低残留结晶度氯化聚乙烯的热稳定性和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯化聚乙烯(CPE)是一种新型的高分子弹性体材料,具备许多优异的性能。因为CPE是聚乙烯氯化制得的,分子中含有未氯化的聚乙烯段,整个材料呈现出介于橡胶和塑料之间的性能,CPE中的氯含量及残余结晶度的大小决定了产品的最终性能。CPE分子中含有氯原子,在受热或加工过程中往往会产生热降解,并脱出氯化氢气体,因此针对CPE的热稳定性研究倍受关注。
    本课题主要针对CPE的热稳定性、CPE硫化胶和CPE与丁腈橡胶(NBR)共混的体系的性能进行研究。重点考察了各类热稳定剂对CPE热稳定性的影响;CPE硫化胶的碳黑体系和非碳黑体系中,不同型号CPE原料、填料和稳定剂的品种以及填料、氧化镁和过氧化物硫化剂的用量对其各项性能的影响;CPE和NBR共混体系中,各组份用量、填料品种和CPE、NBR的并用比对体系各项性能的影响。
    研究结果表明,热稳定剂对于提高CPE的热稳定性很有效。刚果红法的结果表明,单用稳定剂时,二盐基硬脂酸铅、硬脂酸铅、硫醇锡T137的效果较为显著。稳定剂两两并用时,二盐基亚磷酸铅:二盐基硬脂酸铅=1:3、硬脂酸铅:硬脂酸钡=1:1、二月桂酸二丁基锡:二盐基亚磷酸铅=1:1的并用体系较好。环氧大豆油对二月桂酸二丁基锡抑制CPE脱氯化氢时间有协同作用,当环氧大豆油用量为5份、二月桂酸二丁基锡用量为1份时,两者的协同效应最明显,但是并不能提高CPE的脱氯化氢温度。
    DSC的结果表明,热稳定剂单用时,二盐基亚磷酸铅、硬脂酸钡、395A体系对抑制CPE脱氯化氢作用为最有效的,并且环氧大豆油对有机锡体系起到协同效应。热稳定剂两两并用时,对提高CPE的热稳定性都很好。不同品种的热稳定剂对提高CPE的热稳定性不同,其中以铅盐类的最好。TGA的结果表明,在氮气中CPE降解比较缓慢,而氧气对CPE的降解反应起到了一定的促进作用。相对于在氮气气氛中而言,热稳定剂在氧气气氛中对抑制CPE脱氯化氢更有效。
    对CPE135A和CPE135B进行了红外光谱分析,发现两种CPE均为低残留结晶度的;DSC分析,发现CPE135A的链柔性比CPE135B好。从不同品种的CPE的性能研究中发现,低残留结晶度CPE的链柔性较好。随着氯含量的增加,拉伸强度、撕裂强度都增大。CPE140的耐油性、耐溶剂性能优于CPE135。
    对于CPE的碳黑体系而言,氧化镁的用量在5~10份之间比较好。不同碳黑品种对CPE硫化胶性能的影响较大,其中高耐磨碳黑补强效果好,硫化胶具有较高的拉伸强度和撕裂强度,但断裂伸长率较低,而半补强碳黑易于加工,可大量填充,且硫化胶有适当强度、较好的断裂伸长率,并且碳黑用量在40~60份较好。而热稳定剂品种对硫化胶的力学性能和耐热空气老化能力影响不大。对于CPE的非碳黑体系来说,
    
    当DCP与硫脲混用作硫化剂,DCP的最佳用量为1~1.5份。TAIC的最佳用量为2~4份,由于TAIC是液体,用量过多起到增塑剂的作用。NA-22的最佳用量为0.5份。DOP的最佳用量为20份。填料对CPE硫化胶有影响,不加氧化镁时,碳酸钙补强效果最差,酸性填料白炭黑出现了大量气泡,滑石粉有少量气泡,而碳黑没有气泡;加氧化镁后,白炭黑和碳黑的补强效果要好于其他两种填料;再加入NA-22,则白炭黑体系的性能最好。在不同品种CPE硫化体系的SEM照片中,并不能很明显地看出各体系微观结构的差别。
    对CPE/NBR共混体系来说,拉伸强度先增加后减小,在并用比CPE/NBR =30/70时最大。而撕裂强度和断裂伸长率则是CPE/NBR=80/20时最好。永久变形和硬度则是随着CPE用量减少而减少的。适量增塑剂能提高该共混体系的性能,最佳用量为10份。DCP、TAIC的最佳用量分别为1~2份和2份。对于碳黑品种而言,快压出碳黑和高耐磨碳黑补强效果好、硬度较高,半补强碳黑的硫化胶有适当强度、较好的断裂伸长率。当半补强碳黑和高耐磨碳黑并用时,随着高耐磨碳黑的用量减少,拉伸强度、永久变形均有所下降,单用HAF时撕裂强度最好,断裂伸长率则在SRF/HAF=30/20时最好。对于非碳黑体系,白炭黑体系的拉伸强度、撕裂强度、永久变形和硬度明显高于碳酸钙、陶土、滑石粉和绢云母体系。另外,白炭黑体系的耐溶剂性最好。陶土和绢云母体系的断裂伸长率最高。含丙烯腈较多的N220S和3604两个品种的拉伸强度、撕裂强度、断裂伸长率和永久变形均高于含丙烯腈较少的N240S和N41两个品种。在CPE、NBR不同并用比的SEM照片中发现,随着CPE用量的增加,CPE相逐渐与NBR相融合在一起。在CPE与NBR用量接近时,两相相区尺寸比较接近。另外,内聚能较大的NBR相存在团聚现象。
Chlorinated Polyethylene (CPE) has many good properties as a novel elastomer. It shows behaviour between plastics and rubber due to parts of its main chains remain unchlorinated, and its overall property is determined by chlorine content as well as residual crystallinity. As CPE always dehydrochlorinate during processing, the study on the thermal stability of CPE has been widely reported.
    In this study, the thermal stability of CPE as well as the properties of vulcanized CPE rubber and CPE/NBR blends was investigated. The effects of stabilizer on CPE's thermal stability, the influence of the types of CPE, fillers, and stabilizers, together with the content of filler, magnesium oxide, and vulcanizing agent were studied. The effects of content of compositions, types of filler and blending ratio of CPE/NBR in blends were also discussed.
    The experiment results showed that stabilizers played an efficient role in improving the thermal stability of CPE. The results of the Congo Red Method proved that when stabilizers used separately, dibasic lead stearate, lead stearate and organotin T137 showed better effect in decreasing the degradation of CPE. While the thermal stability of CPE containing dibasic lead phosphite 1:3 dibasic lead stearate, lead stearate 1:1 barium stearate, and dibutyl tin dilaurate 1:1 dibasic lead phosphite displayed better effects when them used simultaneously. Epoxidized soybean oil showed cooperative effects with dibutyl tin dilaurate in prolonging the dehydrochlorination time of CPE, but not in enhancing the dehydrochlorination temperature.
    The results of DSC showed that, when stabilizers used separately, dibasic lead phosphite, barium stearate and organotin 395A were the more efficient inhibitors for the dehydrochlorination of CPE, among which the lead salts was the best one. When stabilizers used simultaneously, either pair demonstrated good effect. The results of TGA test showed that compared with nitrogen, the oxygen accelerated dehydrochlorination of CPE, while the stabilizers had more obvious efficiency in oxygen.
    The FTIR spectrometry of CPE135A and CPE135B revealed that they are low in residual crystallinity. Further DSC test indicated that CPE135A had a more flexible main chain. With the chlorine content increasing, tensile strength and tear strength improved. As the polarity of polymer main chain increasing, the oil and solvent resistance of CPE140 were better than CPE135.
    The best content of magnesium oxide was from 5 to 10 phr (mass content) for the vulcanized CPE rubber with carbon black. High antifriction carbon black (HAF) was the most valuable filler for CPE to enhance the tensile and tear strength, and semi reinforcing carbon black (SRF) to enhance the elongation at break. The best content of carbon black was from 40 to 60 phr. For the vulcanized CPE rubber with
    
    other fillers, the peroxide (DCP) and thiourea (NA-22) were used as vulcanizing agent. The best content of DCP was from 1to 1.5 phr, and TAIC from 2 to 4 phr, NA-22 0.5 phr, plasticiser-DOP 20 phr. Compared with other fillers, the strengthening effect of silica was most efficient. And there was no different could be seen from the SEM photos of vulcanized CPE rubber.
    When CPE was blended with NBR, the degree of vulcanizing reached the peak in CPE/NBR=30/70 (mass ratio). The tear strength and elongation at break were biggest in CPE/NBR=80/20. The more CPE used, the more permanent set and hardness increased. The best content of DOP was 10 phr for CPE/NBR blends, DCP from 1 to 2 phr, TAIC 2 phr. The blends with fast extruding furnace (FEF) and HAF had a better strengthening and hardness. The blends with SRF had a better elongation at break. When carbon black used simultaneously, the blends with SRF/HAF=30/20 was the best one. When other fillers used, the blends with silica was the best. In addition, the blends with NBR containing high acrylonitrile content had better properties than which with NBR containing low acrylonitrile content. The SEM photos of CPE/NBR blend showed that the phase of CPE and NBR co
引文
1. 白文业,徐东国,谢忠麟,氯化聚乙烯橡胶的性能、加工和应用,2001年全国橡胶制品技术研讨会论文集[M],62~68
    2. 刘大华主编,合成橡胶工业手册[M],北京:化学工业出版社,1991,1117~1134
    3. the Farbwerke Hoechst Company,Manufacture of Chlorinated Polyethylene [P],GB 882524,1958
    4. A.A.顿佐夫,Г.Я.洛佐维克,С.П.诺维茨卡亚,氯化聚合物[M],北京:化学工业出版社,1983
    5. A.A.Schoen,Process for Chlorinating Ethylene Polymers [P],US 4197386,1980
    
    
    6. R.S.Taylor,N.J.Arlington,Chlorinated Uncompacted Polyethylene [P],US 2592763,1952
    7. 李军,氯化聚乙烯生产技术及应用进展[J],现代化工,1995,(10):13~16
    8. 胡永强,氯碱厂CPE生产工艺选择及优化[J],氯碱工业,2000.12,(12):31~33
    9. 张建华,葛树忠,吕莹,氯化聚乙烯弹性体的生产和应用[J],陕西化工,1998.3:35~36
    10. G.M.Benedikt,D.M.Kurtz,Vapor Phase Chlorination of Polyolefins [P],US 4473451,1982
    11. L.B.Hutchinson,Anhydrous Process for Preparing Amorphous Chlorinated Polyethylene and Product thereof [P],US 4425206,1984
    12. 朱建一,赵斌,固相法CPE国内外概况,CPE资料汇编,安徽化工(专辑)[M],1991:40~44
    13. the Farbwerke Hoechst Company,Manufacture of Chlorinated Polyethylene [P],GB 828938,1957
    14. the Farbwerke Hoechst Company,Process for the Chlorination of Polyethylene Having a Density of More Than 0.93 [P],GB 889108,1958
    15. 张玉英,溶液法CPE,CPE资料汇编,安徽化工(专辑)[M],1991:52~58
    16. 宋执高,氯化聚乙烯[J],安徽化工,1981,(4):43~48
    17. 安徽省化工研究所CPE小组,水相悬浮法合成CPE弹性体,CPE资料汇编,安徽化工(专辑)[M],1991:14~17
    18. 邹从炎,固相法低度氯化聚乙烯的合成与性能研究[J],石油化工,1994,23(4):436~441
    19. 邹从炎,何培新,张超灿等,固相法低度氯化聚乙烯结构与性能的研究[J],合成树脂及塑料,1993,10(4):15~20
    20. 刘良炎,固相法低氯含量氯化聚乙烯的合成与性能研究[J],高分子材料科学与工程,1991,(6):17~22
    21. 刘良炎,低氯含量氯化聚乙烯的合成与性能研究[J],塑料,1989,18(1):19~24
    22. 日本橡胶协会编,特种合成橡胶[M],北京:燃料化学工业出版社,1974
    
    
    23. 严进,CPE性能及牌号标志,CPE资料汇编,安徽化工(专辑)[M],1991:59~66
    24. 中华人民共和国国家标准 GB 9872-88
    25. B.H.Chang,R.Zeigler,A.Hiltner,Chlorinated High Density Polyethylene. I. Chain Characterization[J],Polym. Eng. & Sci.,1988.9,28(18):1167~1172
    26. I.A.Abu-Isa,M.E.Myers,Chlorinated Polyethylene. II. Chlorine Distribution on the Polymer Chain[J],J. Polym. Sci.,1973,11:225~231
    27. 姚宁,固相法CPE非晶相中氯含量的WAXD法测定[J],高分子材料科学与工程,1990.11,6(6):78~83
    28. X.D.Li,N.Yao,Y.H.Li,et. al.,WAXD Studies on Chlorinated Polyethylene (CPE) from Solid-Phase Chlorination[J],Spectrosc. Lett.,1990,23(4):435~450
    29. B.Hoesselbarth,Studies on Chlorinated Polyethylene and Chlorinated Poly(Vinyl Chloride) by Differential Scanning Calorimetry,CA 124:57223
    30. G.Akovali,A.Vatansever,Notes on Chlorinated Polyethylene:Its Preparation,Some Mechanical and Thermal Properties[J],Polym. Eng. & Sci.,1986, 26(17):1195~1199
    31. Z.K.Chai,L.H.Shi,R.N.Sheppard,Microstructure of Solution-Chlorinated Polyethylene by 13C Nuclear Magnetic Resonace[J],Polymer,1984.3,25:369~374
    32. S.Szegedi,Z.Dezso,Determination of Chlorine Content in Chlorinated Polyethylene Using Neutron Physical Method[J],Radiochem. Radioanal. Lett.,1982,52(6):343~348
    33. J.P.Rouchon,D.Sage,M.Romand,et. al.,Application of X-Ray Spectrometry to the Analysis of Polymer Materials. II. Studies on Surface-Chlorinated Polyethylene,CA 88:51325
    34. 王克强,吕烈文,王良涛等,PVC改性用CPE的结构、性能和质量控制,CPE资料汇编,安徽化工(专辑)[M],1991:67~75
    35. 孙红涛,CPE粘弹性能热性能的探索与研究,CPE资料汇编,安徽化工(专辑)[M],1991:76~82
    36. 中华人民共和国化工行业标准 HG/T 2704—95
    B.H.Chang,J.W.Dai,A.Zeigler,et. Al.,Chlorinated High Density Polyethylene. II.
    
    37. Solid State Structure[J],Polym. Eng. & Sci.,1988.9,28(18):1173~1178
    38. 姚宁,李小定,用X射线衍射法测定固相氯化法氯化聚乙烯的结晶度[J],分析测试通报,1989,8(5):66~69
    39. R.J.Roe,C.Gieniewski,Partitioning of Comonomer Units between Crystalline and Amorphous Phase of Polyethylene:Effect of Crystallization Condition[J],J. Cryst. Growth,1980,48(2):295~302
    40. 赵若飞,程树军,黄拥军,氯化聚乙烯链结构和聚集态结构表征[J],华东理工大学学报,2000.6,26(3):284~286
    41. K.Wunderlich,J.Sobottka,B.Preidel,The Determination of the Crystallinity of Partially Ordered Ethylene Copolymers by Broad Line NMR with Chlorinated Polyethylene as an Example. I. Experimental Results,CA 86:17210
    42. I.A.Aru-Isa,Degradation of Chlorinated Polyethylene. I. Effect of Antimony Oxide on the Rate of Dehydrochlorination[J],J. Polym. Sci.:Part A-1,1972,10(3):881~894
    43. 邹从炎,低度氯化聚乙烯脱氯化氢反应动力学研究[J],华中师范大学学报(自然科学版),1994,28(2):221~226
    44. 楼剑锋,翁志学,黄志明等,ACS树脂的结构与热性能[J],合成树脂及塑料,1993,10(4):41~45
    45. M.E.Nichols,R.A.Pett,Effects of Aging on the Fracture Behavior of Chlorinated Polyethylene and Chlorosulfonated Polyethylene[J],Rubber Chemistry and Technology,1994,67(4):619~628
    46. T.H.Hsieh,K.S.Ho,Thermal Dehydrochlorination of Poly(Vinylidene Chloride) [J],J. Polym. Sci.:Part A: Polym. Chem.,1999,37(13):2035~2044
    47. T.H.Hsieh,K.S.Ho,Effects of Thermal Stability on the Crystallization Behavior of Poly(Vinylidene Chloride) [J],J. Polym. Sci.:Part A:Polym. Chem.,1999,37(16):3269~3276
    48. Y.S.Chiu,J.G.Joseph,V.David,Dehydrochlorination of Polyvinylidene Chloride in the Presence of Crown Ether as a Phase Transfer Agent[J],J. Polym. Sci.:Polym. Chem. Edi.,1985,23(4):1193~1202
    
    
    49. S.R.Betso,J.A.Berdasco,M.F.Debney,et. Al.,Shear Degradation of Vinylidene Chloride Copolymer[J],J. Appl. Polym. Sci.,1994,51(5):781~805
    50. M.R.Farr,I.R.Harrison,A Study of Thermal Degradation Kinetics of H-H Poly(Vinylidene Chlorinde) [J],J. Polym. Sci.:Part C:Polym. Lett.,1986,24(6):257~261
    51. 李新法,沈百栓,陈建勋等,氯磺化聚乙烯的热行为和热降解过程[J],高分子材料科学与工程,1993,9(3):132~135
    52. K.S.Minsker,A.M.Steklova,G.E.Zaikov,Peculiarities of the Thermal Degradation of Chlorosulfonated Polyethylene[J],Polym. Degrad. Stab.,1990,28(3):227~233
    53. K.S.Minsker,A.M.Steklova,G.E.Zaikov,Peculiarities of the Thermal Degradation of Chlorosulfonated Polyethylene[J],Polym.-Plastics Technology and Engineering,1997,36(2):325~332
    54. J.F.Chailan, G.Boiteux,J.Chauchard,et. al.,Effects of Thermal Degradation on the Viscoelastic and Dielectric Properties of Chlorosulfonated Polyethylene Compounds[J],Polym. Degrad. Stab.,1995,48(1):61~65
    55. C.S.Shah,M.J.Patni,M.V.Pandya,Accelerated Aging and Degradation Kinetics of Elastomers[J],Polym. Sci.,1991,1:405~410,CA 115:51589
    56. A.A.Donskoy,M.A.Shashkina,Thermal Stability and Flammability of Sulfochlorinated Polyethylene Compositions[J],Int. J. Polym. Mater.,1994,24(1-4):157~166,CA 122:108392
    57. B.Miroslav,D.Vratislav,Thermovulcanization of Polychloroprene Rubber and Its Blends with Poly(Vinylidene Chloride) [J],J. Appl. Polym. Sci.,1988,35(2):507~515
    58. A.K.Kalidaha,A.K.Sen,Aging and Degradation of Polychloroprene and Its Blend with EPDM[J],Polym. Degrad. Stab.,1993,39(2):179~186
    59. M.P.Anachkov,S.K.Rakovsky,R.V.Stefanova,et. al.,Ozone Degradation of Polychloroprene Rubber in Solution[J],Polym. Degrad. Stab.,1993,41(2):185~190
    T.Kleps,D.Jarozynsky,M.Piaskiewicz,Investigation of the Influence of Zinc Oxide on Thermal Degradation of Polychloroprene[J],J. Therm. Anal.,1990,36(3):
    
    60. 1213~1221
    61. P.Budrugeac,S.Ciutacu,Thermal Degradation of Polychloroprene Rubber[J],Polym. Degrad. Stab.,1991,33(3):377~386
    62. J.P.Zhong,S.D.Li,H.P.Yu,et. al.,Study on Preparation of Chlorinated Natural Rubber from Latex and Its Thermal Stability[J],J. Appl. Polym. Sci.,1999,73(14):2863~2867
    63. J.P.Zhong,S.D.Li,H.P.Yu,et. al.,Thermooxidative Decomposition and Its Kinetics on Chlorinated Natural Rubber from Latex[J],J. Appl. Polym. Sci.,2001,81(6):1305~1309
    64. S.D.Li,M.K.Cheung,J.P.Zhong,et. al.,Effect of Amosphere on the Thermal Decomposition of Chlorinated Natural Rubber from Latex[J],J. Appl. Polym. Sci.,2001,82(10):2590~2598
    65. 杨丹,贾德民,李思东,氯化天然橡胶的结构与氯化机理[J],合成橡胶工业,2002,25(2):123~126
    66. 朱诚身,张宜红,陈建勋等,不同氯含量氯化聚丙烯的热降解[J],高分子材料科学与工程,1997,13(1):75~78
    67. 张宜红,朱诚身,王经武等,氯化聚丙烯热降解研究[J],高分子材料科学与工程,1995,11(6):86~89
    68. A.K.Mukherjee,M.Patri,Thermal Studies on Chlorinated Atactic Polypropylene[J],J. Macromol. Sci.,Chem.,A,1989,26(1):213~226
    69. W.S.Li,L.H.Shi,Structure-Thermal Stability Relationship and Thermal Degradation of Chlorinated Atactic Polypropylene[J],Polym. Degrad. Stab.,1988,22(4):375~385
    70. 林孔勇摘译,氯化聚乙烯(一)[J],橡胶译丛,1996,(5):306~320,305
    71. 林孔勇摘译,氯化聚乙烯(二)[J],橡胶译丛,1996,(6):359~376
    72. 张军,张九田,浅色CPE/NBR模压胶辊的研制,CPE资料汇编,安徽化工(专辑)[M],1991:240~244
    73. 易红玲,王洪伟,张燕红等,橡胶型CPE135B和CPE140B基本性能及硫化体系、补强体系的研究[J],弹性体,2002,12(2):39~44
    
    
    74. 易红玲,陈兴务,魏晓东等,NR、NBR与橡胶型CPE135B并用的研究[J],弹性体,2002,12(6):40~43
    75. 胡惠欢,彭新祥,尹宵宇等,CPE/NBR并用胶硫化体系的研究[J],橡胶工业,1996,43(5):259~264
    76. 周童杰,张祥福,氯化聚乙烯/NBR动态硫化共混物性能的研究[J],橡胶工业,1999,46(3):142~145
    77. 饶秋华,晏欣,宋玉苏等,NBR/CPE共混物的新型共硫化体系(英文)[J],合成橡胶工业,2002,25(4):258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700