8):354-8.
    [22]Hamer HM,Jonkers D,Venema K,Vanhoutvin S.Review article:the role of butyrate oncolonic function[J]. Aliment Pharmacol Ther.2008;27(2):104-19.
    [23]Wong JM,de Souza R, Kendall CW,Colonic health: fermentation and short chain fattyacids[J].J Clin Gastroenterol.2006;40(3):235-43.
    [24]Bachmann C.Ornithine carbamoyl transferase deficiency: findings, models andproblems[J].J Inherit Metab Dis.1992;15(4):578-91.
    [25]Beska F,Cron J,Hejda B.A contribution to the diagnostic evaluation of ornithin-carbamyltransferase (OCT) in patients with malignant tumours[J].Neoplasma. 1965;12(5):543-7.
    [26]Morin A,Fritsch L,Mathieu JR,et al.Identification of CAD as an androgen receptorinteractant and an early marker of prostate tumor recurrence[J].FASEBJ.2012;26(1):460-467.
    [1] Http://www.genome.jp/kegg/.
    [2] Alan W. Hemming, Steven Gallinger,et al.The hippurate ratio as an indicator offunctional hepatic reserve for resection of hepatocellular carcinoma in cirrhoticpatients[J].Journal of Gastrointestinal Surgery.2000; 5(3):316-321.
    [3] SpustováV, Oravec C.Antitumor effect of hippurate. An experimental study usingvarious mouse tumor strains[J]. Neoplasma. 1989;36(3):317-20.
    [4] Carrola J, Rocha CM, Barros AS,et al.Metabolic signatures of lung cancer in biofluids:NMR-based metabonomics of urine[J]. J Proteome Res. 2011;10(1):221-30.
    [5] Catchpole G, Platzer A, Weikert C, et al.Metabolic profiling reveals key metabolicfeatures of renal cell carcinoma[J]. J Cell Mol Med. 2011;15(1):109-18.
    [6] Arano Y, Inoue T, Mukai T,et al.Discriminated release of a hippurate-like radiometalchelate in nontarget tissues for target-selective radioactivity localization usingpH-dependent dissociation of reduced antibody[J].J Nucl Med.1994;35(2):326-33.
    [7] Yang Y, Niu X, Zhang Q, et al. The Efficacy of Abraxane on Osteosarcoma Xenograftsin Nude Mice and Expression of Secreted Protein, Acidic and Rich in Cysteine[J]. Am JMed Sci. 2012 Jan 4.
    [8] Baumhoer D, Elsner M, Smida J, et al.CRIP1 expression is correlated with a favorableoutcome and less metastases in osteosarcoma patients[J]. Oncotarget. 2011;2(12):970-5.
    [9] Ekelund S,Nygren P,Larsson R.Guanidino-containing drugs in cancer chemotherapy:biochemical and clinical phammcology[J].Biochem Phannacol,2001,61(10):1183-1193.
    [10]Bajpai J, Gamnagatti S, Kumar R,et al.Role of MRI in osteosarcoma for evaluation andprediction of chemotherapy response: correlation with histological necrosis[J]. PediatrRadiol.2011;41(4):441-50.
    [11]Komiya S, Gebhardt MC, Mangham DC,et al.Role of glutathione in cisplatin resistancein osteosarcoma cell lines[J]. J Orthop Res. 1998 ; 16(1):15-22.
    [12]Magwere T, Myatt SS, Burchill SA.Manipulation of oxidative stress to induce cell deathin Ewing's sarcoma family of tumours[J].Eur J Cancer. 2008;44(15):2276-87.
    [13]Pasello M, Manara MC, Michelacci F, et al.Targeting glutathione-S transferase enzymesin musculoskeletal sarcomas: a promising therapeutic strategy[J]. Anal Cell Pathol(Amst). 2011;34(3):131-45.
    [14]Lu XF, Yang WL, Wan ZH,et al.Glutathione S-transferase Polymorphisms and BoneTumor Risk in China[J].Asian Pac J Cancer Prev. 2011;12(12):3357-60.
    [15]Salinas-Souza C,Petrilli AS,Toledo SR. Glutathione S-transferase polymorphisms inosteosarcoma patients[J].Pharmacogenet Genomics. 2010;20(8):507-15.
    [1] Hanahan D, Weinberg R A. The hallmarks of cancer[J]. Cell,2000,100(1):57-70.
    [2] Vander HeidenM G, Cantley L C, Thompson C B. Understanding the Warburg effect: themetabolic requirements of cell proliferation[J].Science, 2009, 324(5930): 1029-1033
    [3] Warburg O. On respiratory impairment in cancer cells[J]. Science,1956, 124(3215):269-270.
    [4]罗湘建,曹亚.肿瘤能量代谢机制研究进展[J],生物化学与生物物理进展,2011,38(7):585-592.
    [5] Hua Y, Qiu Y, Zhang Z, et al.Dynamic metabolic transformation in tumor invasion andmetastasis in mice with LM-8 osteosarcoma cell transplantation[J].J Proteome Res.2011,5;10(8):3513-21.
    [6] Zhang Z, Qiu Y, Hua Y, et al.Serum and urinary metabonomic study of humanosteosarcoma[J].J Proteome Res. 2010,3;9(9):4861-4868.
    [7] Trougakos IP,Chondrogianni N,Amarantos I,et al.Genome-wide transcriptome profile ofthe human osteosarcoma Sa OS and U-2 OS cell lines[J].Cancer Genet Cytogenet.2010,15;196(2):109-118.
    [8] Sonveaux P, Vegran F, Schroeder T, et al. Targeting lactate-fueled respiration selectivelykills hypoxic tumor cells in mice[J]. J Clin Invest,2008,118(12):3930-3942.
    [9] Fukumura D,Xu L,Chen Y,et al.Hypoxia and acidosis independently up-regulate vascularendothelial growth factor transcription in brain tumors invivo[J].CancerRes ,2001,61(16):6020-6024
    [10]Manning B D, Cantley L C. AKT/PKB signaling: navigating downstream[J].Cell,2007,129(7): 1261-1274.
    [11]Sottnik JL, Lori JC, Rose BJ.Glycolysis inhibition by 2-deoxy-D-glucose reverts themetastatic phenotype in vitro and in vivo[J].Clin Exp Metastasis. 2011;28(8):865-75.
    [12]Hsu PP, Sabatini DM. Cancer cell m et ab ol ism: Warburg and beyond [J].Cell,2008;134(5): 703-707.
    [13]Yang Y, Niu X, Zhang Q,et al.The Efficacy of Abraxane on Osteosarcoma Xenografts inNude Mice and Expression of Secreted Protein[J], Acidic and Rich in Cysteine. Am JMed Sci. 2012,4.
    [14]Baumhoer D, Elsner M, Smida J, et al.CRIP1 expression is correlated with a favorableoutcome and less metastases in osteosarcoma patients[J]. Oncotarget. 2011;2(12):970-5.
    [15]Bachmann C.Ornithine carbamoyl transferase deficiency: findings, models andproblems[J].J Inherit Metab Dis.1992;15(4):578-91.
    [16]Beska F,Cron J,Hejda B.A contribution to the diagnostic evaluation of ornithin-carbamyltransferase (OCT) in patients with malignant tumours[J].Neoplasma. 1965;12(5):543-7.
    [17]Morin A,Fritsch L,Mathieu JR,et al.Identification of CAD as an androgen receptorinteractant and an early marker of prostate tumor recurrence[J].FASEB J.2012;26(1):460-467.
    [18]Ekelund S,Nygren P,Larsson R.Guanidino-containing drugs in cancer chemotherapy:biochemical and clinical phammcology[J].Biochem Phannacol,200161(10):1183-1193.
    [19]Bajpai J, Gamnagatti S, Kumar R,et al.Role of MRI in osteosarcoma for evaluation andprediction of chemotherapy response:correlation with histological necrosis[J].PediatrRadiol.2011;41(4):441-50.
    [20]刘贤锡.多胺代谢与肿瘤治疗[J].山东大学学报(医学版)2011,49(10):67-72.
    [21]Pasello M, Manara MC, Michelacci F, et al.Targeting glutathione-S transferase enzymesin musculoskeletal sarcomas: a promising therapeutic strategy[J]. Anal Cell Pathol(Amst).2011;34(3):131-45.
    [22]Lu XF, Yang WL, Wan ZH,et al.Glutathione S-transferase Polymorphisms and BoneTumor Risk in China[J].Asian Pac J Cancer Prev. 2011;12(12):3357-60.
    [23]Salinas-Souza C,Petrilli AS,Toledo SR. Glutathione S-transferase polymorphisms inosteosarcoma patients[J].Pharmacogenet Genomics. 2010;20(8):507-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700