无卤阻燃硅烷交联POE复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着经济的不断发展,我国农村电网改造和城市化建设的发展对电缆的需求量逐年增加,而用于电缆绝缘层和护套层的高分子材料的需求也不断上升。这种需求的上升不仅仅体现在数量上的提高,而且在质量上也要求不断的进步。特别是欧盟的RoHS指令的实施以后,明确规定了将严格地限制六种有害物质在电子电气设备中的使用,因此,一些含有害物质的阻燃电缆料将在不久的将来逐步退出历史舞台,尽管PVC电线电缆还没有完全限制,但是全球无卤化的电线电缆的需求不断增大,而高品质的无卤阻燃环境友好的电缆料的开发将是一个新的课题。
     聚烯烃弹性体POE分子链饱和,属于非极性材料,因此具有良好的电气绝缘、耐氧、耐臭氧以及耐高温老化性,这些性能都非常适合应用于电缆的护套材料,因此POE可以作为电缆的包覆材料,取代原来的PVC、氯丁橡胶、氯磺化聚乙烯等包覆材料,有很大的市场需求和应用前景。
     本文利用硅烷交联技术改性聚烯烃弹性体POE,采用氢氧化镁作为主要的无卤阻燃剂,EVA作为交联POE和氢氧化镁之间的增容剂,并且采用微胶囊化红磷(MRP)、氰尿酸三聚氰胺(MCA)、磷氮复合阻燃剂(ZR3)以及含硅有机阻燃剂(ASBP)等不同的阻燃协效剂协同阻燃氢氧化镁,并制备出了一种力学性能和阻燃性能优异,加工性能、电学性能和耐高温老化性能优良的无卤阻燃电缆料,满足具有较高安全性要求的场所的应用。首先,探讨了氢氧化镁含量对交联POE的阻燃性能、拉伸性能、热延伸试验、耐高温老化性能以及电学性能的影响。研究表明氢氧化镁含量为140phr时,制备的无卤阻燃交联POE复合材料有着良好的阻燃性能、拉伸性能、耐高温老化性能和电学性能,并且能通过电缆材料的热延伸试验。其次,研究了增容剂EVA含量对交联POE和氢氧化镁之间相容性的影响,试验结果表明当采用10phrEVA作为增容剂时,复合材料阻燃性能没有降低,而耐高温老化性能和断裂伸长率得到有效地提高,并且能通过电缆材料的热延伸试验。最后,采用微胶囊化红磷(MRP)、氰尿酸三聚氰胺(MCA)、磷氮复合阻燃剂(ZR3)以及含硅有机阻燃剂(ASBP)等不同的阻燃协效剂协同阻燃氢氧化镁,考查了MRP含量对氢氧化镁的协同阻燃效果、MCA和MRP物理复配的比例对氢氧化镁的协同阻燃效果、以及四种不同的阻燃协效剂分别对氢氧化镁协同阻燃效果的影响。研究结果表明:MCA对于复合材料断裂伸长率的恶化最为严重,并且使得复合材料不能通过电缆材料的热延伸试验;ZR3对于复合材料拉伸强度的恶化最为严重;而用MRP和ASBP协同阻燃的复合材料具有优异的阻燃性能和力学性能,优良的耐高温老化性能和电学性能,并且ASBP能够有效改善复合材料的加工流变性能,制备的无卤阻燃硅烷交联POE复合材料满足电缆护套材料的工业化生产的要求,具有广阔的市场价值。
The rapid development of economy in our country brings out the rapid increase of demand of cable and wire in recent years, especially in the projects of rural electrical transportation and urban construction. The increase is not only reflected in the quantity, but also in the quality. In the RoHS directive, some hazard substances, including some halogen-containing flame retardants and heavy metals, are strictly limited in the use of electrical equipment and appliance. So the toxic-containing cable materials will retreat in the market gradually. In spite of PVC cables using by now, halogen-free cables have been becoming a big market and the environment-friendly cable materials with high quality will be a new topic in research.
     POE is a kind of non-polar material with saturated molecular chains, and therefore exhibits good electrical properties, resistance to oxygen and ozone, as well as high-temperature aging resistance. All these properties lead POE to be suitable for application in the cable as sheath jacket materials to replace PVC, Chloroprene Rubber, Chlorosulfonated Polyethylene. And there is a good prospect in application.
     In this paper, we have used silane-crosslinked POE as matrix, magnesium hydroxide as a major halogen-free flame retardant, EVA as compatibillizer, and MRP, MCA, ZR3, ASBP as synergistic flame retardant, to develop a kind of halogen-free silane-crosslinked cable material, which exhibits excellent mechanical properties and flame-retardant performance, good electrical properties and processing performance, and high-temperature aging resistance. Firstly, we studied the effect of MH content on flame-retardancy, tensile properties, electrical properties, hot set test, as well as high-temperature aging resistance of the composites. The results showed that the composite with 140phr MH as flame retardant exhibited excellent mechanical properties and flame-retardant performance, good electrical properties and processing performance, and high-temperature aging resistance, and could pass the hot set test. Secondly, we studied the effect of EVA content as compatibillizer between XPOE and MH. The results showed that high-temperature aging resistance and elongation at break were greatly improved when 10phr EVA was added as compatibillizer in the composite, which exhibited excellent flame-retardant performance and could pass the hot set test. Finally, we used MRP, MCA, ZR3 and ASBP as synergistic flame retardant with MH and studied synergistic effect of the content of MRP, MCA ratio in blends of MRP and MCA, and the four different flame retardants individually with 2phr in amount on the properties of the composites. The results showed that the composite with MCA was seriously deteriorated in the elongation at break and couldn’t pass the hot set test, while the tensile strength of the composite with ZR3 was badly lost. And the composites with MRP or ASBP exhibited excellent mechanical properties and flame-retardant performance, good electrical properties and processing performance, and high-temperature aging resistance, and could pass the hot set test, which can meet the demand of sheath jacket materials in production and are promised a broad market value.
引文
[1] G.霍尔登,莱格等编著.《热塑性弹性体》.化学工业出版社. 1996.
    [2]李晓林等编著.《橡塑并用》.化学工业出版社. 1998.
    [3]丁雪佳,徐日炜,余鼎声.茂金属聚烯烃弹性体乙烯-辛烯共聚物的性能与应用.特种橡胶制品. 2002, 23(4): 18-21.
    [4]朱玉俊.介绍一种新型弹性体材料——聚烯烃弹性体(POE).化工新型材料. 1998, 26(10): 20-22.
    [5]邱桂学,吴人洁,王展旭.茂金属聚乙烯弹性体和三元乙丙橡胶增韧聚丙烯的比较合成.橡胶工业. 2001, 24: (6)354-359.
    [6]张金柱.新型热塑性弹性体的性能及其再增韧改性中的应用.塑料科技. 1999, (2): 5-8.
    [7] Bensason, S., etc. Elastomeric blends of homogeneous ethylene-octene copolymers. Polymer [J]. Polymer. 1997, 38(15): 3913-3919.
    [8] Bensason, S., etc. Blends of homogeneous ethylene-octene copolymers [J]. Polymer. 1997, 38(14): 3513-3520.
    [9] Kontou, E., M. Niaounakis, and G. Spathis, Thermomechanical behavior of metallocene ethylene-alpha-olefin copolymers [J]. European Polymer Journal. 2002, 38(12): 2477-2487.
    [10]彭学成.新型弹性体POEs及其应用.化工新型材料. 2002, 30(12): 14-15.
    [11]闫枫等. POE与EPDM性能的比较.弹性体. 2004, 14(1): 10-13.
    [12]田明,张立群,刘力等.过氧化物交联聚烯烃弹性体的性能.合成橡胶工业. 1999, 22(3): 168-170.
    [13]黄光琳,冯雨丁,吴茂良.《高分子辐射化学基础》.成都.四川大学出版社.1993.
    [14]朱欣娣.交联电缆绝缘的热延伸差异及其影响因素.电线电缆. 2000, (6): 25.
    [15] Jiang ZG, Zhang J, Feng SY. Effects of additives on the radiation resistance ofheat-curable silicone rubber [J]. Journal of Radiation Research and Radiation processing. 2006, 24(3):141-144.
    [16]王硕,魏国峰,刘宏吉.交联聚乙烯的生产技术及应用.弹性体. 1999, 9(4): 55-59.
    [17]刘新民,崔涛,李琳.交联聚乙烯的应用及技术进展.合成塑脂及塑料. 2003, 20(5): 52-56.
    [18]汪浩,王勋林,王寿泰.聚乙烯接枝不饱和硅烷工艺研究.电线电缆. 2004, 6(5): 33-36.
    [19]王秀丽.聚乙烯的硅烷交联技术及应用.塑料科技. 2001, 8: 30-33.
    [20]左瑞霖.聚烯烃硅烷交联技术进展.塑料. 2000, 6(29): 41-46.
    [21]仇武林.聚烯烃的硅烷交联技术.高分子材料科学与工程. 1998, 14(4): 136-139.
    [22] Ek, Carl-Gustaf, Hojer, etc. Use of Cross-Linked Polyolefins Material in Pressure Pipes. US Patent: 6325959, 2001.
    [23] Scheelen, Andre, Vandevijver. Polyethylene Pipe .US Patent: 6904940, 2005.
    [24]韩宝忠,李长明,彭涛.硅烷交联高密度聚乙烯管材料的研制.塑料工业. 2001, 29 (3): 18-19.
    [25]段景宽,王秀丽,张广明.硅烷交联HDPE铝塑复合管专用料加工工艺的研究.工程塑料应用. 2005, 33 (1): 29-33.
    [26]龚方红,徐建平,俞强.提高硅烷交联HDPE凝胶含量的探索.江苏石油化工学院学报. 2000, 12 (2): 4-7.
    [27]左瑞霖,张广成,何宏伟.聚乙烯的硅烷交联技术进展.塑料. 2000, 29 (6): 41-46.
    [28] Shieh Y T, Liu C M. Silane Grafting Reactions of LDPE, HDPE, and LLDPE [J]. Journal of Applied Polymer Science. 1999, 74: 3404-3411.
    [29]张键耀,从日新,刘少成. LDPE-2102 TN00在交联电缆绝缘料中的应用.合成树脂及塑料. 2004, 21 (2): 38-42.
    [30] Shah G B, Fuzail M, Anwar J. Aspects of the Crosslinking of Polyethylene with Vinyl Silane [J]. Journal of Applied Polymer Science. 2004, 92: 3796-3803.
    [31]龚方红,俞强,李锦春. LDPE交联物结构的研究.高分子材料科学与工程. 2000, 16(2): 140-143.
    [32]闫枫,邱桂学,潘炯玺.茂金属聚乙烯弹性体的交联及应用.橡胶工业. 2004, 51 (7) : 440-443.
    [33] Jiao C M, Wang Z Z, Gui Z, etc. Silane Grafting and Crossliking of Ethylene - Octane Copolymer [J]. European Polymer Journal. 2005, 41: 1204-1211.
    [34]张国强,金晓丹,汪根林.硅烷交联聚烯烃弹性体的改性研究.中国塑料. 2006, 9(20): 18-21
    [35]欧育湘.阻燃高分子材料.国防工业出版社. 2001.
    [36]李建军.阻燃材料与技术.化学工业出版社. 2003.
    [37]欧育湘.无卤生态型阻燃高分子材料.阻燃材料与技术. 2004. 7(1): 1-2.
    [38]王锦成,江建明.无卤阻燃剂的发展现状.阻燃材料与技术. 2003. 11(1): 1-10.
    [39] Khanna Y R, Pearce E M. Flame-Retardant Polymeric Materials. Plenum Press. 1987: 43-45.
    [40]岳名正,戴法程. AI(OH)3阻燃聚丙烯的研究.中国塑料.1990,4(2): 53-56
    [41]贾修伟.纳米阻燃材料.化学工业出版社,2005.
    [42] Horold, S. Phosphorus flame retardants for composites. International SAMPE Technical Conference.
    [43] Horold, S., Phosphorus flame retardants in thermoset resins [J]. Polymer Degradation and Stability. 1999. 64(3): 427-431.
    [44] Carpentier, Bourbigot, M.L. Bras, R. Delobel and M. Foulon. Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations [J]. Polym. Degrad. Stab. 2000: 83-92.
    [45] Miyata, Koresawa, Kitano, etc. Magnesium hydroxide solid solutions, their production method and use. US Patent: 5891945, 1999.
    [46] Cook M, Harper J.F. Influence of magnesium hydroxide morphology and surface coating on physical and mechanical properties of heterophasic polypropylene [J]. Plastics andrubber processing and application. 1996: 99-103
    [47] Wang J, Tung J F, Ahmad M Y, etc. Microstructure and mechanical properties of ternary phase polypropylene/elastomer/magnesium hydroxide fireretardant compositions [J]. Journal of Applied Polymer Science. 1996, 60(9):1425-1437
    [48] Wen-Yen Chiang and Chia-Hao Hu. Approaches of Interfacial Modifications for Flame Retardant Polymeric Materials [J]. Composites Part A. 2001, 32: 517-524.
    [49] Haworth B, Raymond C L, Suthcrland I. Polyethylene compounds containing mineral fillers modified by acid coatings [J]. Polym Engng Sei. 2000, 40(9): 1953-1968.
    [50] Herr U, Birringer R, Gleiter H. Ceramic Forum International Jahrgang. 1990, 67(3): 70-74.
    [51] Horold, S. Phosphorus flame retardants for composites. International SAMPE Technical Conference.
    [52] Horold, S., Phosphorus flame retardants in thermoset resins [J]. Polymer Degradation and Stability, 1999. 64(3): 427-431.
    [53] Grand AF, Wilkie CA. Fire Retardancy of Polymeric Materials. Marcel Dekker Inc., New York, 2000: 65-68.
    [54] Wang WJ, Perng LH, Hsiue GH, etc. Characterization and properties of new silicone-containing epoxy resin [J]. Polymer. 2000, 41(13): 6113-6122.
    [55] Ebdon JR, Hunt BJ, Jones MS, etc. Chemical modification of polymers to improve flame retardance,Ⅱ. The influence of silicon-containing groups [J]. Polym Degrad Stab. 1996, 54(3): 395-400.
    [56] Sauerwein, R. New ATH developments drive flame retardant cable compounding [J]. Plastics Additives and Compounding. 4(12): 22-29.
    [57] Gao S, Liu M. Application of non-halogen flame-retardant in polyethylene [J]. China Synthetic Resin and Plastics. 18(2): 38-42.
    [58]师华,肖利鹏,郑卫东.三聚氰胺磷酸类盐在膨胀型阻燃体系中的应用.消防技术与产品信息. 1999, 12: 17-19.
    [59]王海军,陈立新.氮系阻燃剂的研究及应用状况.热固性树脂. 2005, 20(4): 36-41.
    [60]何涛.辐照制备无卤阻燃POE绝缘材料及其机理研究[硕士论文]. 2006.上海交通大学.上海.
    [61]张国强.硅烷交联聚烯烃弹性体无卤阻燃复合材料的研究[硕士论文]. 2007.上海交通大学.上海.
    [62] Guoqiang Zhang, Genlin Wang, Jun Zhang, etc. Performance Evaluation of Silane Crosslinking of Metallocene-Based Polyethylene–Octene Elastomer [J]. Journal of Applied Polymer Science. 2006, 102(5): 5057-5061.
    [63]曹胜先,王刚.国内外EVA产品的开发现状及进展.中国塑料. 2003. 19(4): 22-25.
    [64]王宏岗.我国EVA的应用及市场分析.当代石油石化. 2002. 10(6): 34-36.
    [65]马晓燕,梁国正,鹿海军.聚烯烃无卤阻燃技术的研究进展.化工新型材料. 2001, 8(29): 26-28
    [66]周盾白,贾德民,黄险波.有机硅/聚合物阻燃改性应用与研究进展.塑料科技. 2006, 6(34): 53-57.
    [67] Sergei V Levchik, Edward D Weil. A review of recent progress in phosphros-based flame retardants [J]. Journal of Fire sciences. 2006, 24: 345-366.
    [68]张志军,肖鹏.包覆红磷与MCA协效阻燃PA66的研究.塑料助剂. 2007, 5: 29-32.
    [69]王正洲,瞿保钧,范维澄.微胶囊化红磷增效氢氧化镁阻燃聚乙烯的燃烧特性.火灾科学. 2001, 2(10): 72-75.
    [70] Bras M Le, Bourbigot S, Delporte C. Zeolit: New Synergistic Agents for Intumescent Fire Retardant Thermoplastic Formulations-Criteria for the Choice of the Zeolite [J]. Fire and Materials, 1996, 92: 149.
    [71]江平开,王宗光,王寿泰.硅烷交联聚乙烯流变转矩与凝胶率的比较研究.高分子材料科学与工程. 2000, 1(16): 89-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700