南方某市氯胺消毒管网生物稳定特性及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选取我国南方湿热地区某城市的供水系统作为研究对象。该供水系统具有多水源供水、多种净水工艺、高水温、多种管材、不同管龄、超大管网等突出特点,在生物稳定性研究方面具有很强的复杂性、代表性和挑战性。
     本论文通过对比该城市不同供水管网的水质生物稳定性,判别控制生物稳定性的主要指标,分析不同净水技术的处理能力,提出适用于我国南方湿热地区城市管网的生物稳定性的综合控制对策。主要研究成果如下:
     (1)对该市供水管网水质生物稳定性的长期监测表明,该城市局部供水管网存在较为明显的细菌再生长问题。采用统计软件分析,确定余氯、水力停留时间是细菌生长的主要影响因素,余氯越高,管网中细菌越少;水力停留时间越长,管网中细菌越多。
     (2)对采用好水源(Ⅱ类)、深度处理工艺的水厂供水管网进行了重点研究,首次将“生物稳定特性曲线”应用于实际供水管网研究,给出了维持管网生物稳定所需的余氯和可生物同化有机碳(AOC, assimilable organic carbon)的定量边界条件:维持余氯在1.11-1.73mg/L可保证该供水管网生物稳定,且技术上可以实现;而降低有机基质至AOC=7-47μg/L才能控制生物稳定性,远超出水厂处理能力;确定华南地区高水温供水管网中生物稳定性主要受余氯控制,与北方地区受余氯和营养基质双重控制的特性明显不同。研究发现,管道生物膜冲刷脱落是管网水中细菌的主要来源,搭建了生物膜模拟反应器进行其消毒灭活特性研究,1.0mg/L的氯胺或者0.5mg/L的自由氯能够将管壁生物膜充分灭活至100CFU/cm2量级。
     (3)对细菌再生长的深入研究表明,耐氯细菌在该城市供水管网中普遍存在。经鉴定发现了3株耐氯细菌,分别为产粘液分支杆菌(条件致病菌)、藤泽氏甲基杆菌、鞘氨醇单胞菌(新种)。耐氯细菌对消毒剂的抗性:产粘液分支杆菌>鞘氨醇单胞菌>藤泽氏甲基杆菌。抗性最强的分支杆菌能够被0.4mg/L的自由氯和0.4mg/L的二氧化氯灭活。因此,应改用自由氯或二氧化氯消毒作为管网消毒剂。
     (4)根据上述研究结果,系统确定了华南地区高水温供水管网中保障生物稳定性的技术策略:保障生物稳定性需维持管网水高余氯;灭活耐氯细菌需要采用游离氯或二氧化氯消毒;实现更换消毒剂并维持高余氯,可以通过更换优质水源、使用生物预处理、深度处理工艺来改善出厂水中消毒剂的衰减特性。
The drinking water supply system in one city in hot and humid South China wasselected as the investigation objective. This water supply system has the representativeprofile of multi water sources, multi water treatment processes, multi pipe materials,different pipe ages and super huge networks, which make this investigation highlycomplex, representative and challenging.
     In this paper, the bio-stability of different sub networks in this city was compared,the principal index of bio-stability judgment was identified, the capacity of differentwater treatment processes to control bio-stability was analyzed and the comprehensivemeasures suitable for this city in South China was presented to improve the bio-stability.The results and achievements of this paper were given as below:
     According to the long term monitoring of water quality in the networks all overthis city, certain parts of the network bear obvious bacteria re-growth problem. Residualchloramine concentration and hydraulic retention time were identified as the principlefactors influencing the bacteria re-growth by the analysis with software SPSS. Thehigher chloramine concentration was maintained in networks, the fewer bacteria couldsurvive; the longer hydraulic retention time was, the more bacteria existed in networks.
     Emphasis was given to the sub-network fed by the water treatment plant with goodsource water (Ⅱ) and advanced treatment process (ozone and biological activatedcarbon). As far as the author knew, it was the first time that the Biostability Curve wasapplied in real drinking water distribution system. The quantitative boundary wasdetermined by the Biostability Curve for achieving the bio-stability in the networks:maintaining residual chloramine at1.11-1.73mg/L which is practical for water industry,or keeping the AOC concentration as low as7-47μg/L which is far beyond the drinkingwater plant’s capacity. Therefore, the bio-stability issue in the distribution system withhigh water temperature in South China is dominantly affected by residual chloramine,which is quite different with the previous report that the bio-stability in networks inNorth China is controlled by both residual chloramine and organic substrate. Furtherinvestigation indicated that the detachment of biofilm from pipe wall by flushing wasthe main source of bacteria in bulk water. The inactivation characteristic of biofilm was studied by the simulative biofilm annular reactors. The results indicated that1.0mg/L ofmonochloramine or0.5mg/L of free chlorine could successfully inactive the biofilmbacteria to the level of100CFU/cm2.
     Further investigation was conducted on the re-grown bacteria. It was found that thechloramine-resistant bacteria survived pervasively in the distribution systems all overthis city. Three kinds of chloramine-resistant bacteria, i.e. Mycobacterium mucogenicum,Methylobacterium fujisawaense, Sphingomonas sp.(new strain) were identified in thedistribution system. Mycobaterium, one well-known opportunistic pathogen, was highlyresistant to disinfectant; Sphingomonas was moderately resistant to disinfectant whileMethylobacterium was relatively lowly resistant to disinfectant. Free chlorine of0.4mg/L or chlorine dioxide of0.4mg/L could effectively inactivate Mycobateriumwhile chloramine could hardly inactivate Mycobaterium. Therefore, the free chlorine orchlorine dioxide was necessary to eliminate the resistant bacteria.
     Based on the aforementioned results, the control strategy was established toguarantee the bio-stability in the high-temperatured distribution system in South China.The high residual chloramine was necessary to maintain the bio-stability in thedistribution system, the free chlorine or chlorine dioxide should be applied if theresistant bacteria existed. To maintain the sufficient residual chlorine, esp. free chlorineor chlorine dioxide, the finished water quality should be improved by switching to goodwater source and updating the water treatment process with biological pre-treatment oradvanced treatment process of ozone and activated carbon.
引文
[1] Husband P S, Boxall J B. Asset deterioration and discolouration in water distribution systems[J]. Water Research,2011,45(1):113-124.
    [2] Lehtola M J, Nissinen T K, Miettinen I T, et al. Removal of soft deposits from the distributionsystem improves the drinking water quality [J]. Water Research,2004,38(3):601-610.
    [3] Rigal S, Danjou J. Taste and odors in drinking water distribution systems related to the use ofsynthetic materials [J]. Water Science Technology,1999,40(6):203-208.
    [4]牛璋彬.给水管网铁稳定的化学控制特性研究[博士学位论文].北京:清华大学环境科学与工程系,2008.
    [5] Chowdhury, Shakhawat. Heterotrophic bacteria in drinking water distribution system: areview [J]. Environmental Monitoring and Assessment,2012,184(10):6087-6137.
    [6] Lipponen M T T, Suutari M H, Martikainen P J. Occurrence of nitrifying bacteria andnitrification in Finnish drinking water distribution systems [J]. Water Research,2002,36(17):4319-4329.
    [7] Sibille I, Sime-Ngando T, Mathieu L, et al. Protozoan bacterivory and Escherichia coliSurivival in drinking water distribution systems [J]. Applied and Environmental Microbiology,1998,64(1):197-202.
    [8] Ashbolt N J. Microbial contamination of drinking water and disease outcomes in developingregions [J]. Toxicology,2004,198(1-3):229-238.
    [9] McGuire M J. Eight revolutions in the history of US drinking water disinfection [J]. JournalAmerican Water Works Association,2006,98(3):123-126,129-144,146,148-149.
    [10] Berry D, Xi C W, Raskin L. Microbial ecology of drinking water distribution systems [J].Current Opinion in Biotechnology,2006,17(3):297-302.
    [11] USEPA (US Environmental Protection Agency).40CFR Parts141and142. Drinking water;National Primary drinking water regulation; Filtration, disinfection; turbidity, Giardia lamblia,viruses, Legionella, and heterotrophic bacteria; Final Rule [S]. Federal Register,1989,54(124):27486-27541.
    [12] WHO (World Health Organization). Water and sanitation: Facts and figures [S].2004.http://www.who.int/water_sanitation_health/publications/factsfigures04/.
    [13] European Union. Council Directive98/83/EC of3November1998on the quality of waterintended for human consumption [S]. Off. J. Euro. Communities,5.12.98, L330/32-L330/53,1998.
    [14] Health Canada. Guidelines for Canadian drinking water quality [S].6th ed.1996.http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/guidelines_sixth-rec_e.html.
    [15] NHMRC&ARMC (Nat. Health and Medical Res. Council and Agr. And Resource Man.Council of Australia and New Zealand)[S]. Australian drinking water guidelines–summary.Commonwealth of Australia,1996.
    [16] NIHS (National Institute of Health Sciences). Waterworks Law (21Dec.1992)[S]. Waterquality standard of drinking waer,2002. http://www.nihs.go.jp/law/suido/esuido.html.
    [17] Bartram J, Cotruvo J, Exner M, et al. Heterotrophic plate counts and drinking water safety:The significance of HPCs for water quality and human health.1st ed [M]. London: IWA,2003.
    [18]中华人民共和国卫生部,中国国家标准化管理委员会. GB5749-2006.生活饮用水卫生标准[S].北京:中国标准出版社,2006.
    [19]鲁巍.给水管网细菌生长特性及其控制的研究[博士学位论文].北京:清华大学环境科学与工程系,2005.
    [20]孙文俊.饮用水紫外线消毒生物安全性研究[博士学位论文].北京:清华大学环境科学与工程系,2010.
    [21]姜登岭,倪国葳,薄国柱,等.供水管网枝状末端的水质变化规律研究[J].中国给水排水,2009,25(23):55-60.
    [22]李劲锋,李文,罗卡新,等.玉林市生活饮用水病原细菌污染特征的研究[J].实用预防医学,2011,18(9):1634-1636.
    [23]端木.赤峰水污染的非常18天[J].法律与生活,2009,9:11-13.
    [24]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,2001.
    [25] Woolschlager J E, Rittmann B E, Pirou P, et al. Developing a simple factor to evaluatemicrobiological stability in distribution systems [C]. In Proceedings of Annual Meeting of theAmerican Water Works Association, Denver, Colorado,2002.
    [26] White D R, LeChevallier M W. Assessing biodegradable organic matter [J]. Journal ofAmerican Water Works Association,1993,85(8):112-114.
    [27] Van der Kooij D. Assimilable organic carbon as an indicator of bacterial regrowth [J]. Journalof American Water Works Association,1992,84(2):57-65.
    [28] Servais P, Anzil A, Ventresque C. Simple method for determination of biodegradabledissolved organic carbon in water [J]. Applied and Environmental Microbiology,1989,55(10):2732-2734.
    [29] Liu W, Wu H, Wang Z, et al. Investigation of assimilable organic carbon (AOC) and bacteriaregrowth in drinking water distribution sytem [J]. Water Research,2002,36(4):891-898.
    [30] Polanska M, Huysman K, Van keer C. Investigation of assimilable organic carbon (AOC) inflemish drinking water [J]. Water Rsearch,2005,39(11):2259-2266.
    [31] Van der Wielen P W J J, Van der Kooij D. Nontuberculous Mycobacteria, Fungi, andOpportunistic Pathogens in Unchlorinated Drinking Water in the Netherlands [J]. Applied andEnvironmental Microbiology,2013,79(3):825-834.
    [32] Hem L J, Efraimsen H. Assimilable organic carbon in molecular weight fractions of naturalorganic matter [J]. Water Research,2001,35(4):1106-1110.
    [33] Shu S H, Yan M, Gao N Y, et al. Molecular weight distribution variation of assimilableorganic carbon during ozonation/BAC process [J]. Journal of Water Supply Research andTechnology-Aqua,2008,57(4):253-258.
    [34] LeChevallier M W, Babcock T M, Lee R G. Examination and Characterization of DistributionSystem Biofilms [J]. Applied and Environmental Microbiology,1987,53(12):2714-2724.
    [35] LeChevallier M W, Welch N J, Smith D B. Full scale studies of factors related to coliformregrowth in drinking water [J]. Applied and Environmental Microbiology,1996,62(7):2201-2211.
    [36] Escobar I C, Randall A A, Taylor J S. Bacterial growth in distribution systems: Effect ofassimilable organic carbon and degradable dissolved organic carbon [J]. EnvironmentalScience&Technology,2001,35(17):3442-3447.
    [37] LeChevallier M W, Schulz W, Lee R G. Bacterial nutrients in drinking water [J]. Applied andEnvironmental Microbiology,1991,57(3):857-862.
    [38] LeChevallier M W. Coliform regrowth in drinking water: A review [J]. Journal of AmericanWater Works Association,1990,82(11):74-86.
    [39] Zhang M, Semmens M J, Schuler D, et al. Biostability and microbiological quality in achloraminated distribution system [J]. Journal of American Water Works Association,2002,94(9):112-122.
    [40] Zhang W D, DiGiano F A. Comparison of bacterial regrowth in distribution systems usingfree chlorine and chloramine: a statistical study of causative factors [J]. Water Research,2002,36(6):1469-1482.
    [41] Srinivasan S, Harrington G W. Biostability analysis for drinking water distribution systems [J].Water Research,2007,41(10):2127-2138.
    [42] Huck P M, Gagnon G A. Understanding the distribution system as a bioreactor: a frameworkfor managing heterotrophic plate count levels [J]. International Journal of Food Microbiology,2004,92(3):347-353.
    [43] Soonglerdsongpha S, Kasuga I, Kurisu F, et al. Comparison of assimilable organic carbonremoval and bacterial community structures in biological activated carbon process foradvanced drinking water treatment plants [J]. Sustainable Environment Research,2011,21(1):59-64.
    [44] Yang B M, Liu J K, Chien C C, et al. Variations in AOC and microbial diversity in anadvanced water treatment plant [J]. Journal of Hydrology,2011,409(1-2):225-235.
    [45] Norton C D, LeChevallier M W. A pilot study of bacteriological population changes throughpotable water treatment and distribution [J]. Applied and Environmental Microbiology,2000,66(1):268-276.
    [46] Sathasivan A, Ohgaki S. Application of new bacterial regrowth potential method for waterdistribution system-A clear evidence of phosphorus limitation [J]. Water Research,1999,33(1):137-144.
    [47] Lehtola M J, Miettinen I T, Vartiainen T, et al. A new sensitive bioassay for determination ofmicrobially available phosphorus in water [J]. Applied and Environmental Microbiology,1999,65(5):2032-2034.
    [48] Lehtola M J, Miettinen I T, Vartiainen T, et al. Microbially available organic carbon,phosphorus, and microbial growth in ozonated drinking water [J]. Water Research,2001,35(7):1635-1640.
    [49] Polanska M, Huysman K, Van Keer C. Investigation of microbially available phosphorus(MAP) in flemish drinking water [J]. Water Research,2005,39(11):2267-2272.
    [50] Jiang D L, Zhang X J. Relationship between phosphorus and bacteria regrowth in drinkingwater [J]. Huanjing Kexue,2004,25(5):57-60.
    [51] Morton S C, Zhang Y, Edwards M A. Implication of nutrient release from iron metal formicrobial regrowth in water distribution systems [J]. Water Research,2005,39(13):2883-2892.
    [52] Bai X H, Xu W J. Effect of phosphorus release from iron pipe wall on biostability in waterdistribution system [J]. China Environmental Science,2009,29(2):186-190.
    [53] MOE (The Ontario Ministry of the Environment). A summary: Report of the Walkerton injury:The events of May2000and related issues. Part One [S]. Ontario Ministry of the AttorneyGeneral,2002.
    [54] AWWA (American Water Works Association). Disinfection systems survey committee report,water quality division [J]. Journal of American Water Works Association,92(9):24-43.
    [55] MWH (Montgomery Watson Harza). Water treatment: Principles and design [M]. Hoboken:Wiley,2005.
    [56] WHO (World Health Organization). Guidelines for drinking water quality [S].4th ed.Switzerland: WHO,2011.
    [57] Trussell R R. Safeguarding distribution system integrity [J]. Journal of American Water WorksAssociation,1999,91(1):46-54.
    [58] Srinivasan S, Harrington G W, Xagoraraki I, et al. Factors affecting bulk to total bacteria ratioin drinking water distribution systems [J]. Water Research,2008,42(13):3393-3404.
    [59] Hallam N B, West J R, Forster C F, et al. The potential for biofilm growth in waterdistribution systems [J]. Water Research,2001,35(17):4063-4071.
    [60] Servais P, Billen G, Laurent P, et al. Studies of BDOC and bacterial dynamics in drinkingwater distribution system of the Northern Parisian suburbs [J]. Journal of Water Science,1992,5:69-89.
    [61] Pemitsky D J, Finch G R, Huck P M. Recovery of attached bacteria from GAC fines andimplications for disinfection efficacy [J]. Water Research,1997,31(3):385-390.
    [62] Metcalf A, Eddy A. Wastewater engineering: treatment, disposal and reuse.3rd ed [M]. NewYork: McGraw-Hill,2003.
    [63] Gagnon G A, O’Leary K C, Volk C J, et al. Comparative analysis of chlorine dioxide, freechlorine and chloramines on bacterial water quality in model distribution systems [J]. Journalof Environmental Engineering-ASCE,2004,130(11):1269-1279.
    [64] Chauret C, Volk C, Stover L, et al. Effect of disinfectants on microbial ecology in modeldistribution systems [J]. Journal of Water and Health,2005,3(4):359-369.
    [65] Gagnon G, Volk C J, Chauret C, et al. Changes in microbiological quality in modeldistribution systems after switching from chlorine or chloramines to chlorine dioxide [J].Journal of Water Supply Research and Technology-Aqua,2006,55(5):301-311.
    [66] Langmark J, Storey M V, Ashbolt N J, et al. The effects of UV disinfection on distributionpipe biofilm growth and pathogen incidence within the greater Stockholm area, Sweden [J].Water Research,2007,41(15):3327-3336.
    [67] Hammes F, Berney M, Wang Y Y, et al. Flow-cytometric total bacterial cell counts as adescriptive microbiological parameter for drinking water treatment proceses [J]. WaterResearch,2008,42(1-2):269-277.
    [68] USEPA (US Environmental Protection Agency). Basic information about disinfectants indrinking water [S].2011. http://water.epa.gov/drink/contaminants/basicinformation/disinfectants.cfm.
    [69] Richardson S D, DeMarini D M, Kogevinas M, et al. Occurrences and mammalian celltoxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science&Technology,2008,42(22):8330-8338.
    [70] Chowdhury S, Rodriguez M J, Sadiq R. Disinfection byproducts in Canadian provinces:Associated cancer risks and medical expenses [J]. Journal of Hazardous Materials,2011,187(1-3):574-584.
    [71] Percival S L, Knapp J S, Edyvean R G J, et al. Biofilms, mains water and stainless steel [J].Water Research,1998,3(7):2187-2201.
    [72] Camper A K. Involvement of humic substances in regrowth [J]. International Journal of FoodMicrobiology,2004,92(3):355-364.
    [73] Jang H J, Choi Y J, Ka J O. Effects of diverse water pipe materials on bacterial communitieson water quality in the annular reactor [J]. Journal of Microbiology and Biotechnology,2011,21(2):115-123.
    [74] Ridgway H F, Olson B H. Scanning electron microscope evidence for bacterial colonizationof a drinking water distribution system [J]. Applied and Environmental Microbiology,1981,41(1):274-287.
    [75] Zacheus O M, Iivanainen E K, Nissinen T K, et al. Bacterial biofilm formation on polyvinylchloride, polyethylene and stainless steel exposed to ozonated water [J]. Water Research,2000,34(1):63-70.
    [76] Zacheus O M, Lehtola M J, Korhonen L K, et al. Soft deposits, the key site for microbialgrowth in drinking water distribution networks [J]. Water Research,2001,35(7):1757-1765.
    [77] Al-Jasser A O. Chlorine decay in drinking water transmission and distribution systems: pipeservice age effect [J]. Water Research,2007,41(2):387-396.
    [78] Al-Jasser A O. Pipe service age effect on chlorine decay in drinking water transmission anddistribution systems [J]. Clean-Soil, Air, Water,2011,39(9):827-832.
    [79] Richardson S D, Plewa P J, Wagner E D, et al. Occurrences genotoxicity and carcinogenicityof emerging disinfection byproducts in drinking water: A review and roadmap for research [J].Mutation Research-Reviews in Mutation Research,2007,636(1-3):178-242.
    [80] Wolfe R L, Lieu N I, Izaguirre G, et al. Ammonia oxidizing bacteria in a chloraminateddistribution system: Seasonal occurrence, distribution, and disinfection resistance [J]. Appliedand Environmental Microbiology,1990,56(2):451-462.
    [81] Power K N, Nagy L A. Relationship between bacterial regrowth and some physical andchemical parameters within Sydney’s drinking water distribution system [J]. Water Research,1999,33(3):741-750.
    [82] Carter J T, Rice E W, Buchberger S G, et al. Relationships between levels of heterotrophicbacteria and water quality parameters in a drinking water distribution system [J]. WaterResearch,2000,34(5):1495-1502.
    [83] Lehtola M J, Miettinen I T, Hirvonen A, et al. Estimates of microbial quality ad concentrationof copper in distributed drinking water are highly dependent on sampling strategy [J].International Journal of Hygiene and Environmental Health,2007,210(6):725-732.
    [84]吴红伟. AOC在净水工艺中的去除与在管网中的变化和影响[博士学位论文].北京:清华大学环境科学与工程系,2000.
    [85] Digiano F A, Zhang W D. Uncertanty analysis in a mechanistic model of bacterial regrowth indistribution systems [J]. Environmental Science&Technology,2004,38(22):5925-5931.
    [86] Laurent P, Servais P, Prevost M, et al. Testing the SANCHO model on distribution systems [J].Journal of American Water Works Association,1997,89(7):92-103.
    [87] Cigana J, Laurent P, Prevost M, Clement B. Key parameters affecting regrowth in distributionsystems using the SANCHO model [C]. In Proceedings of the Annual AWWA Water QualityTechnology Conference, Denver, Colorado,1997.
    [88] Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: Resistance, DNA damage,and comparison with hydrogen peroxide stress [J]. Journal of Bacteriology,1996,178(21):6145-6150.
    [89] Camper A K. Factors limiting microbial growth in distribution systems: Laboratory and pilotscale experiments [M]. Denver, Colorado: AWWARF and AWWA,1996.
    [90] Dukan S, Levi Y, Piriou P, et al. Dynamic modeling of bacterial growth in drinking waternetworks [J]. Water Research,1996,30(9):1991-2002.
    [91] Bois F Y, Fahmy T, Block J C, et al. Dynamic modeling of bacteria in a pilot drinking waterdistribution system [J]. Water Research,1997,31(12):3146-3156.
    [92] Zhang W D, Miller C T, DiGiano F A. Bacterial regrowth model for water distributionsystems incorporating alternating split-operator solution technique [J]. Water Research,2004,130(9):932-941.
    [93] Ohkouchi Y, Bich T L, Ishikawa S, et al. Determination of an acceptable assimilable organiccarbon (AOC) level for biological stability in water distribution systems with minimizedchlorine residual [J]. Environmental Monitoring and Assessment,2013,185(2):1427-1436.
    [94] Lu P P, Chen C, Wang Q F, et al. Phylogenetic diversity of microbial communities in realdrinking water distribution systems [J]. Biotechnology and Bioprocess Engineering,2013,18(1):119-124.
    [95] Payment P. Poor efficacy of residual chlorine disinfectant in drinking water to inactivatewaterborne pathogens in distribution systems [J]. Canadian Journal of Microbiology,1999,45(8):709-715.
    [96] Falkinham J O. Impact of human activities on the ecology of nontuberculous mycobacteria [J].Future Microbiology,2010,5(6):951-960.
    [97] Simoes L C, Simoes M, Vieira M J. Influence of the diversity of bacterial isolates fromdrinking water on resistance of biofilms to disinfection [J]. Applied and EnvironmentalMicrobiology,2010,76(19):6673-6679.
    [98] Loret J F, Jousset M, Rovert S, et al. Amoebae resistant bacteria in drinking water: riskassessment and management [J]. Water Science and Technology,2008,58(3):571-577.
    [99] Bichai F, Payment P, Barbeau B. Protection of waterborne pathogens by higher organisms indrinking water: a review [J]. Canadian Journal of Microbiology,2008,54(7):509-524.
    [100] Cunliffe D A. Bacterial nitrification in chloraminated water supplies [J]. Applied andEnvironmental Microbiology,1991,57(11):3399-3402.
    [101] Furuhata K, Koike K A. Isolation of Methylobacterium spp. From drinking tank water andresistance of isolates to chlorine [J]. Japanese journal of public health,1993,40(11):1047-1053.
    [102] Mir J, Morato J, Ribas F. Resistance to chlorine of freshwater bacterial strains [J]. Journal ofApplied Microbiology,1997,82(1):7-18.
    [103] Villarruel-Lopez A, Fernandez-Redon E, Mota-de-La-Garza L, et al. Presence of Aeromonasspp in water from drinking water and wastewater treatment plants in Mexico city [J]. WaterEnvironment Research,2005,77(7):3074-3079.
    [104] Wang H, Edwards M, Falkinham J O, et al. Molecular survey of the occurrence of Legionellaspp., Mycobacterium spp., Pseudomonas aeruginosa, and Amoeba hosts in two chloraminateddrinking water distribution systems [J]. Applied and Environmental Microbiology,2012,78(17):6285-6294.
    [105] Zhang M L, Liu W J, Nie X B, et al. Molecular analysis of bacterial communities in biofilmsof a drinking water clearwell [J]. Microbes and Environments,2012,27(4):443-448.
    [106] Gerba C P, Nwachuku N, Riley K R. Disinfection resistance of waterborne pathogens on theUnited States Environmental Protection Agency’s Contaminant Candidate List (CCL)[J].Journal of Water Supply Research and Technology-Aqua,2003,52(2):81-94.
    [107] Ryan M P, Adley C C. Sphingomonas paucimobilis: a persistent Gram negative nosocomialinfectious organism [J]. Journal of Hospital Infection,2010,75(3):153-157.
    [108] Hiraishi A, Furuhata K, Matsumoto A, et al. Phenotypic and genetic diversity of chlorineresistant Methylobacterium strains isolated from various environments [J]. Applied andEnvironmental Microbiology,1995,61(6):2099-2107.
    [109] Norton C D, LeChevallier M W, Falkinham J O. Survival of Mycobacterium avium in amodel distribution system [J]. Water Research,2004,38(6):1457-1466.
    [110] Taylor R H, Falkinham J O, Norton C D, et al. Chlorine, Chloramine, Chlorine Dioxide, andOzone Susceptibility of Mycobacterium avium [J]. Applied and Environmental Microbiology,2000,66(4):1702-1705.
    [111] USEPA (US Environmental Protection Agency). National Primary Drinking WaterRegulations: Interim Enhanced Surface Water Treatment: Final Rule [S]. Federal Register,1989,63:69477-69521.
    [112] Torvinen E, Lehtola M J, Martikainen P J, et al. Survival of Mycobacterium avium in drinkingwater biofilms as affected by water flow velocity, availability of phosphorus, and temperature[J]. Applied and Environmental Microbiology,2007,73(19):6201-6207.
    [113] Falkinham J O. Surrounded by mycobacteria: nontuberculous mycobacteria in the humanenvironment [J]. Journal of Applied Microbiology,2009,107(2):356-367.
    [114] Falkinham J O, Norton C D, LeChevallier M W. Factors influencing numbers ofMycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinkingwater distribution systems [J]. Applied and Environmental Microbiology,2001,67(3):1225-1231.
    [115] Torvinen E, Suomalainen S, Lehtola M J, et al. Mycobacteria in water and loose deposits ofdrinking water distribution systems in Finland [J]. Applied and Environmental Microbiology,2004,70(4):1973-1981.
    [116] Wang H, Masters S, Hong Y J, et al. Effect of disinfectant, water age, and pipe material onoccurrence and persistence of Legionella, Mycobacteria, Pseudomonas aeruginosa, and twoAmoebas [J]. Environmental Science&Technology,2012,46(21):11566-11574.
    [117] Bohrerova Z, Linden K G. Ultraviolet and chlorine disinfection of Mycobacterium inwastewater: Effect of aggregation [J]. Water Environment Research,2006,78(6):565-571.
    [118] Steed K A, Falkinham J O. Effect of growth in biofilms on chlorine susceptibility ofMycobacterium avium an Mycobacterium intracellulare [J]. Applied and EnvironmentalMicrobiology,2006,72(6):4007-4011.
    [119] Schulzerobbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria [J]. Appliedand Environmental Microbiology,1992,58(6):1869-1873.
    [120] Hoenich N A. Disinfection of the hospital water supply: a hidden risk to dialysis patients [J].Critical Care,2009,13(6):1-2.
    [121] Epidemiology of infection by nontuberculous mycobacteria.7. Absence of mycobacteria insoutheastern groundwaters [J]. American Review of Respiratory Disease,1987,136(2):344-348.
    [122] APHA (American Public Health Association). Standard Methods for the Examination ofWater and Wastewater.19th Edition [S]. Washington DC, USA,1995.
    [123] USEPA (US Environmental Protection Agency). National Primary Drinking WaterRegulations. EPA816-F-09-004[S]. New York: National Service Center for EnvironmentalPublications,2009.
    [124] Liu S B, Taylor J S, Webb D. Water quality profiles during nitrification in a pilot distributionsystem study [J]. Journal of Water Supply: Research and Technology-Aqua,2005,54(3):133-145.
    [125] Volk C J, LeChevallier M W. Effects of conventional treatment on AOC and BDOC levels [J].Journal of American Water Works Association,2002,94(6):112-123.
    [126] Lou J C, Lin C Y, Han J Y, et al. Comparing removal of trace organic compounds andassimilable organic carbon (AOC) at advanced and traditional water treatment plants [J].Environmental Monitoring and Assessment,2012,184(6):3491-3501.
    [127] Magic-Knezev A, Van der Kooij D. Optimisation and significance of ATP analysis formeasuring active biomass in granular activated carbon filters used in water treatment [J].Water Research,2004,38(18):3971-3979.
    [128] Chen C, Zhang X J, He W J, et al. Comparison of seven kinds of drinking water treatmentprocesses to enhance organic material removal: A pilot test [J]. Science of the TotalEnvironment,2007,382(1):93-102.
    [129] Laurent P, Prevost M, Cigana J, et al. Biodegradable organic matter removal in biologicalfilters: Evaluation of the CHABROL model [J]. Water Research,1999,33(6):1387-1398.
    [130] Hambsch B, Sacre C, Wagner I. Heterotrophic plate count and consumer’s health underspecial consideration of water softeners [J]. International Journal of Food Microbiology,2004,92(3):365-373.
    [131] Richmond J Y, Mckinney R W. Biosafety in Microbiological and Biomedical Laboratories.4th ed. ISBN0-7881-8513-6[M]. Atlanta: HHS,1999.
    [132] Isaac R A, Morris J C. Transfer of active chlorine from chloramine to nitrogenous organiccompounds.2. Mechanism [J]. Environmental Science&Technology,1985,19(9):810-814.
    [133] Donnermair M M, Blatchley E R. Disinfection efficacy of organic chloramines [J]. WaterResearch,2003,37(7):1557-1570.
    [134]刘静.饮用水组合氯化消毒工艺研究[博士学位论文].北京:清华大学环境科学与工程系,2009.
    [135]陈雨乔.饮用水系统中耐氯性细菌消毒特性及机理研究[硕士学位论文].北京:清华大学环境学院,2011.
    [136]许保玖.给水处理理论[M].北京:中国建筑工业出版社,2000.
    [137] Deborde M, Von Gunten U. Reactions of chlorine with inorganic and organic compoundsduring water treatment–Kinetics and mechanisms: A critical review [J]. Water Research,2008,42(1-2):13-51.
    [138] Hoigne J, Bader H. Kinetics of reactions of chlorine dioxide (OCLO) in water.1. Rateconstants for inorganic and organic compounds [J]. Water Research,1994,28(1):45-55.
    [139]唐峰.给水管网中一氯胺消耗特性的研究[硕士学位论文].北京:清华大学环境科学与工程系,2006.
    [140]黄晓东,谭为民,曹天洪,等.自来水厂亚硝酸盐问题及处理办法的试验研究[J].给水排水,1998,24(12):23-25.
    [141]朱军进,吴立权.常规水处理工艺中亚硝酸盐的抑制与去除[J].给水排水,2009,35(4):22-24.
    [142]陶光华.曝气生物滤池在城市饮用净水处理中的应用研究[硕士学位论文].广州:华南理工大学环境科学与工程学院,2010.
    [143] Ngwenya N, Ncube E J, Parsons J. Recent advances in drinking water disinfection: successand challenges [J]. Reviews of environmental contamination and toxicology,2013,222:111-70.
    [144] Hull J E. Multisystem organ failure due to Gemella morbillorum native valve endocarditis [J].Military Medicine,2010,175(11):923-925.
    [145] Kempf M, Rolain J M. Emergence of resistance to carbapenems in Acinetobacter baumanniiin Europe: clinical impact and therapeutic options [J]. International Journal of AntimicrobialAgents,2012,39(2):105-114.
    [146] Wang C K, Zhang X J, Wang J, et al. Effects of organic fractions on the formation and controlof N-nitrosamine precursors during conventional drinking water treatment processes [J].Science of the Total Environment,2013,449:295-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700