Si_3N_4/CSM橡胶基纳米复合材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶基纳米复合材料是指以橡胶为基体连续相、填充颗粒以纳米尺度(小于100nm)分散于基体中的一种新型的高分子复合材料。大分子表面处理剂是改善聚合物基体和纳米颗粒间的相容性、促进纳米颗粒有效分散、制备高性能的纳米复合材料的重要手段之一。本文制备了改性纳米氮化硅/氯磺化聚乙烯橡胶纳米复合材料并讨论了纳米氮化硅及其表面改性剂对橡胶纳米复合材料性能的影响。主要进行了以下几个方面的工作:
     1.采用多段机械降解的方法制备了低分子量氯磺化聚乙烯(LMCSM),利用门尼粘度和VPO对其分子量进行表征,并用于纳米氮化硅粉体表面改性,利用FTIR、SEM、DSC、表面能接触角等进行表征。FTIR、TGA表明了大分子表面处理剂和纳米粒子的表面发生了化学键合;TEM表明大分子的分子量越小,处理后的Si3N4粉体在三氯甲烷中分散越好。接触角及表面能表明低分子量的LMCSM处理的的纳米Si3N4亲水性降低、亲油性增加、表面自由能从319.04J/M2降到66.89 J/M2。TGA表明LMCSM对纳米Si3N4粉体的改性主要为化学改性,其化学利用率最大为42.49%,物理利用率最小为14.64%;
     2.研究了改性前后纳米氮化硅粉体、大分子表面处理剂分子量的大小及氮化硅的质量分数对nano-Si3N4/CSM复合材料的物理机械性能、硫化性能以及动态力学性能的影响。结果表明,直接添加氮化硅粉体或利用生胶CSM改性氮化硅制备纳米复合材料能够减少体系的硫化时间和焦烧时间。而利用LMCSM改性的氮化硅制备纳米复合材料能够延长硫化时间和焦烧时间。添加纳米氮化硅能够有效提高材料的物理机械性能,并且增强效应随着表面改性剂数均分子量的降低而增大。动态力学分析表明,大分子表面改性剂分子量的降低有利于改性纳米氮化硅粉体在橡胶体系中分散。改性氮化硅用量对复合材料性能的影响结果表明,添加1.0%(生胶重量份数)改性粉体,复合材料性能达到最佳;
     3.将LMCSM改性的纳米氮化硅粉体充分分散于增塑剂偏苯三酸三辛酯(TOTM)中并制备纳米复合材料。结果表明,添加2.0%改性粉体,复合材料性能达到最佳。此种制备方法能进一步提高纳米粉体在橡胶基体中的分散性;同时增强效应提高;损耗因子降低。
Rubber nano-composite is a kind of novel composite which is made of rubber as matrix, and nano-particle as dispersed phases with at least one dimension size less than 100nm. In this paper, we prepared nano-SiaN4/CSM composites,and then discussed the effect of nano-Si3N4 modified by macromoiecular coupling agent to properties of the nano-composites.
     1. Low-molecular-mass CSM(LMCSM)was prepared by degrading CSM in open mill, the number average molecular weight of LMCSM was characterized by mooney viscosity and VPO then was used to modify nano-Si3N4. FT-IR、TGA indicated that LMCSM bonded covalently on the surface of Si3N4 nanoparticles. From TEM observation, it was found that lower the number average molecular weight of LMCSM can improved the dispersibility of nano-Si3N4 particles in chloroform. Contact angle and surface energy measurement showed that the hydrophile and surface energy were decreased. The surface free energy of modified nano-Si3N4 decreased from 319.04J/M2 to 66.89J/M2.TGA indicated that chemical modification was primary, the maximum chemistry and the minimum physics usage efficiencies of the macromolecular coupling agent was 42.49% and 14.64%, respectively.
     2. LMCSM-Si3N4/CSM composites were prepared by blending techniques, the performance of nanocomposites were analyzed and discussed by stretching apparatus and RPA-8000.The results showed that nano-Si3N4 powder before or after modification by CSM can reduce cure time and plastic burning time of the composites, when nano-Si3N4 powder was modified by LMCSM can increase cure time and plastic burning time of the composites. Nano-Si3N4 can reinforce the mechanical properties of nanocomposites. The results of dynamic mechanical properties examination indicated that low average molecular weight of macromolecular coupling agent can improve dispersion of powders in the CSM matrix more effectively. When the loading of modified nano-Si3N4 was 1.0%, nanocomposites achieved the best performance.
     3. The modified powder LMCSM-Si3N4 which dispersed in the plasticizer(TOTM) fully was used to prepare nanocomposites.The results showed that the loading 2.0% of modified nano-Si3N4 had the best dispersion in the CSM matrix, and could improve the performance of nanocomposites, and could reduce the loss tangent of nanocomposites further.
引文
[1]郝爱.橡胶纳米复合材料研究进展[J].弹性体,2001,(01):37-44.
    [2]吴友平,张立群等.橡胶增强的理论研究[J].合成橡胶工业,2004,27(1):1-5.
    [3]张立群,吴友平等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,(02):71-77.
    [4]Lin Gui, Zhang liqun.Effect of particle size on the properties of Mg(OH)2 filled rubber composites[J]. Journal of Applied Polymer Science,2004,94(6): 2341-2346.
    [5]赵波.固相法合成氯磺化聚乙烯及其结构性能研究[D].北京化工大学,2000.
    [6]赵旭涛,刘大华主编.合成橡胶工业手册[M].北京:化学工业出版社,2006:1236-1238.
    [7]赵志正.氯磺化聚乙烯橡胶的耐热性能[J].世界橡胶工业,2009,34(9):10-12.
    [8]李宝莲.氯磺化聚乙烯技术进展[J].吉化科技,1997,1(5):19-15.
    [9]钟鑫.聚氨酯改性氯磺化聚乙烯防腐涂料的研究[J].中国涂料,2005,20(3):23-25.
    [10]杨金平.氯磺化聚乙烯/SBR共混物的研究[J].橡胶工业1999,46(4):204-207.
    [11]王作龄.氯磺化聚乙烯配方技术[J].世界橡胶工业,2000,27(1):46-55.
    [12]徐建雄.新型橡胶硫化促进剂HSD在氯磺化聚乙烯橡胶中的应用[J].特种橡胶制品,2000,21(2):18-19.
    [13]毕莲英.硫化体系对氯磺化聚乙烯橡胶性能的影响[J].世界橡胶工业,2003,30(4):2-4.
    [14]方胜阳,殷守华,章于川,等.表面改性纳米Si3N4/丙烯酸酯橡胶复合材料的性能[J].合成橡胶工业.2009,32(5):409-411.
    [15]张苏,李明华,章于川,等.改性纳米Si3N4/NR/SBR复合材料的制备与性能研究[J].橡胶工业.2009,56(8):472-475.
    [16]夏茹,朱清仁,章于川,等.纳米Si3N4/丁腈橡胶复合材料的制备与性能研究[J].纳米科技.2006,3(5):36-41.
    [17]张卫昌,章于川,夏迎松,等.纳米Si3N4粉体表面改性及其在橡胶中的应用研究[J].世界橡胶工业.2008,35(10):11-14.
    [18]叶欣.高性能橡胶纳米复合材料的制备及结构性能研究[D].北京化工大学,2010.
    [19]王贵一.RPA2000橡胶加工分析仪在橡胶研究中的应用[J].特种橡胶制品,2001,22(1):56-62.
    [20]吴静珍.RPA2000的检测功能研究[J].橡胶资源利用,2010,4(1):11-16.
    [21]王梦娇.在聚合物-填料和填料-填料相互作用对填充硫化胶动态力学性能的影响[J].轮胎工业,2000,20(10):601-604.
    [22]杜爱华.硫化体系对NBR耐油性能和动态性能的影响[J].橡胶工业,2010,57(9):532-536.
    [23]C.Gauthier, E.Reynaud, R.Vassoille.Analysis of the non-linear viscoelastic b ehaviour of silica filled styrene butadiene rubber[J]. Polymer,2004,45,2761-2 771.
    [24]Jean L,Lenlanc.Rubber-filler interactions and rheological properties in filled compounds [J]. prog.polym.sci.2002,27,627-687.
    [25]H.H. Le, S. Ilisch.Characterization of the effect of the filler dispersion on the stress relaxation behavior of carbon black filled rubber composites[J]. Polymer,2009,50,2294-2303.
    [26]Philippe Cassagnau.Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state[J]. Polymer,2003,44,2455-2462.
    [27]赵树高.天然橡胶交联密度和动态性能研究[D].青岛科技大学,2007.
    [28]毕薇娜,赵菲等.RPA分析硫黄用量对天然橡胶动态性能的影响[J].特种橡胶制品,2010,31(5):12-14.
    [1]王文英.橡胶加工工艺[M].北京:化学工业出版社,1993:272-273.
    [2]王冠中,吕柏源.橡胶塑炼机理及方法[J].特种橡胶制品.2007,28(6):47-48.
    [3]齐琳.复合型橡胶塑解剂性能的研究[J].轮胎工业.2002,22(9):531-532.
    [4]杨清芝主编.实用橡胶工艺学[M].北京:化学工业出版社,2005:329.
    [5]金日光,华幼卿主编.高分子物理[M].北京:化学工业出版社,2000:89-93.
    [6]武艳等.低分子量氯磺化聚乙烯对纳米Si3N4粉体表面处理[J].应用化学2009,26(6): 629-632.
    [7]Tai Y L, MiaoJB, Qian J S, xia R, zhang Y C. Study of Surface Modification of Nano-SiO2 with Macromolecular Coupling Agent (LMPB-g-MAH) Mater Chem Phys[J].2008,112(2):659
    [1]叶欣.高性能橡胶纳米复合材料的制备及结构性能研究[M].北京化工大学,2010.
    [2]Jean L,Lenlanc.Rubber-filler interactions and rheological properties in filled compounds [J]. prog.polym.sci,2002,27,627-687.
    [3]C.Gauthier, E.Reynaud, R.Vassoille.Analysis of the non-linear viscoelastic be haviour of silica filled styrene butadiene rubber [J]. Polymer,2004,45,276 1-2771.
    [4]H.H. Le, S. Ilisch.Radusch.Characterization of the effect of the filler dispersion on the stress relaxation behavior of carbon black filled rubber compo sites[J]. Polymer,2009,50,2294-2303.
    [5]Philippe Cassagnau.Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state[J]. Polymer,2003,44,2455-2462.
    [6]J.Froh lich, W.Niedermeier, H-D.Luginsland.The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites:Part A 2005, 36,449-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700