纳米粉体分散技术在乳液聚合和化学镀中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对纳米二氧化硅(SiO2)、聚四氟乙烯(PTFE)和纳米碳化硅(SiC)等粉体在实际应用中易团聚,难分散的难题,根据它们各自特点,采用不同的分散方法,探索最佳分散条件,扩展其应用,以发挥它们的纳米效应。
     用原位聚合法制备纳米SiO2/丙烯酸酯复合乳液。以纳米SiO2硬度高、耐磨损、透光性好等特性,提高纳米SiO2/丙烯酸酯复合乳液膜耐磨性和透光率。纳米SiO2粉体表面含有大量硅羟基,具有亲水性,与有机相的相容性不好,为解决纳米SiO2与聚合物乳液的相容性,采用高压剪切分散法直接将纳米SiO2分散在甲基丙烯酸甲酯,丙烯酸丁酯和丙烯酸中,再经原位聚合制得纳米SiO2/丙烯酸酯复合乳液。探索了实验最佳配方,研究了最佳乳化剂配比对乳液稳定性的影响,讨论了纳米SiO2用量对单体转化率和涂膜耐水性的影响。利用FTIR、TGA、UV-VIS、TEM、DLS等对复合乳液进行分析、表征。结果表明:高压剪切分散原位聚合法可有效阻止SiO2纳米粉体团聚,且SiO2纳米粒子分散均匀。当SiO2添加量占单体总质量5%时,非离子型乳化剂(OP-10)与阴离子型乳化剂十二烷基苯磺酸钠(SDBS)质量比为2:1时,单体转化率、乳液稳定性及乳液成膜后热稳定性均最佳。
     聚四氟乙烯(PTFE)热稳定性高,自润滑性好,纳米SiC硬度高、耐磨、耐腐蚀。在化学镀镍工艺中,添加PTFE微米粉体和纳米SiC粉体,获得减摩、耐腐复合镀层用于工业模具。研究了不同表面活性剂以及不同分散方式对PTFE、SiC在镀液中分散的影响;并对Ni-P-PTFE、Ni-P-SiC复合镀层的成分、结构及性能进行研究。结果表明:主盐浓度一定时,提高温度和pH值均能提高化学镀镍沉积速率,但温度高于90℃、pH值大于5.0时,镀液稳定性下降。Ni-P-PTFE、Ni-P-SiC复合镀层匀为非晶态结构。在超声分散和表面活性剂共同作用下,PTFE微米粉体和纳米SiC粉体可以在镀液中均匀分散,稳定时间可以达到3小时;盐雾试验表明:Ni-P-SiC复合镀层耐腐蚀性比相同厚度的Ni-P镀层强得多。相同厚度的Ni-P-PTFE复合镀层耐腐蚀性比Ni-P镀层耐腐蚀性略差,但Ni-P-PTFE复合镀层自润滑性好,可用于各种橡胶模具镀层。
This thesis is mainly dealt with the aggregation of SiO2, PTFE and SiC powders in applications. According to their respective features, the different disperse methods are used to explore the dispersing conditions and extend their applications, so that their nano-effects are used.
     Nano SiO2/acrylates composite latex was prepared by in-situ polymerization. The membrane resistance and euphotic rate of nano SiO2/acrylates hybrid emulsion have been improved because of the high hardness, light quality properties of the nano SiO2. Nano SiO2 powders are hydrophilic with bad organic phase compatibility due to a lot of silicon hydroxyl on their surface. To solve the compatibility of nano SiO2 and polymer emulsion, SiO2 nano powder is dispersed in the mixture of methyl metharcrylate, butyl acrylate and acrylic acid with high pressure shearing homogenizer (HPSH), and then, nano SiO2/acrylic ester emulsion is synthesized via in-situ polymerization. The best experimental formula has been explored. The influence of the ratio of OP-10 to sodium dodecyl benzene sulfonate (SDBS) for the stability of the emulsion is discussed, and the conversion rate of the monomer and the water resistance related to the additive amount of nano SiO2 are dealt with. Nano SiO2/acrylic ester emulsion is characterized using TGA、UV-VIS and TEM, respectively. The results indicate that the HPSH is effective in improving the agglomeration of SiO2 nano powder and the SiO2 nano powder can be uniformly dispersed in the process of polymerization. When the additive amount of SiO2 is 5% (ratio of mass) and the ratio of OP-10 to SDBS is 2:1 (ratio of mass), the monomer conversion, the stability of nano SiO2/acrylic ester emulsion and the thermal stability for the film of nano SiO2/acrylic ester emulsion are all perfect.
     Polytetrafluoroethylene (PTFE) possesses thermal stability and good self-lubricity, while nano SiC possesses high hardness, excellent wear and corrosion properties. In the chemical nickel plating technology, PTFE microns powders and nano SiC powders are added to obtain antifriction and decay resistance composite coating for industrial mold. The effects of different surfactant and different scattered ways on PTFE and SiC scattered in the plating are studied, and the compositions, structures and properties of Ni-P-PTFE, Ni-P-SiC composites coating were also investigated. The results show that the increase of temperature and pH value all can improve chemical nickel deposition rate at the certain concentration of main salt, but solution stability decline at higher temperatures than 90℃, pH value more than 5.0. The structure of Ni-P-PTFE, Ni-P-SiC composite coatings are amorphous. The PTFE microns powders and nano SiC powders can be dispersed homogeneously in the plating by using ultrasonic dispersing and surfactant, and the stable time can reach 3 hours. Salt spray test shows that the corrosion resistance Ni-P-SiC composite coating much better than that of the same thickness Ni-P coating. The corrosion resistance of Ni-P-PTFE composite coating is slightly less than that of the same thickness Ni-P coating, but Ni-P-PTFE composite coating possesses excellent self-lubricity, which can be applied to various rubber mold coating.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001,35-251.
    [2]李毕忠.粘土/塑料纳米复合材料的新发展[J].化工新型材料,2010,38(4):19-22.
    [3]熊丽君,吴璧耀,李泽明.苯乙烯在纳米TiO2表面的接枝聚合[J].化工新型材料,2009,5:44-48.
    [4]刘云才,顾期斌.PVC/蒙脱土复合材料的制备与性能研究[J].武汉理工大学学报,2008,10:34-38.
    [5]梁成刚,张瑞英,董慧民,等.聚丙烯/膨润土纳米复合材料制备及其力学性能[J].塑料,2009,38(3):54-55.
    [6]S.M. Zebarjad, S.A. Sajjadi. On the strain rate sensitivity of HDPE/CaCO3 nanocomposites[J]. Materials Science and Engineering:A,2008,475(2): 365-367.
    [7]C. Ravindra Reddy, Y. S. Bhat G, et al. Nagendrappa, Br(?)nsted and Lewis acidity of modified montorillonite clay catalysts determined by FT-IR spectroscopy[J]. Catalysis Today,2009,141(3):157-160.
    [8]Mike J. Clifford, Tong Wan. Fibre reinforced nanocomposites:Mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites[J]. Polymer,2010,51(2):535-539.
    [9]谈桂春,赵志鸿,许书道.2009年我国工程塑料加工技术进展[J].工程塑料应用,2010,6:57-59.
    [10]李星明,聚乙烯塑料加工用超细碳酸钙母料制备工艺及性能研究[J].科学之友,2010,24:75-77.
    [11]Jing Chen, Ming Shu Yang, Shi Min Zhang. Immobilization of antioxidant on nanosilica and the aging resistance behavior in polypropylene[J]. Composites: Part A,2011,42:471-477.
    [12]王慧丽,王永忠,钟明强.硅基抗菌粉体表面改性及对聚氯乙烯塑料抗菌性能影响[J].塑料,2009,38(3):61-63.
    [13]Zhang Lei, Wang Yingnan, Guoxingjia, et al. Separation and precontration of trace indium from errvionmental samples with nanameter-size titanium dioxide[J]. Hydrometallurgy,2009,95:92-95.
    [14]P. Y. Li, L. L. Yin, G. J. Song, et al. High-performance EPDM/organoclay nanocomposites by melt extrusion[J]. Applied Clay Science,2008,40:38-44.
    [15]L. E. Yahaya, K. O. Adebowale, A. R. R. Menon. Mechanical properties of organomodified kaolin/natural rubber vulcanizates[J]. Applied Clay Science, 2009,46:283-288.
    [16]K. Kueseng, K. I. Jacob. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes[J]. European Polymer Journal,2006,42:220-227.
    [17]韩宝忠,郭文敏,李忠华.碳化硅/硅橡胶复合材料的非线性电导特性[J].功能材料,2008,39(9):1490-1493.
    [18]武艳,李维栋,钱家盛,等.纳米氮化硅对氯磺化聚乙烯橡胶耐磨性能的影响[J].橡胶工业,2008,55:737-739.
    [19]J. Pietrasik, M. Gaca, M. Zaborski, et al. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles[J]. European Polymer Journal,2009,45:3317-3325.
    [20]王其磊,杨逢瑜,杨倩,等.纳米与纳米填充丁腈橡胶复合材料的摩擦磨损性能比较[J].摩擦学学报,2010,30(2):186-189.
    [21]L. C. Sim, S. R. Ramanan, H. Ismail, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochimica Acta,2005,430:155-165.
    [22]Y. M. Wang, L. Liu, Y. F. Luo, et al. Aging behavior and thermal degradation of fluoroelastomer reactive blends with poly-phenol hydroxy EPDM[J]. Polymer Degradation and Stability,2009,94:443-449.
    [23]丁军,马吉强,薛群基.纳米Al2O3填充端异氰酸酯基聚丁二烯橡胶-环氧树脂复合涂层的干滑动摩擦磨损性能研究[J].摩擦学学报,2006,26(4):314-319.
    [24]M. Owczarek, M. Zaborski, M. Przybyszewska. The use of aluminum oxide as a filler for elastomers [J]. Przemysl Chemiczny,2006,85(1):965-967.
    [25]Qufu Wei, Xueliang Xiao, Dayin Hou, etal. Characterization of nonwoven material functionalized by sputter coating of copper[J]. Surface & Coatings Technology,2008,202:2535-2539.
    [26]严安,刘泽华.纳米TiO2/β-CD光催化纸耐老化性能的研究[J].造纸化学品,2010,22(1):7-10.
    [27]王文明.水性纳米TiO2改性氟碳外墙涂料的研究[J].江苏科技大学学报,2010,12:76-79.
    [28]刘红波.纳米材料在涂料中的应用进展,中国涂料,2010,25(2):25-28.
    [29]严春芳,李翔,魏刚.纳米二氧化钛光催化剂的涂料固载及光催化性能[J].北京化工大学学报,2008,35(2):50-54.
    [30]靳佳琨.纳米TiO2在氟碳涂料(PVDF)中的光催化性能研究[J].表面技术,2009,2:78-80.
    [31]武利民,刘娅莉.一种具有随角异色效果金属面漆及其制备方法[P].中国专利,1648186A:2004-10-09.
    [32]宋宁.超声-微波化学共沉淀法制备ITO和CIO纳米粉体的研究[M].昆明理工大学博士论文,2007.
    [33]赵保华.纳米材料在化工生产中的应用[J].中小企业管理与科技(下旬刊),2009,3(25):17-19.
    [34]刘华,翟江.纳米材料在化工生产领域中的应用[J].潍坊教育学院学报,2007,20(3):37-38.
    [35]张伟,赵增元,王佳.有机涂层失效过程的电化学阻抗与电位[J].全面腐蚀控制,2008,22(4):52-56.
    [36]Qiuyuan Feng, Tingju Li, Hongyun Yue, et al. Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition[J]. Applied Surface Science,2008,254:2262-2268.
    [37]张敏,纳米材料在化工生产中的应用[J].黑龙江科技信息,2008,6:46-49.
    [38]卢红蓉.纳米TiO2的制备、表面改性及其紫外屏蔽性研究[M].苏州大学硕士论文,2010.
    [39]黄新民,钱利华,吴玉程,等.纳米颗粒TiO2化学复合镀层的功能特性[J].金属功能材料,2004,11(2):16-19.
    [40]国家科技成果重点推广计划项目,2003EC000208.
    [41]郑建.纳米粉体在陶瓷中的应用[J].上海建材,2003,5:23-24.
    [42]樊君,刘恩周,曾波,等.Fe3+掺杂纳米TiO2催化剂光催化还原CO2的性能[J].石油化工,2009,38(7):789-794.
    [43]李慧,陈勇,查忠勇,等.纳米TiO2催化剂催化降解含酚废水的动力学[J].后勤工程学院学报,2008,24(7):71-74.
    [44]杨轶,宋剑飞.B/Y^3+共掺杂纳米TiO2催化剂的制备及降解甲醛的光催化性能评价[J].内蒙古环境科学,2008,20(6):24-27.
    [45]闫宏芹.浅述纳米材料的生产现状及其在化工生产中的应用[J].中国粉体工业,2008-10-25.
    [46]张文成,王建荣,师瑞霞.纳米粉体分散技术的研究进展[J].现代商贸工业,2009,2:284-286.
    [47]乔文凤,周勇敏.用正交实验法优化纳米铋粉制备工艺参数[J].润滑与密封,2006,(181):128.
    [1]Kakisawa H, Diem N T B, Sumitomo T, etal. Room temperature fabrication of SiO2 polyacrylic ester multilayer composites by spin-coating[J]. Materials Science and Engineering B-Advanced Functional solid-state Materials,2010, 173:94-98.
    [2]Yilmaz O, Cheaburu C N, Durraccio D, etal. Preparation of stable acrylate/ montmorillonite nanocomposite latex via in situ batch emulsion polymerization: Effect of clay types[J]. Applied Clay Science,2010,49:288-297.
    [3]Rozenberg B A, Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites[J]. Progress in Polymer Science,2008,33:40-112.
    [4]Mahdavian A R, Ashjari M, Makoo A B. Preparation of poly (styrene-methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization[J]. European Polymer Journal,2007,43:336-344.
    [5]霍丽霞,叶凤英,初广成,等.原位聚合制备纳米SiO2/聚丙烯酸酯复合树脂及其氨基烤漆性能的研究[J].涂料工业,2009,39(3):22-27.
    [6]刘琪,崔海信,顾微,等.硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究[J].纳米科技,2009,3:1812-1818.
    [7]王文生,胡志勇,张峰.纳米表面化学改性研究[J].山西化工,2010,30(3):4-6.
    [8]陈少杰,张教强,郭银明.纳米复合材料制备方法的研究进展[J].玻璃钢复合材料,2008,5:41-46.
    [9]Jing Hu, Jianzhong Ma, Weijun Deng. Properties of acrylic resin/nano-SiO2 leather finishing agent prepared via emulsifier-free emulsion polymerization[J]. Science Direct,2008,62:2931-2934.
    [10]戚栋明,包永忠,翁志学.原位乳液聚合制备的聚丙烯酸丁酯/纳米Si02复合粒子的形貌和形成机理[J].高校化学工程学报,2007,21(4):660-664.
    [11]Hui Liu, Hongqi Ye, Tianquan Lin, etal. Synthesis and characterization of PMMA/Al2O3 composite particles by in situ emulsion polymerization[J]. Science Direct,2008,6:207-213.
    [12]郭磊,李红岩,王峰,等.纳米复合材料制备方法的研究进展[J].绝缘材料,2005,38(4):55-58.
    [13]Bong-Soo Kim, Ki-Tae Lee, Pil-Ho Huh, etal. In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles[J]. Synthetic Metals,2009,159:1369-1372.
    [14]Yuhong Zhanga, Hao Chena, Xingwang Shu, etal. Fabrication and characterization of raspberry-like PSt/SiO2 composite microspheres via mini emulsion polymerization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,350:26-32.
    [15]胡庆军,崔伟,龚兴厚,等.原位聚合PLA/HA复合材料的性能研究[J].塑料工业,2006,34(2):23-26.
    [16]郭卫红,唐颂超,周达飞,等.纳米Si02在MMA单体中在位分散聚合的研究[J].材料导报,2000,14(10):71-72.
    [17]Wei Q, Zhong Z X, Nie Z R, etal. Highly Ordered Mesoporous Silica SBA-15 Functionalized with High Concentration of Amino Groups Accessible to Metal Ions[J]. Chinese Journal of Inorganic Chemistry,2008,1(24):130-137.
    [18]Fa-Ai Zhang, Cai-Li Yu. Acrylic emulsifier-free emulsion polymerization containing hydrophilic hydroxyl monomer in the presence or absence of nano-SiO2[J]. Science Direct,2007,43:1105-1111.
    [19]曹志海,单国荣.水溶性和油溶性引发剂引发γ-甲基丙烯酰氧基丙基三甲氧基硅烷/苯乙烯细乳液共聚合的比较[J].高分子学报,2008,10:941-946.
    [20]张萍波,韩秋菊,范明明.苯丙微乳液聚合工艺优化[J].应用化工,2010,39(6):867-869.
    [21]徐冬梅,田维亮,李新宇,等.乳化剂复配制备羟基有机硅柔软剂[J].山东科技大学学报,2010,29(2):77-80.
    [22]Hu Zhenxing, Yang Xiaowei, Liu Junliang, et al. An investigation of the effect of sodium dodecyl sulfate on quasi-emulsifier-free emulsion polymerization for highly monodisperse polystyrene nanospheres[J]. European Polymer Journal, 2011,47:24-30.
    [23]徐继红,苏瑞文,陶俊,等.超声辐照下MMA/BA/AA三元无皂乳液聚合的研究[J].安徽理工大学学报,2009,29(2):34-37.
    [24]张臣.乳化剂对丙烯酸酯微乳液聚合的影响[J].上海涂料,2010,48(4):9-11.
    [25]段红军,肖新颜,徐蕊.硅溶胶原位改性聚丙烯酸酯乳液的研究[J].新型建筑材料,2009,6:78-81.
    [26]接瑜,张毅民,王虹,等.苯丙乳液聚合稳定性研究[J].化学工业与工程,2007,24(1):40-43.
    [27]Barbara Pabin-Szafko, Ewa Wisniewska, Barbara Hefczyc, etal. New azo-peroxidic initiators in the radical polymerization of styrene and methyl methacrylate[J]. European Polymer Journal,2009,45:1476-1484.
    [28]王青尧,葛圣松,王竹青,等.种子乳液聚合法制备纳米Si02/苯丙复合乳液[J].胶体与聚合物,2009,27(1):61-64.
    [29]Ali Reza Mahdavian, Mohsen Ashjari, Ardavan Bayat Makoo. Preparation of poly (styrene-methyl methacrylate)/SiO2 composite nanoparticles via emulsion polymerization. An investigation into the compatiblization[J]. Science Direct, 2007,43:336-344.
    [30]Jeon H T, Jang M K, Kim B K, etal. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process[J]. Colloid and Surface A:Physicochem Eng Aspects,2007,302:559-567.
    [31]Zou W J, Peng J, Yang Y, etal. Effect of nano-SiO2 on the performance of poly (MMA/BA/MAA)/EP[J]. Materials Letters,2007,61:725-729.
    [32]Wang J J, Wang D S, Wang J, etal. High transmittance and superhydrophilicity of porous TiO2/SiO2 bi-layer films without UV irradiation[J]. Surface & Coatings Technology,2011,205:3596-3599.
    [33]赵才贤,张平,陆绍荣,等.原位聚合法制备PA6/SiO2纳米复合材料[J].高分子材料科学与工程,2007,23(1):218.
    [1]胡文彬,刘磊,件亚婷.难镀基材的化学镀镍技术[M].化学工业出版社,2003.
    [2]S. R. Allahkaram, M. Honarvar Nazari, S. Mamaghani. Characterization and corrosion behavior of electroless Ni-P/nano-SiC coating inside the CO2 containing media in the presence of acetic acid[J]. Materials and Design,2011, 32:750-755.
    [3]Yoram de Hazan, Dennis Werner, Markus Z'graggen, etal. Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths [J]. Journal of Colloid and Interface Science,2008,328:103-109.
    [4]J.N. Balaraju, Kalavatib, K.S. Rajama. Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings [J]. Surface & Coatings Technology,2006,200:3933-3941.
    [5]仵亚婷,沈彬,刘磊,等.化学复合镀的研究现状及镀层的应用[J].电镀与涂饰,2005,24:58-64.
    [6]王秋梅,方玉霞,袁孝友.纳米碳化硅复合化学镀镍-磷合金工艺[J].电镀与涂饰,2011,30:30-33.
    [7]J. Alexis, B. Etcheverry, J.D. Beguin, J.P. Bonino, Structure, morphology and mechanical properties of electrodeposited composite coatings Ni-P/SiC[J]. Materials Chemistry and Physics,2010,120:244-250.
    [8]J.N. Balaraju, V. Ezhil Selvi, K.S. Rajam. Electrochemical behavior of low phosphorus electroless Ni-P-Si3N4 composite coatings [J]. Materials Chemistry and Physics,2010,120:546-551.
    [9]C.S. Ramesh, R. Keshavamurthy. Slurry erosive wear behavior of Ni-P coated Si3N4 reinforced A16061 composites[J]. Materials and Design,2011,32: 1833-1843.
    [10]张丕俭,刘艳红,夏振展.低温快速化学镀镍工艺的研究[J].电镀与环保,2005,3:69-71.
    [11]Jintao Tian, Xuezhong Liu, Jianfei Wang, etal. Electrochemical anticorrosion behaviors of the electroless deposited Ni-P and Ni-P-PTFE coatings in sterilized and unsterilized sea water[J]. Materials Chemistry and Physics,2010,124: 751-759.
    [12]潘兆花,谢广文.化学镀Ni-P-MoS2复合镀层的制备与表征[J].电镀与涂饰,2009,28(7):25-27.
    [13]王柳斌,赵永武.化学复合镀Ni-P-PTFE的镀速及镀层摩擦学性能研究[J].电镀与涂饰,2009,3:17-20.
    [14]Yin-ning Gou, Wei-jiu Huang, Rong-chang Zeng. Influence of pH values on electroless Ni-P-SiC plating on AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China,2010,20:674-678.
    [15]A. Zoikis-Karathanasis, E.A. Pavlatou, N. Spyrellis. Pulse electrodeposition of Ni-P matrix composite coatings reinforced by SiC particles[J]. Journal of Alloys and Compounds,2010,494:396-403.
    [16]胡正兵.新型耐磨复合镀层的制备及形成机理研究[M].江苏大学硕士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700