高性能氯磺化聚乙烯(CSM)橡胶复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯磺化聚乙烯(CSM)主要是以聚乙烯为原料,经过氯化和氯磺化而制得的高饱和链结构的弹性体材料。它是一种具有高性能的特种橡胶,耐气候、耐老化、耐燃、耐化学介质以及机械性能和电绝缘性等性能优异,因而用途广泛。但是由于其是带有极性侧基的饱和橡胶,低温性能较差,而且永久变形大,动态性能不稳定等限制了应用,因此研究制备综合性能优异的CSM复合材料对拓展其应用领域是非常有意义的。本课题研究了CSM的增塑体系、阻燃体系、硫化体系、短纤维增强体系以及探索了稀土氧化物对CSM性能的影响,主要结果如下所述:
     (1)增塑剂TOTM相对于增塑剂DOP、TP-95和TP-90B最适合于CSM,既能降低胶料玻璃化温度和脆性温度来提高其低温使用性能,又不对力学性能产生大的影响,同时其不易挥发和迁移,复合材料的耐老化性能也得到了保障。TOTM用量增加,材料的低温性能越好,老化性能也有提高,不过对阻燃性能和力学性能稍有影响。
     (2)纳米Mg(OH)2可以作为阻燃剂,一方面对CSM胶料有抑烟阻燃的作用,另一方面作为纳米级的填料,由于纳米增强的作用,能够有效的提高CSM胶料的力学性能,具有双重的作用。如果要达到高阻燃性,纳米Mg(OH)2的填充量要达到100phr以上,胶料的断裂伸长率会下降、硬度会变很大,低温性能也会变差,因而我们利用了CSM基体中含有氯元素,向CSM中添加Sb203,起到协同阻燃的作用,大大的提高了阻燃性能,同时胶料其他性能基本不产生影响。因此纳米Mg(OH)2和Sb203并用能达到最佳的效果。
     (3)CSM的硫化体系很多,采用双2,5硫化体系和HVA-2硫化体系的胶料综合性能最好,其中前者的耐老化性好于后者,而后者的定伸模量要好于前者。采用150℃二段硫化后胶料的性能要比一段硫化的性能好,其中双2,5硫化体系最佳硫化温度为170℃而HVA-2硫化体系最佳硫化温度为160℃,并根据不同的配方也有最佳的硫化时间。
     (4)短纤维能够对CSM胶料进行补强,添加少量就有明显的效果,当短纤维为3份时,胶料的定伸模量就增加了100%-300%。不同的短纤维类型对硫化胶性能影响的程度不一样,芳纶纤维和尼龙纤维的增强效果要好于聚酯纤维和芳纶浆粕;对于耐热空气老化性能而言,聚酯纤维和尼龙66纤维较好,而芳纶纤维和芳纶浆粕稍差;尼龙66纤维对脆性温度的影响最小,其次是聚酯纤维,而芳纶纤维和芳纶浆粕影响较大;从整体上看,尼龙66的综合性能最好。
     (5)稀土氧化物对CSM硫化胶的性能也有一定的影响,能够稍微提高硫化胶的基本力学性能、热稳定性和耐热空气老化性,同时稀土还能够降低CSM的脆性温度。Gd203的效果要比Sm203好,随着Gd203用量的增加,力学性能、热稳定性能和耐热空气老化性能都有缓慢提高的趋势,而脆性温度明显降低。
Chlorosulfonated polyethylene (CSM) is a high-saturated-chain elastomer material, which is obtained by chlorinated and chlorosulfonated from polyethylene. It is a high-performance special rubber widely used,which possess weather resistance, aging resistance, flame resistance, chemical reagent resistance, good mechanical properties and excellent electrical insulation performance. However, because CSM is a saturated rubber with polar side group, low temperature performance is poor. Moreover, Permanent deformation is large and dynamic performance is instability, which limite the applications of CSM. So it is meaningful that we research high integrated performance of CSM. The study discussed the plasticized system, the flame retardant system, curing system and the short fiber reinforced system of CSM, and the impacts of CSM by rare earth oxides were explored. The main results as follows:
     (1) Relative to the plasticizer DOP, TP-95 and TP-90B, plasticizer TOTM was best for CSM.It not only reduced the glass transition temperature and brittleness temperature to improve rubber's low temperature performance, but also had a big impact on the mechanical properties. Meantime, TOTM was less volatile and migration, anti-aging properties of composite materials have also been protected. With TOTM increased, low temperature perform and anti-aging properties were better, but it had a little effect on the mechanical properties and flame-retardant.
     (2) Nano-Mg(OH)2 can be used as flame retardants, it has a dual role: on the one hand, nano-Mg(OH)2 can suppress smoke and stop flame; on the other hand, as nano-filler, it can effectively improve the mechanical performance of CSM rubber by nano-enhanced. If you want to achieve high flame resistance, nano-Mg(OH)2 will be filled in to reach 100phr or more. the compound will decrease the elongation at break and low temperature performance, increase the hardness. So we added Sb2O3 in the CSM, which has a synergistic flame retardant effect with chlorine in CSM matrix, greatly improving the flame retardancy, while other properties of rubber almost no impacted. Therefore, nano-Mg(OH)2 and Sb2O3 were used to achieve the best results.
     (3) There are many curing systems of CSM. With D2,5 and HVA-2 curing system, vulcanized rubbers had the best integrated performance.The former's anti-aging was better than the latter, whereas the elongation modulus of the latter was better than the former. Relative to the first cure, the properties were better with post cure under 150℃. The best curing temperature of D2,5 was 170℃, and HVA-2 was 160℃. According to different formulas, there was also the best cure time.
     (4) CSM rubber can be reinforced by the short fibers, there were obvious effects of adding a small amount. when the short fibers were 3 phr, the rubber's elongation modulus had increased by 100%-300%. There were different effects on vulcanizates with different short fibers, the reinforced effects of aramid fibers and nylon fibers were better than polyester fibers and aramid pulp; for the hot air aging properties, the polyester fibers and nylon fibers were better than aramid fibers and aramid pulp; nylon fiber gave a minimal impact on the brittle temperature, and polyester fibers, aramid fibers and aramid pulp and wrer following. In a word, nylon fiber brought the best properties of CSM.
     (5) Rare earth oxide has some influence on the performance of cured CSM. It increased the basic mechanical properties, thermal stability and anti-aging of cured rubber, whereas the brittleness temperature was reduced. The effect of Gd2O3 was better than Sm2O3, with the increase of the content Gd2O3, mechanical properties, thermal stability and anti-aging were slowly grown, while the brittle temperature decreased significantly.
引文
[1]林孔勇.氯磺化聚乙烯加工技术(1)[J].橡胶译丛,1996,(1):43-52
    [2]杨金平,葛涛.氯磺化聚乙烯结构与性能的关系[J].特种橡胶制品,1999,20(1):8-11
    [3]Zheng Gu, Guojun Song, Weisheng Liu. Preparation and Properties of Chlorosulfonated Polyethylene/Organomontmorillonite Nanocomposite [J]. Journal of Applied Polymer Science,2010,115(6):3365-3368
    [4]Zhe Wang, Hongzhe Ni, Yuling Bian. The Preparation and Thermodynamic Behaviors of Chlorosulfonated Polyethylene [J]. Journal of Applied Polymer Science,2010,116(4): 2095-2100
    [5]张逸民,杜宝石,刘方.氯磺化聚乙烯硫化胶结晶度与硫化时间的关系[J].橡胶工业,1998,45(7):398-401
    [6]Lawrence E. Nielsen, Fred D. Stockton. Theory of the modulus of crystalline polymers[J]. J. Poly. Sci., Part A,1963,1(6):1995-2002
    [7]Madhuri Nanda, R.N.P. Chaudhary, D.K. Tripathy. Dielectric Relaxation of Conductive Carbon Black Reinforced Chlorosulfonated Polyethylene Vulcanizate[J]. Polymer Composites,2010,31(1):152-162
    [8]Varaporn Tanrattanakul, Anida Petchkaew. Mechanical Properties and Blend Compatibility of Natura Rubber-Chlorosulfonated Polyethylene Blends [J]. Journal of Applied Polymer Science,2006,99(1):127-140
    [9]王作龄.氯磺化聚乙烯配方技术[J].世界橡胶工业,2000,27(1):46-55
    [11]吴道虎,李玉华.过氧化物硫化氯磺化聚乙烯的试验研究[J].特种橡胶制品,1995,16(4):13-18
    [12]杨慧,翁国文,王敏.环氧树脂硫化体系对氯磺化聚乙烯橡胶性能的影响[J].橡胶科技市场,2009,7(9):19-23
    [13]朱琳.氨基硅烷交联的氯磺化聚乙烯一特殊交联键对性能的影响[J].橡胶参考资料,2006,36(2):39-43
    [14]徐春燕,吴友平,赵素合.HNBR配合体系的研究[J].特种橡胶制品,2008,29(2):5-7
    [15]樊晓娜,魏明勇,陈朝晖.增塑剂TP-95和TP-90B对丁腈橡胶性能的影响[J].特种橡胶制品,2008,29(4):8-11
    [16]王梦姣,龚怀耀,薛广智.橡胶工业手册第二分册[M].北京:化学工业出版社,1989.330
    [17]Robson F. Storey, Kenneth A. Mauritz, B. Dwain Cox. Diffusion of Various Dialkyl Phthalate Plasticizers in PVC [J]. Macromolecules,1989,22(1):289-294
    [18]陈立军,陈丽琼,张欣宇.耐寒增塑剂的应用及发展[J].塑料科技,2007,35(4):76-79
    [19]杨科,王斌,郑晓昱.橡胶用阻燃剂、阻燃机理及其研究现状[J].上海工程技术大学学报,2009,23(2):136-141
    [20]张殿荣,辛振祥.现代橡胶配方设计[M].北京:化学工业出版社,2001.305-318
    [21]李昂.橡胶阻燃及其阻燃剂[J].特种橡胶制品,2002,23(3):25-30
    [22]Anna Hermansson, Thomas Hjertberg. The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer [J]. Fire Mater,2003,27(2):51-70
    [23]David R.Schulty. Flame retarding materials[J]. Rubber world,1992,206(5):23-26
    [24]B. Schartel, T. R. Hull2. Development of fire-retarded materials—Interpretation of cone calorimeter data [J]. Fire Mater,2007,31(5):327-354
    [25]Frank Moleskg. Adrances in EPDM flame retardancy testing[J]. Rubber world,1992,206(2): 40-42
    [26]Holloway LIR. Application of magnesium hydroxide as a flame retardant and smoke[J]. Rubber chemis ty & Technology,1988,61(2):186-193
    [27]缪桂韶.橡胶配方设计[M].广州:华南理工大学出版社,2000.169-175
    [28]Wharton R K. The performance of various testing columns in small-scale horizontal burning studies[J]. Fire Mater,1984,8(4):177-182
    [29]王正洲,范维澄,瞿保钧.聚合物材料阻燃性能试验方法相关性研究进展[J].合成橡胶工业,2001,24(3):178-181
    [30]王贵一.橡胶燃烧性能的测定[J].特种橡胶制品,1999,20(4):57-62
    [31]Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements[J]. Fire Mater,1980,4(4):61-65
    [32]MAN SUNG LEE, NAN JU JO. Coating of methyl triethoxysilane-modified colloidal silica on polymer substrates for abrasion resistance[J]. Journal of So-Gel Science and Technology, 2002,24:175-180
    [33]君轩.短纤维补强[J].世界橡胶工业,2008,32(10):43
    [34]乔生儒.复合材料细观力学性能[M].西安:西北工业大学出版社,1987.52-85
    [35]顾震隆.短纤维复合材料力学[M].北京:国防工业出版社,1987.92-126
    [36]钱百年,童玉清,瞿雄伟.短纤维取向机理的研究及其在增强压力胶管中的应用[J].橡胶技术与装备,1997,23(5):22-26
    [37]马培瑜,孟宪德.聚酯短纤/氯丁橡胶/丁睛橡胶复合汽车异型管[J].橡胶工业,1995,42(6):351-352
    [38]李桂芳.短纤维-橡胶复合材料在胶管中的应用[J].宁夏化工,1994,(1):14
    [39]吴贻珍.蓝棉短纤维/氯丁橡胶复合材料性能及其在切变V带中的应用[J].橡胶工业,1991,38(12):708-713
    [40]姜发启,苏华强.短纤维-橡胶复合材料在V带中的应用[J].橡胶工业,1996,43(2):82-85
    [41]刘锦文.聚酯短纤维在胶带中的应用[J].特种橡胶制品,2003,24(1):25-26
    [42]刘锦文.大型绳芯V带结构的改进[J].橡胶工业,2005,52(6):357-358
    [43]刘锦文.大型绳芯V带结构的改进[J].橡胶工业,2005,52(6):357-358
    [44]程永悦.Snatoweb木质纤维素短纤维的性能及其在轮胎中的应用[J].轮胎工业,2004,24(1):18-29
    [45]高琼芝,周彦豪,陈福林.尼龙短纤维接枝橡胶复合材料增强胎面胶[J].合成橡胶工业,2005,28(3):216-21
    [46]Datta R., Peters M..用芳纶短纤维降低载重轮胎胎面胶的滞后损失[J].轮胎工业,2004,24(11):680-683
    [47]沙中瑛,于振环,宋威.芳纶纤维在轮胎工业中的应用[J].弹性体,2004,14(1):62-65
    [48]许泅贵,贾德民.短纤维在轮胎中的应用[J],橡胶工业,2001,48(8):501-506
    [49]章伟光,朱初耀,黎华养.橡胶硫化稀土促进剂的硫化性能研究[J].化学工程师,1992,27(3):7-9
    [50]韦凤仙,张启交,章伟光.2-巯基苯并噻唑稀土配合物的合成、表征及橡胶硫化促进性能研究[J].中国稀土学报,2002,20:37-40
    [51]冯迎春,阳灿.稀土化合物在农用塑料等高分子材料开发中的应用[J].西北植物学报,2002,22(1):196-200
    [52]杨卫,武萃霖,吴振耀.混合稀土金属氧化物交联氯磺化聚乙烯的研究[J].橡胶工业,1992,39(3):132-137
    [53]张明,李幼荣,邱关明.稀土复合弹性材料的抗热氧化作用[J].中国稀土学报,2000,18(4):318-32
    [54]张明,张志斌,邱关明.稀土复合弹性的制备和力学性能[J].中国稀土学报,2000,18(3):232-238
    [55]张明,周兰香,李幼荣.稀士化合物在改性有机材料中的应用[J].中国稀士学报,2000,18:20-23
    [56]苏正涛,刘君,彭亚岚.金属氧化物对硅橡胶和氟硅橡胶耐热性的影响[J].有机硅材料,2000,14(5):4-7
    [57]Su Zhengtao. Interfacial reaction of stannic oxide in silicone rubber at 300℃[J]. Journal of Applied Polymer Science,1999,73:2779-2781
    [58]邱关明,高建和,张明.稀土PMMA包裹硅铝氧烷凝胶填充天然橡胶的抗疲劳作用[J].中国稀土学报,2002,20(1):45-48
    [59]洪少颖.稀土化合物对NR硫化胶的补强作用[D].广州:华南理工大学,2002
    [60]Li Mei, Shi Zhenxue, Liu Zhaogang. Study on cerium oxide modified natural rubber [J]. Journal of rare earths,2007,25(1):138-141
    [61]郭涛,王炼石,周奕雨.过渡金属化合物对P(SBR/N330)硫化胶的增强作用[J].华南理工大学学报,2003,31(2):91-94
    [62]刘力,孙朝晖.稀土/高分子复合材料的研究进展[J].中国稀土学报,2001,24(3):188-190
    [63]李法华.功能性橡胶材料及制品的发展[J].橡胶工业,2001,48(2):112-121
    [64]王作龄.功能性填充剂及其应用[J].世界橡胶工业,1998,25(6):15-21
    [65]Boochathum P, Prajudtake W. Vulcanization of cis-and trans-polyisoprene and their blends.cure characteristics and crosslink distribution[J]. European Polymer Journal,2001, 37(3):417-427
    [66]刘淑梅,杨丽艳,林化.用RPA2000检测混炼胶的性能[J].中国橡胶,2001,17(24):20-21
    [67]梁星宇,周木英.橡胶工业手册第三分册配方与基本工艺[M].北京:化学工业出版社,1992:266-268
    [68]蒋安立.填充剂和交联结构对橡胶低温性能的影响[J].橡胶译丛,1994,(1):17-23
    [69]陈胜,罗权.影响氯磺化聚乙烯-丁腈橡胶共混物耐热老化性能影响因素[J].合成橡胶工业,2006,29(5):360-363
    [70]M.Nanda, D.K.Tripathy. Relaxation Behavior of Conductive Carbon Black Reinforced Chlorosulfonated Polyethylene Composites[J]. Journal of Applied Polymer Science,2010, 116(5):2758-2767
    [71]王作龄.橡胶的交联科学与进展[J].世界橡胶工业,2005,32(12):46-51
    [72]汪传生,侯垣圻,李真.短纤维增强橡胶复合材料在轮胎中应用的研究概况[J].橡塑技术与装备,2009,35(10):16-19
    [73]张立群,金日光,耿海燕.短纤维橡胶复合材料强度的理论研究Ⅰ纵向拉伸强度的理论预测[J].复合材料学报,1998,15(4):89-96
    [74]史振学.稀土在橡胶生产中的应用[J].稀土,2006,27(2):75-80
    [75]张树明.稀土氧化物对提高甲基乙烯基硅橡胶耐热性的作用[J].特种橡胶制品,2009,30(6):10-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700