PAA膜结晶度和PEO结晶动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚丙烯酸(PAA)和聚氧化乙烯(PE0)为研究对象,以X射线衍射(XRD)和示差扫描量热(DSC)为主要表征手段,首先研究和探讨了聚丙烯酸及其盐的涂膜结晶度和亲水性之间的关系,然后研究了PEO及其与高氯酸锂复合体系的等温和非等温结晶动力学。
     本文先分别合成聚丙烯酸、聚丙烯酸钠和聚丙烯酸锂。涂膜结晶度的测定鲜见报道。我们在确定X射线衍射法测量涂膜结晶度可行的基础上,分别测定和计算了以上三种涂膜的结晶度;再测定了水和甘油在其表面的接触角以及水在其表面的铺展过程,经计算分别得到各涂膜的表面张力、铺展速度常数值。将涂膜的结晶度、表面张力、铺展速度常数、以及平衡接触角与涂膜亲水性联系起来,深入讨论了它们之间的内在联系。结果表明:当涂膜化学成份不同时,阳离子的类型对表面性能的影响占主导作用;而当涂膜成份相同时,随涂膜结晶度的增大,涂膜表面张力增大,铺展速度常数增大,平衡接触角减小,即亲水性提高。
     本文用DSC方法研究了PEO和复合体系的等温结晶动力学和非等温结晶动力学。用Avrami方法,Malkin方法对它们的等温结晶过程进行了分析,分别得到它们的动力学参数值。结果表明:PEO可能是按二维方式依热成核生长,复合体系的Avrami指数n与PEO体系的相差不大,可能是除了成核方式不同外,晶体的生长方式相同,且PEO体系在等温结晶的后期出现二次结晶现象;用Cebe等人提出的方法计算出它们的结晶成核和晶体生长活化能分别为:59.28KJ/mol、70.85 KJ/mol,表明PEO体系在等温条件下更易结晶。非等温条件下的DSC曲线表明,PEO在冷却速率逐渐减小的同时,放热峰出现拖尾现象,说明PEO随冷却速率的减小,二次结晶的程度增加。然后用Jeziorny方法和莫志深等人提出的一种新方法对其非等温结晶进行了分析,得到PEO在非等温条件下的动力学参数值;以Kissinger
    
    中南大学硕士论文摘要
    方法计算了其非等温结晶成核和生长活化能分别为:149.68KJ/m。1、
    159.51 KJ/mol,再次表明PEO体系更易结晶。动力学参数表明,较
    快的冷却速率可使过冷度较快增加从而为系统提供较大的能量,加速
    了聚合物链段的移动,更易使链段规整排列,结晶加快,导致结晶速
    率常数增大;同时由于分子链没有充足时间更好地堆砌而使结晶完善
    程度减小,结晶能力下降。
The thesis was focused on the crystalline of polymer and subject were crystallimity of film and crystallization kinetics. Research objects were poly(acrylic acid) and PEO, and analytic methods were X-ray diffraction(XRD) and differential scanning calorimetry(DSC). At first, the relation between the hydrophilicity and crystallim'ty of the film of poly(acrylic acid)(PAA) and its salts were investigated. Isothermal and non-isothermal crystallization kinetics of PEO and its blend system with lithium perchlorate were discussed.
    The solution of poly(acrylic acid)(PAA), poly(acrylic acid sodium)(PAANa), poly(acrylic acid lithium)(PAALi) were synthesized respectively. The paintings were coated on aluminium fins by roll film method in this article. The film with different crystallinity was obtained by varying baking time and temperature.
    The measurement of crystallinity of film was rarely reported. Based on the feasibility of surveying film crystallinity using XRD, crystallinity of the above film were tested by XRD. Contact angles for distilled water and glycerin on the film were measured at room temperature using a contact angle tester, with a droplet technique. Water and glycerin were dropped about 10 cm above film and contact angles were recorded within 30 seconds. Surface tension of film and the spreading speed constants were calculated according to the method in reference. The relation of the film hydrophilicity, crystallinity, surface tension and spreading speed constant was deeply discussed. The studies indicated that surface tension and spreading speed constant increased, equilibrium contact angle declined with crystallinity of film increasing, that is to say, the hydrophilicity of film were improved with crystallinity of film increasing.
    Isothermal and non-isothermal crystallization kinetics of PEO and blend system with lithium perchlorate at different annealing temperatures and different cooling rates have been investigated by using DSC. The
    
    
    
    isothermal crystallinity process was analyzed using Avrami, Malkin methods and its kinetics parameters were obtained. The results indicated that PEO were of two-dimension growth with athermal nucleation. The value n of blending system having little differential to PEO indicated that the growth style of crystal were uniform except nucleation style. Each curve of pure PEO show an initial linear portion, then subsequently tend to level off. This fact indicated the existence of a secondary crystallization, which was caused by spherulite impingment in the later stage of crystallization process of PEO. Activation energy associated with the overall process of PEO and its blend sysytem have been evaluated from the rates of crystallization by using Cebe method, and results testified that pure PEO formed crystal easier in isothermal condition than blend system.
    DSC curves of non-isothermal crystallization indicated that the degree of secondary crystallization increased as cooling rates decreasing for PEO. For non-isothermal studies, Jeziorny and a method combined the Avrami and Ozawa equation were employed to describe the non-isothermal crystallization process as well, and the kinetics parameters n, Zc, f0.5, F(T) with specific physical meaning were determined. The activation energies were 149.68KJ/mol, 159.51 KJ/mol for non-isothermal crystallization by Kissinger method, respectively. It confirmed again that pure PEO could form crystal easier than its blend system under both isothermal and non-isothermal condition.
引文
[1]周贵恩.聚合物X射线衍射.北京:中国科学技术出版社,1988.94-180
    [2]胡家璁,杨丹,陈平等.广角X—射线衍射对PET结晶度的研究.高分子学报,1990(3):283~293
    [3]滕凤恩,王煜明,姜小龙等.X射线结构分析与材料性能表征.北京:科学出版社,1997.236-302
    [4]Dargent E, Denis A, Galland C et al. Non-isothermal crystallization kinetics of hot drawn polyester films Kissinger and Ozawa analysis. Journal of Thermal Analysis, 1996, 469(2): 377-385
    [5]薛小芙,杨宝泉,李红云等.尼龙-1010非等温结晶动力学,高分子学报,1993,(10):589-593
    [6]刘景江.高聚物的等温结晶.高分材料科学与工程,1994,(3):1-7
    [7]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001.26-153
    [8]Kilwon C, Fengkui L, Jaeseung C. Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer, 1999, 40(8): 1719-1729
    [9]Liu X H, Wu Q J. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. European Poymer Journal, 2002, 38(7): 1383-1389
    [10]刘凤岐,汤心颐.高分子物理.北京:高等教育出版社,1995.35-72
    [11]吴人杰,李文华,徐广智等.现代分析技术在高聚物中的应用.上海科学技术出版社,1987.335-342
    [12]Hyun J. A new approach to characterize crystallinity by observing the mobility of plasma treated polymer surfaces. Polymer, 2001, 42(11): 6473-6477
    [13]马德柱,何平笙,徐种德等.高聚物的结构与性能.北京:科学出版社,1999.89-168
    [14]莫志深.聚合物材料结晶度(上).高分子通报,1992,(1):26-34
    [15]莫志深.聚合物材料结晶度(下).高分子通报,1992,(2):98-104
    [16]Li J, Zhou C X, Wang Get al. Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polymer Testing, 2002, 21 (2): 583-589
    [17]Xiao J, Zhang H L, Wan X H et al. Crystallization kinetics of new copoly(ethylene terephthatate-imide)s. Polymer, 2002, 43(6): 3683-3690
    
    
    [18] Kong X H, Yang X N, Zhou E et al. Non-isothermal crystallization kinetics of ethylene terephthalate-ethylene oxide segmented copolymers with two crystallizing sements. European Polymer Journal, 2000, 36(2): 1085-1090
    [19] Yongsok S, Jinho K, Kwang K et al. Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer, 2000, 41(6): 2639-2646
    [20] Hu Y S, Rogunova M, Schiraldei Aet al. Crystallization kinetics and crystalline morphology of poly(ethylene naphthalate) and poly(ethylene terephthalate-co-bibenzoate). Journal of Applied Polymer Science, 2002, 86(1): 98-115
    [22] Fang C C, Qiang F, Ya Pet al. Crystallization kinetics and melting behavior of metallocene short-chain branched polyethylene fractions. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40(4): 325-337
    [23] Ho R M, Hseih P Y, Yang C C et al. Crystallization kinetics for low-ether-content polyether-polyester block copolymers with amide linkages. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39(20): 2469-2480
    [24] Lin J S, Chen H L, Wu J C et al. Crystallization kinetics in microphase-separated poly(ethylene oxide)-block-poly(1,4-butadiene). Macromolecules, 2001, 34(20): 6936-6944
    [25] Zhong Z K, Guo Q P. Crystallization kinetics of crosslinkable polymer complexes of novolac resin and poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 1999, 37(19): 2726-2736
    [26] Park C S, Lee K J, Nam J D et al. Crystallization kinetics of glass fiber reinforced PBT composites. Journal of Applied Polymer Science, 2000, 78(3): 576-585
    [27] Keith H D. Bulk semicrystalline polymers: a status report. In: Oak Ridge National Laboratory; Allied-Signal, eds. Materials Research Society Symposium Proceedings. Inc. Hoechst-Celanese Pub by Materials Research Society, 1993 1994. 511-522
    [28] Pillin I, Pimbert S, Feller J F et al. Crystallization kinetics of poly(butylene terephthalate) (PBT): Influence of additives and free carboxylic acid chain ends. Polymer Engineering and Science, 2001, 41(2): 178-191
    
    
    [29] Floudas G, Tsitsilianis C. Crystallization kinetics of poly(ethylene oxide) in poly(ethylene oxide)-polystyrene-poly(ethylene oxide) tdblock copolymers. Macromolecules, 1997, 30(15): 4381-4390
    [30] Marentette J M, Norwig J, Stockeimann E et al. Crystallization of CaCO3 in the presence of PEO-block-PMAA copolymers. Advanced Materials, 1997, 9(8): 647-651
    [31] John E, Ree T. Crystallization of poly(ethylene oxide) in binary polymer blends. Influence of tacticity of poly(methyl methacrylate). Journal of Polymer Science, Part A: Polymer Chemistry, 1990, 28(2): 385-398
    [32] Herrero C R, Acosta J L. Effect of poly(epichlorhydrin) on the crystallization and compatibility behavior of poly(ethylene oxide)/polyphosphazene blends. Polymer, 1994, 26(7): 786-796
    [33] Zhang Q X, Zhang Z H, Zhang H F et al. Isothermal and non-isothermal crystallization kinetics of nylon-46. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40(16): 1784-1793
    [34] Xu J T, Fairclough J, Mai S H et al. Isothermal crystallization kinetics and melting behavior of poly(oxyethylene)-b-poly(oxybutylene)/poly(oxybutylene) blends. Macromolecules, 2002, 35(18): 6937-6945
    [35] Kong X H, Tan X N, Li Get al. Isothermal crystallization kinetics of PEO in poly(ethylene terephthalate)-poly(ethylene oxide) segmented copolymers. I. Effect of the soft-block length. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38(24): 3230-3238
    [36] Ding N, Eric J. Kinetics of poly(ethylene oxide) crystallization from solution. Concentration dependence. Macromolecules, 1991, 24(24): 6464-6469
    [37] 齐力,林云青,王佛松.高聚物非等温结晶动力学.化学研究与应用,1995,7(2):111-117
    [38] 齐力,林云青,王佛松.聚氧化乙烯梳状聚合物共混物的非等温结晶动力学.高分子学报,1998,(4):399-404
    [39] Johnson B R, Kriven W M. Crystallization kinetics of yttrium aluminum garnet (Y_3Al_5O_(12)). Journal of Materials Research, 2001, 16(6): 1790-1805
    [40] Menl G; Fang Z, Groenincky G. Miscible binary blends of poly(ethylene oxide) and poly(ether sulphone). Part 1: Crystallization kinetics, morphology and thermal behavior. Polymer, 1999, 40(21): 5907-5917
    
    
    [41] Ziabicki A, Alfonso G C. Memory effects in isothermal crystallization. Ⅰ. Theory. Colloid and Polymer Science, 1994, 272(9): 1027-1042
    [42] Alfonso G C, Ziabicki A. Memory effects in isothermal crystallization. Ⅱ. Isotactic polypropylene. Colloid and Polymer Science, 1995, 273(4): 317-325
    [43] An Y X, Dong L S, Li L X. Isothermal crystallization kinetics and melting behavior of poly(β-hydroxybutyrate)/poly(vinyl acetate) blends. European Poymer Journal, 1999, 35(1): 365-369
    [44] Li C Q, Tian G H, Zhang Yet al. Crystallization behavior of polypropylene/polycarbonate blends. Polymer Testing, 2002, 21 (2): 919-926
    [45] Bas C, Griliet A C, Thimon F et al. Crystallization kinetics of poly(acryl ether ether ketone): time-temperature-transformation and continuous-cooling-transformation diagrams. European Poymer Journal, 1998, 31 (10): 911-921
    [46] 潘春跃,黄拥理,马承银等.涂装工艺对铝箔亲水性能的影响.涂料工业,2001,(9):23-26
    [47] 潘春跃,刘清泉,蒋婵杰等.St-DVB-AA树脂微粒的合成及其在亲水涂料中的应用.涂料工业,2002,(3):18-20
    [48] 柯扬船,郑玉斌,吴忠文.聚醚醚酮结晶度的测定.材料研究学报,1996,10(2):205-209
    [49] 张宏放,莫志深,甘维建.X-射线法测定间规-1,2聚丁二烯结晶度.高分子通迅,1986,(3):193-197
    [50] 朱诚身,牟忠诚,杨宝泉等.X-射线衍射法测定尼龙1010结晶度.高分子学报,1993,(6):655-659
    [51] 杨兰生,单忠强,邹建梅.固态聚合物电解质.天津大学学报,1995,28(4):503-508
    [52] 万国祥,邓正华.高技术有机高分子材料进展.北京:化学工业出版社,1991.223-238
    [53] 刘操,邓正华,万国祥.聚氯乙烯/接枝SiO_2复合物电解质的研究.合成化学,2002,(10):41-44
    [54] 罗忠富,黄锐.无机纳米粒子填充聚合物的研究进展.功能高分子学报,1998,11(4):78-81
    [55] 赵旭,熊焕明,陈接胜.以PEO为基质的离子及导电聚合物电解质.无机
    
    化学学报,2002,18(1):63-66
    [56]张宏放,莫志深,魏学军等.稀土顺-1,4聚丁二烯结晶度的计算.应用化学,1984,1(3):19-23
    [57]Martins J A, Cruz Pinto J C. Nonisothermal crystallization kinetics of polypropylene after DSC calibration on cooling. Journal of Macromolecular Science-Physics (B), 2000, 39(5-6): 711-722
    [58]杜宝石,张逸名,徐文颐.X射线衍射法测定氯磺化聚乙烯硫化胶的结晶度.高分子材料科学与工程,1996,12(1):124-128
    [59]James A I, Walter C. Hamilton. International Tables for X-Ray Crystallography. Birmingham: The Kynoch Press, 1974. 77-101
    [60]Yang R H. Crystallinity determination of pure phases used as standards for QXDA in cement chemistry. Cement and Concrete Research, 1996, 26(9): 1451-1461
    [61]Mo Z S, Zhang H F, Men Q B. Crystal structure of nylon-1010. In: Polymer Preprints, eds. Division of Polymer Chemistry, American Chemical Society, 1990. 153-154
    [62]Hindeleh A.M., Obaid A. X-ray diffraction and TGA studies on annealed PPT Twaron fibers and powder. Acta Polymerica, 1996, 19(1): 55-61
    [63]Hindeleh A M, Buloss B R. Microwave-treated low-density polyethylene films. Acta Polymerica, 1996, 47(2-3): 105-111
    [64]Hosemann R, Hindeleh A M, Brueekner R. Paracrystalline lattice structure of silica glass, α-and β-erystobalite. Physica Status Solidi (A) Applied Research, 1991, 126(2): 313-324
    [65]Hindeleh A M, Abdallah M, Braik N S. Crystallinity enhances light transmissivity through low-density polyethylene sheets. Journal of Materials Science, 1990, 25(3): 1808-1812
    [66]Zhang Q X, Mo Z S, Liu SY et al. Influence of annealing on structure of Nylon 11. Macromolecules, 2000, 33(16): 5999-6005
    [67]Mo Z S, Yang B Q, Zhang H E Degree of crystallinity of multieomponent polymers by WAXD. Chinese Journal of Polymer Science (English Edition), 1994, 12(4): 296-301
    [68]林尚安,陆耘,梁兆熙等.高分子化学.北京:科学出版社,1998.20-48
    [69]吴人杰,孙慕瑾,陈传正等.高聚物的表面与界面.北京:科学出版社.7-47
    
    
    [70] Kaelble A, Kraemer G, Barnstedt J. Far and extreme ultraviolet astronomy with orfeus. In: Kluwer Academic Publishers Group eds. Proceedings of the Colloquium of the International Astronomical Union, 1990. 177-183
    [71] 高焕,莫志深.低密度聚乙烯/乙丙烯三元共聚物(LDPE/EPO)共混体系的结晶动力学.高分子学报,1992,(2):162-168
    [72] Supaphol P, Spruiell E. Isothermal melt and cold crystallization kinetics and subsequent melting behavior in syndiotactic polypropylene: a differential scanning calorimetry study. Polymer, 1999, 42(2): 699-712
    [73] Mubarak Y, Harkin-Jones A, Martin J et al. Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer, 2001, 42(6): 3171-3182
    [74] Buzronska A, Koseva S, Cvetkovska M. Poly(ethylene oxide) blends with poly(ethylene oxide)/poly(dicyclohexyl itaconate) block copolymers. European Poymer Journal, 2001, 37(1): 141-149
    [75] Morgan S P, Furniss D, Seddon A B. Lanthanum-fluoride addition to gallium-lanthanum-sulphide glasses. Journal of Non-Crystalline Solids, 1996, 203 (1): 135-142
    [76] Cebe P, Hong S D. Crystallization behavior of poly(ether-ether-ketone). Polymer, 1986, 27(8): 1183-1192
    [77] 邓景发,范康年.物理化学.北京:高等教育出版社,1993.162.166
    [78] Malkin A Y. Crystallization on formation of Nylon-6. Polymer Engineering and Science, 1989, 29(20): 1492-1498
    [79] 于英宁,张宏放,莫志深.茂鑫属间规立构聚丙烯结晶动力学研究.高分子学报,1999,(3):302-308
    [80] Chen C, Fei B, Peng S W. Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate). European Polymer Journal, 2002, 38(8): 1663-1670
    [81] Sajkiewicz P, Carpaneto L, Wasiak A. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate). Polymer, 2001, 42(12): 5365-5370
    [82] Liu T X, Mo Z S, Zhang H F. Influence of annealing on structure of poly(aryl ether ether ketone ketone) revealed by SAXS. Journal of Applied Polymer Science, 1998, 69(9): 1829-1835
    
    
    [83] Liu T X, Mo Z S, Zhang H F. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. Journal of Applied Polymer Science, 1998, 67(5): 815-821
    [84] Liu T X, Mo Z S, Zhang H F. Isothermal and nonisothermal melt crystallization kinetic behavior of poly(aryl ether biphenyl ether ketone ketone): PEDEKK. Journal of Polymer Engineering, 1998, 18(4):283-299
    [85] Kissinger G, Erzgraeber H B, Krueger D et al. Point defects in Si-Ge epitaxial layers and bulk crystals. In: Siemens AG, eds. Materials Science Forum. New York: Austrian Physical Society; COMETT; IBM; International Science Foundation 1994. 489-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700