钒盐与钒配合物对两种海洋微藻生长及生理生化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以青岛大扁藻(Platymonas helgolandica Kylin var. tsingtaoensis Tseng et T.J.Chang var.nov.)和绿色巴夫藻(Pavlova viridis Tseng,Chen et Zhang sp.nov)两种重要的海洋饵料微藻为试验对象,分别研究了这两种微藻在正常和缺铁胁迫培养状态下钒盐及钒配合物对其生理生化的影响。得到结果如下:
     1.偏钒酸铵对两种海洋微藻生长及生理生化的影响:
     (1)低浓度偏钒酸铵(0.05、0.4、3.2mg/L)处理下:两种海洋微藻的生长均无明显变化;青岛大扁藻藻液中可溶性糖和可溶性蛋白质的含量显著升高,试验第三天测得其叶绿素含量明显提高,但到试验第六天,偏钒酸铵对叶绿素的提高作用消失,SOD活性显著下降;绿色巴夫藻生理指标无明显变化。
     (2)高浓度偏钒酸铵处理下(对于青岛大扁藻是4.8、6.4 mg/L,对于绿色巴夫藻是6.4、25.6 mg/L):两种海洋微藻的生长均被明显抑制,但绿色巴夫藻对偏钒酸铵的耐受力远大于青岛大扁藻;青岛大扁藻可溶性糖和可溶性蛋白质的含量显著提高,叶绿素含量和SOD活性明显下降;绿色巴夫藻可溶性糖、可溶性蛋白质、叶绿素a含量显著下降,而SOD活性却明显提高。
     (3)缺铁胁迫下,低浓度偏钒酸铵对其生长无明显影响,而高浓度下则对其生长有明显的抑制作用。
     (4)两种海洋微藻POD同工酶谱有很大差异:青岛大扁藻有七条酶带,而绿色巴夫藻只有一条。随着偏钒酸铵处理浓度的增高,青岛大扁藻POD同工酶基因表达发生了明显的变化,诱导产生了2条Rf =0.096和Rf =0.140的同功酶酶带,同时丢失了Rf =0.063、Rf =0.471两条酶带,且青岛大扁藻主酶带Rf =0.452的颜色先加深后变浅。
     2.钒配合物对两种海洋微藻生长及生理生化的影响
     (1)低浓度钒配合物对两种微藻生长影响不明显,而高浓度钒配合物却能显著抑制其生长。
     (2)当两种微藻处于缺铁胁迫状态下时,在实验浓度范围内钒配合物均能很好的促进其生长,但最佳促进浓度不同,对青岛大扁藻为50mg/L,而对绿色巴夫藻为75mg/L。
     (3)在实验浓度范围内钒配合物能显著提高缺铁胁迫下两种海洋微藻叶绿素、可溶性糖、可溶性蛋白质的含量。
The effects of vanadate and vanadium complex on the growth and physiology of two marine microalgae (Platymonas helgolanidica,Pavlova viridis ) were studied systemically and comprehensively.Through experiments, we get results as follows:
     1. Through the experiment of the effects of Ammonium Metavanadate on the growth and physiology of two marine microalgae,we got the following conclusion:
     (1) NH_4VO_3 at lower concentration (0.05, 0.4, 3.2mg/L) had no significant effect on the growth of Platymonas helgolanidica but it enhanced soluble carbohydrate content and soluble protein content .It could also enhance the Chlorophyll content on the third day, but had no significant influence on Chlorophyll content on the sixth day. Meanwhile, it decreased the enzyme activity of SOD of Platymonas helgolanidica. While it had no remarkable effect on physiology of Pavlova viridis.
     (2) NH_4VO_3 at higher concentration (4.8, 6.4 mg/L for Platymonas helgolanidica, while 6.4, 25.6 mg/L for Pavlova viridis) seriously inhibited the growth of the two marine microalgae.While the tolerance to NH4VO3 stress of Pavlova viridis was higher than that of Platymonas helgolanidica. At the same time the soluble carbohydrate content and soluble protein content of Platymonas helgolanidica was enhanced while the Chlorophyll content and enzyme activity of SOD decreased. The soluble carbohdrate content, soluble protein content and Chlorophyll-a content of Pavlova viridis decreased while the enzyme activity of SOD enhanced.
     (3) NH_4VO_3 at lower concentration had no significant effect on the growth of the two marine microalgae under Fe-deficiency stress, while NH4VO3 at higher concentration seriously inhibited the growth of them.
     (4) POD isozyme zymograms of the two marine microalgae were very different. The Platymonas helgolanidica contained seven isozyme bands while the Pavlova viridis contained only one isozyme band. With the concentration increase of NH4VO3, two new bands (Rf =0.096, Rf =0.140) of POD isozyme were induced, at the same time two bands (Rf =0.063, Rf =0.471) lost, also the colour of the major band(Rf =0.452) at first became daker then became lighter subsequently.
     2. Through the experiment of the effects of vanadium complex on the growth and physiology of two marine microalgae,we got the following conclusion:
     (1) Vanadium complex at lower concentration had no significant influence on the growth of the two marine microalgae, while it seriously inhibited the growth of the two marine microalgae at higher concentration.
     (2) When the two marine microalgae were under Fe-deficiency stress, vanadium complex could accelerate the growth of them. The optimum dose of vanadium complex for Platymonas helgolanidica was 50mg/L,while that for the Pavlova viridis was 75mg/L.
     (3) Vanadium complex at certain concentration could enhance Chlorophyll content, soluble carbohydrate content and soluble protein content.
引文
(1) Akira Satoh, Litiana Qalokece Vudikaria, Norihide Kurano, Shigeto Miyachi.Baker M D,Mayfield C I,Inniss WE. Toxicityof pH, heavy metals and bisulfate to a freshwater green algae. Chemosphere, l983, 12(1): 35
    (2) Almeida, M., Almeida, M.G., Humanes, M., Melo, R.A., Silva, J.A., Fraústo da Silva, J.J.R., 1997. Novel vanadium-dependent halo-peroxidases in brown algae (Fucacae and Laminareacae) fromPortugal. Phycologia 36 (4), 1.
    (3) Angeles Cid, Concepción Herrero, Enrique Torres, Julio Abalde.Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and Bahdan R N. Mechanisms of action of Vanadium. Ann Rev Pharmcal Toxical, 1984, 24: 501~507
    (4) Badmaev,V.,Prakash, S., Majeed, M.. Vanadium: a reviewof its potential role in the fight against diabetes. [J]. Altern.Complement. Med,1999.5, 273~291.
    (5) Barceloux, D.G..Vanadium. [J]. Toxicol. Clin. Toxicol, 1999, 37, 265~278.
    (6) Biswajit Mukherjee , Balaram Patra , Sushmita Mahapatra, Pratik Banerjee, Amit Tiwari, Malay Chatterjee. Vanadium—an element of atypical biological significance. Toxicology Letters, 2004, 150: 135~143
    (7) Cantley L C , Cantley J L , Jowephson L. A Characterization of Vanadate interactions with the (Na-K)-ATPase. J Biol Chem ,1978, 253: 7361~7368
    (8) Carole Colin , Catherine Leblanc, Gurvan Michel, Elsa Wagner, Emmanuelle Leize-Wagner, Alain Van Dorsselaer, Philippe Potin. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases. J Biol Inorg Chem. 2005, 10:156~166
    (9) Dieter Rehder. Vanadium nitrogenase. Journal of Inorganic Biochemistry. 2000, 80: 133~136
    (10) Esther Garcia-Rodriguez, Takashi Ohshiro, Toshiaki Aibara, Yoshikazu Izumi, Jennifer Littlechild. Enhancing effect of calcium and vanadium ions on thermal stability of bromoperoxidase from Corallina pilulifera. J Biol Inorg Chem, 2005, 10: 275~282
    (11) Farga?ová. Interactive Effect of Manganese, Molybdenum, Nickel, Copper I and II, and Vanadium on the Freshwater Alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol, 2001, 67: 688~695
    (12) Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 2005, 31: 713~722
    (13) Fujiki M.The transitional condition of MinamataBay and the neighbouring sea polluted by factorywaste water containing mercury. In 6th International Conference on WaterPollationResearch,Jerusalem,1972:12
    (14) Gabriella Santoni, Dieter Rehder. Structural models for the reduced form of vanadate-dependent peroxidases: vanadyl complexes with bidentate chiral Schiff base ligands. Journal of Inorganic Biochemistry , 2004, 98: 758~764
    (15) Garua A,Tsuneuaaki K. Japanese Joural of genetics, 1977, 52: 224~286
    (16) Greene R M, Geider R J, Kolber Z, Falkowski P G. Iron-induced changes in light harvesting and photochemicalmenergy conversion processes in eukaryotic marine Algae[J]. Plant Physiol,1992,100(2):565~575
    (17) Grotsis-Skretas O,Christaki V.Physiologicalresponses of twomarine phytoptanktonic species to Cu and Hg. Map Tech Rep Ser, l992, 69:151
    (18) I. Moreno-Garrido, O. Campana, L.M. Lubia′n, J. Blasco. Calcium alginate immobilized marine microalgae: Experiments on growth and short-term heavy metal accumulation.Marine Pollution Bulletin. 2005, 51:823~829
    (19) Joseph P C. Heavy metal toterance in chromogenic and nonchromogenic marine bacteria from Arabian Gulf [J] .Environmental Monitoring and Assessment, 1999 , 59 (1) : 321~330.
    (20) Joseph W R , Tomas E J , Barbara W. The toxicological response of the alga Anabaena f los2aquae to cadmium [J] .Arch. Environ. Toxicol.1984, 3: 143~151.
    (21) Klaus-Richard Sperling, Barbara Bahr, Jan Ott. Vanadium in marine mussels and algae. Fresenius J Anal Chem, 2000, 366: 132~136
    (22) Kuo-Ching Lin , Yu-Long Lee , Chung-Yuan Chen .Metal toxicity to Chlorella pyrenoidosa assessed by a short-term continuous test .Journal of Hazardous Materials , 2007, 142: 236~241
    (23) Lefebvre S, Hussenot J, Brossard N. Water treatment of land-based fish farm effluents by outdoor culture of marinediatoms[J]. Journalof Applied phycology, 1996, (8):193~200
    (24) Liao Ziji.Envioromental Chemistry and BioligicalEffectsof Trace Element [M]. Beijing: China Environmental Science Press, 1996, 145~171(in Chinese)
    (25) Luna CM. Gonzalez CA, Gozalez CA, Troppi VS. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Phsiol, 1994, 35(1):11
    (26) Luo LX, Sun TY, Jin YH. Accumulation of superoxide radical in wheat leaves under Cd stress. Acta Sci Circumtantiae, 1998, 18(5): 495
    (27) M.G. Almeidaa, M. Humanes, R. Melo, J.A. Silvaa, J.J.R. Frausto da Silva, R. Wever. Purication and characterisation of vanadium haloperoxidases from the brown alga Pelvetia canaliculata. Phytochemistry .2000, 54: 5~11
    (28) Manuel Aureliano, Ricardo M.C,Gandara. Decavanadate effects in biological systems. Journal of Inorganic Biochemistry , 2005, 99: 979~985
    (29) Mei Li a, Changwei Hu , Qin Zhu, Li Chen, Zhiming Kong , Zhili Liu. Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere, 2006, 62: 565~572
    (30) Naoki Tsuji, Nayumi Hirayanagi,Megumi Okada, Hitoshi Miyasaka, Kazumasa Hirata, Meinhart H. Zenk, and Kazuhisa Miyamoto.Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis.Biochemical and Biophysical Research Communications, 2002, 293: 653~659
    (31) Nieleen F FH, Uthua E O. The essentially and metabolism of vanadium [A]. In:Chasteen N D, Vanadium in Biologycal Systems, Physiology and Biochemstry [C],Dotdrecht,Boston,London, Kluwer Academic Publishers,1990.
    (32) Phillips T D, Bohdan R N , Susan L N , et al . Vanadium-induced inhibition of enal Na+, K+-ATPase in the chicken after chronic dietary exposure. J Toxical Environ Healthy ,1982, 9: 651~661
    (33) Pouchere P, Vema S, GrynpasMD, et al .Vanadium and diabetes Molecular Cell Biochemi, 1998, 188: 73~80
    (34) Robert J.M.Hudson and Francois M.M.Morel. Iron transport in marine phytoplankton:Kinetics of cellular and medium coordination reactions. Limnol.Oceanogr, 1990, 35 (5), 1002~1020
    (35) Rodney J F , Peter J H. Role of Vanadium in nutrition :metabolism , essentiality and dietary considerations. Life Science , 1993 ,52(4) :339~346
    (36) Singh S P et al. Cadmium induced inhibition of nitrate up take in A nacystis nidulans:interaction with other cations. J Gen Appl Microbiol,1983, 29:297~304
    (37) Vilter, H.Vanadium-dependent haloperoxidases.1995. In: Siegel, Weg W. Salinity dependence of vanadium toxicity against the Brackishwater hydroid Cordylophora Caspia Ute Ringelband[J]. Ecotoxicology and Environ Safety, 2001, 48(1):18~26
    (38) Wilkison R E,Duncan P R.Vanadium influence on calcium absorption by sorption roottips[J]. Journal of Plant Nutrition,1993,16:1991~1994.
    (39) Zhang YX. Toxicity of heavy metals to hordeum vulgare. Acta Sci Circumtantiae, 1997, 17(2):199
    (40) Zou Baofang(邹宝方),He Zengyao(何增耀).Vanadium influence on the growth of soybean[J]. Agro-environmtntal Protction(农业环境保护),1992,11(6):261~263 (in Chineee).
    (41) Brichard S M,Henqllin J C著.钒治疗糖尿病的作用.徐积恩译.国外医学(药学分册),1996,26(3): 163~166
    (42) Shustov G著.金属与代谢.朱寿珩主译.北京:科学普及出版社,1983:422~424
    (43)鲍碧娟.植物生长的有益元素――钒.磷肥与复肥.1996年,第2
    (44)陈椒芬.两种新分离的海洋金藻及其对贻贝幼虫的饲料效果[J].海洋与湖沼通报,1985(2):44~46
    (45)程婉珍.钒的生物学作用.生理科学进展,1987,18(2):178~180
    (46)崔希忠.微量元素钒在糖尿病防治中的作用.国外医学(内分泌册),1993,13 (4):189~191
    (47)董国忠.微量元素钒与动物营养.中国饲料,1992(1):26~27
    (48)郭玉华,赵健亚,周为琴.钒的生物学功能及其最新研究进展.家畜生态,2004, 25(2):47~49
    (49)胡能书,万贤国等.同工酶技术及其应用.湖南科学技术出版社,1985.
    (50)胡莹,黄益宗,刘云霞,朱永官.钒对水稻生长的影响溶液培养研究.环境化学,2003,22(5):507~510
    (51)姜慧彬,林碧琴.重金属对藻类的毒性作用研究进展[J].辽宁大学学报,2000,27(3):281~287.
    (52)蒋万春.动物营养中新的必需微量元素——钒.国外畜牧学(饲料),1989 (5): 24~25
    (53)金伟.盐和铬对单细胞藻生理生化的影响.河北大学学报(自然科学版). 2002,22(1):44~50
    (54)李合生等.《植物生理生化实验原理和技术》.高等教育出版社,2002
    (55)李梅.谢玺韬.刘志礼.锶胁迫下亚心形扁藻生理生化的研究.南京医科大学学报(自然科学版),2004,24(5):459~463
    (56)李培峰,方允中.抗坏血酸-Fe3+对牛红细胞铜锌超氧化物歧化酶氧化修饰作用.生物化学与生物物理学报,1994,26(3):263
    (57)梁英,麦康森.微藻的应用概述.海洋湖沼通报,1999,(2):70~82
    (58)林杰,刘沛泽,袁中文.钒对实验动物及作业工人代谢的影响.国外医学(卫生学分册),1991(5):260~263
    (59)刘红涛,李杰,席宇,赵以军,薛乐勋.铜离子对铜绿微囊藻生长及生理的影响.郑州大学学报(医学版),2004,39(1):57~60
    (60)梅光泉,应惠芳.钒及其化合物的化学性质和生物学行为.微量元素与健康研究,2004,21(2):58
    (61)聂湘平,蓝崇玉,林里,黄铭洪.多氯联苯对蛋白核小球藻和斜生栅藻生长影响的研究.中山大学学报,2002,41(1):68~71
    (62)孙静,王宪泽.盐胁迫对小麦过轨化物酶同工酶基囚表达的影响.麦类作物学报2006,26(1):42~44
    (63)王夔主编.生命科学中的微量元素.北京:中国计量出版社,1996:145~171
    (64)王渊源.海产植物性活饵料的比较培养[J].水产学报,1984,8(4):259~273.
    (65)徐达,唐学玺,张培玉. UV-B辐射对2种海洋微藻的生理效应.青岛海洋大学学报,2003,33(2):240~244
    (66)杨晓改,杨晓达,王夔.钒化合物生物效应的化学基础和药用前景——金属药物研究的化学问题.化学进展,2002,14(4):280~283
    (67)袁莉,杨鹰,高铭宇,陈越.微量元素钒的生物学效应.中国兽医科技,1999, 29(1):21~23
    (68)占家智,羊茜,吴青,张治华.水产活饵料培育新技术.北京:金盾出版社,2002:51
    (69)战玉洁,王修林,杨茹君,张莹莹.Cd(Ⅱ)对8种海洋微藻生长的影响.环境科学,2006,27(4):720~726
    (70)张首临,刘明星,李国基等.四种重金属离子对海洋三角褐指藻生长影响的研究.海洋与湖沼,1995,26(6):582~585
    (71)周名江,颜天.中国海洋生态毒理学的研究进展[J ].环境科学研究, 1997,10 (3):1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700