电子电器废弃物拆解污染农田土壤微生物生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子电器产品数量的迅速增加导致了大量电子电器废弃物的产生,同时也催生了电子电器废弃物拆解回收利用行业,而不规范的电子电器废弃物拆解作业对周围环境造成了严重的污染。重金属及多氯联苯(polychlorinated biphenyls,PCBs)等持久性有机污染物的污染是其中比较突出的问题,这些污染物的存在对环境安全和民众的健康构成了严重的威胁。对污染物与土壤微生物群落之间相互作用关系的深入了解,有助于了解这些污染物的潜在风险和它们在土壤中的迁移转化,同时也能为受污染土壤的生物修复提供有价值的信息。本项目从两个曾经发生过PCBs泄漏事件的典型电子电器废弃物拆解点(旱地区域D和水稻田区域P)周围被污染的农田采集土壤样品,分析其中重金属、PCBs和有机氯等污染物的含量及分布,并综合运用传统的微生物生态学研究方法和PCR-DGGE、分子克隆等技术,研究因拆解造成的污染及其对农田土壤微生物生态的影响,主要研究结论如下:
     (1)D区域和P区域都受到了一定程度的重金属污染。D区域Cd含量超过国家土壤环境质量三级标准一倍,Cu、Pb、Zn浓度超过国家土壤环境质量二级标准。距拆解中心点最近的D1点受到了非常严重的Pb、Zn污染,分别超过国家三级标准2倍和5倍。而P区域Cd含量同样超过国家三级标准1倍,Cu含量超过国家二级标准,另外还存在轻微的Zn、Pb污染。
     (2)D拆解点附近土壤PCBs污染物的平均浓度达1.31mg·kg~(-1),最高浓度达1.67mg·kg~(-1)。超过了加拿大环境委员会规定的具有潜在威胁浓度的6倍,生态风险非常高。随着距拆解中心点距离的增加,土壤中PCBs浓度呈下降趋势。P采样区域PCBs的平均浓度为9.70μg·kg~(-1),生态风险较低。D旱地采样区域内PCBs主要以三、四、五、六氯代PCBs为主,P水稻田采样区域则以四、五、六氯代PCBs为主。推测D区域可能曾经拆解过国产的含低氯PCBs和进口的含高氯PCBs的电容器,而P区域则主要以拆解进口电容器为主。两个采样区域均有有机氯农药残留,但是其浓度较低,D区域六六六和滴滴涕的平均浓度分别为22.4μg·kg~(-1)和0.5μg·kg~(-1),P区域中六六六和滴滴涕的平均浓度分别为16.3μg·kg~(-1)和6.6μg·kg~(-1),残留在土壤中的有机氯农药已经发生了显著的转化。
     (3)对污染物含量的相关性分析表明,D区域旱地土壤中PCBs和Cu、Cd含量之间,Zn和Pb含量之间具有显著的相关性。PCBs和Cu、Cd很可能具有相同的来源,Zn和Pb污染物可能来自于另一类拆解物。而在P区水稻田中,主要的重金属污染物Cd与Pb有显著的相关性,Cu与Zn具有显著的相关性,Pb和Cd可能具有相同的来源,Cu和Zn可能来自于另一类拆解物。
     (4)土壤呼吸和酶活性分析表明,在旱地采样区域,随着向拆解中心点的靠近,土壤微生物活性有所增强,可能原因是PCBs对土壤微生物代谢具有一定的刺激作用。旱地脲酶活性与Cu、Cd的含量具有极显著的负相关关系,其活性的下降有可能是Cu、Cd重金属的影响导致的。脲酶对重金属污染物较为敏感,可能比较适于评价土壤重金属污染的影响。而在水稻田采样区域,土壤呼吸强度和三种酶的活性呈波动状态,与主要的污染物Cd、Cu、OCPs和PCBs之间没有显著的相关性,这可能是因为各污染物浓度较低,对土壤微生物活性的影响不显著。
     (5)平板分离计数表明,随着向拆解中心点的靠近,旱地土壤中细菌和放线菌的数量有逐渐增加的趋势,DGGE图谱Shannon指数分析显示,土壤中总细菌多样性呈上升趋势,而放线菌多样性则呈下降的趋势;DGGE图谱主成份分析显示,随着向拆解中心点的靠近,土壤细菌和放线菌群落结构特征与对照点的差异越大,这可能是由PCBs和Cu等污染物的梯度分布引起的。水稻田区域内各采样点细菌和放线菌数量较均一,真菌数量波动较大,细菌和放线菌Shannon指数较一致,群落结构有一定差异,但无明显变化趋势。
     (6)对旱地区域土壤DGGE图谱中特异性条带进行了克隆和测序鉴定,并对其进行了系统发育分析。对克隆所得序列进行分析发现,大部分克隆都属于变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes),并且在属于这两个类群的克隆中发现了大量可能与多氯联苯、多环芳烃、苯类似物等有机污染物降解有密切关系的微生物类群,但未发现与重金属污染物相关的微生物类群。这说明,这两个微生物类群可能在受PCBs污染的土壤微生物生态系统中占有重要地位,并可能对土壤中PCBs污染物的转化和代谢具有重要的作用。同时也说明PCBs污染物对土壤微生物群落结构具有较显著的影响。
Recycling activities of electric and electronic waste (e-waste) are emerging as a global concern as they can contribute to the release of harmful pollutants into environment. Heavy metal and Polychlorinated biphenyls (PCBs) are this kind of harmful pollutants. In this research, we collected soil samples from the farmland around two e-waste recycling sites (dryland region D and paddy soil region P) where the PCBs leaking accident have happened. Concentration and composition of soil pollutants such as heavy metal, PCBs and OCPs were analysed. Combining the use of traditional microbial ecological research methods and PCR-DGGE to explore the changes of microbial ecosystem and community structure under contamination stress. The main conclusions are as follows:
     (1) D and P regin were both contaminated by heavy metal. In D region, concentration of Cd was one time higher than the National Environmental Quality Standard level III (NEQS III). Concentration of Cu、Pb、Zn exceeded NEQS II. Concentration of Pb、Zn in D1(the sampling site that was nearest to the recycling site) was 2 and 5 times higher than NEQS III, respectively. In P region, concentration of Cd was one time higher than NEQS III, Concentration of Cu exceeded NEQS II. There were slight contamination of Pb and Zn at the same time.
     (2) The average concentration of PCBs around the D region was 1.31 mg·kg~(-1), the highest concentration reached to 1.67 mg·kg~(-1) . The concentratin of PCBs decreased with the increasd of the distance from recycling site. In P region, average concentration of PCBs was just 9.70μg·kg~(-1). in D region PCBs was mainly composed of 3,. But in P region, the main composition were4,5,6-chlorinated PCBs. Both farmland was contaminated by organochlorine pesticide, but the concentration was very low. In D region, the average content of Hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) were 22.4μg·kg~(-1) and 0.5μg·kg~(-1), respectivily. In P region, the content of HCH and DDT were 16.3μg·kg~(-1) and 6.6μg·kg~(-1), respectively. Evident transform had happened on the HCH and DDT in soil.
     (3) In D region, there was a significant correlationship between concentration of PCBs and Cu, Cd, and also between Pb, Zn, indicating that they come from the same source, respectivily. In P region, there was a significant correlationship between Cd and Pb. Indicating that they come from the same source.
     (4) Analysis of soil respiration and enzymes activity showed that in Dryland region, when getting close to the recycling site, soil microbial activity increased. The PCBs may have a positive effect on the microbial activity. In the paddy soil, soil respiration and enzymes fluctuated from site to site, but have no significant correlationship with the pollutants in soil. In D region, Urase activity showed a significant correlationship with the concentration of Cu and Cd, indicating that the decrease of urease activity may caused by the effect of Cu and Cd in the soil. Urease may be suitable for the assay of the effect of heavy metal contamination.
     (5) Microbial account show that in dryland, when getting close to the recycling site, number of soil bacteria and actinomycete increased the Shannon diversity index of bacteria increased, But that of soil actinomycete decreased at the same time. PCA result show that, when getting close to the cycling site, the difference of the character of soil microbial community between sampling site and background site increased. This may caused by the gradience of PCBs and Cu in the soil. In paddy soil, number of bacteria and actinomycete in different sampling site are similar, number of fungi fluctuated acutely.There was some different between the community structure of different sampling site in paddy soil, but no obvious trend was observed.
     (6) Clone and sequence of the specific band on the DGGE gel of dryland showed that most of the specific clone belongs to the Proteobacteria and Bacteroidetes, we also found that many clones were highly similar with the sequences of microbes that are related with organic compound degradation. Bacteria belong to this two phylum may play a very important role in the microbial ecosystem in PCBs contaminated soil, and also in the transformation and degradation of PCBs pollutants.
引文
[1] Alcock R, Johnston A E, MeGrath S P. et al. Long-Term Changes in the Polychlorinated Biphenyl Content of United Kingdom Soils. Environ. Sci. Technol. 1993, 27:1918-1923
    
    [2] AN Y J. Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 2004, 127:21-26.
    [3] Anderson. P N, Hites. RA. "OH Radical Reactions: The Major Removal Pathwayt for the Atmosphere" Environ. Sci. Technol. 1996, 30, 1756-1763
    [4] Anna Leung, Zong Wei Cai, Ming Hung Wong. Environmental contamination from electronic waste recycling at Guiyu,southeast China. J Master Cycles Waste Manag, 2006, 8:21-23
    [5] Atkinson, R, Carter, W.P.L. Kinetics and Mechanisms of the Gas-Phase Reaction of Ozone with Organic Compounds under Atmospheric Conditions. Chem. Rev. 1984, 84(5), 437-470
    [6] Borga K, Gabriesen G W, Skaare J U. Bioaccumulation of PCBs in Arctic seabirds: influence of dietary exposure and congener biotransformation. Environmential Pollution. 2005,134: 397-409.
    [7] Borjia J, Taleon DM, Auresenia J, et al. Polychlorinated biphenyls and their biodegradation . Process Biochem. 2005, 40: 1999-2013
    [8] Buck GM, Vena JE, Schisterman EF, et al. Parental consumption of contaminated sport fish from Lake Ontario and predicted fecund ability. Epidemiology. 2000, 11:388-393.
    [9] Calabrese EJ, Baldwin LA. Chemical hormesis: its historical foundations as a biological hypothesis. Human & Experimental Toxicology, 2000, 19:2-31.
    [10]Callahan CA. Earthworms as ecotoxicological assessment tools. Earthworms in waste and environmental assessment. Hague: SPB Academic Publishing, 1988. 295-301
    
    [11] Commandeur LCM, Van Eyseren H E, Opmeer M R, et al. Biodegradation Kinetics of Highly Chlorinated Biphenyls by Alcaligenes sp. JB 1 in an Aerobic Continuous Culture System, Environ. Sci. Technol. 1995, 29:3038-3043
    
    [12]Crine JP. Hazards decontamination an d replacement of PCBs. A Comprehensive Guide. New York and London Plenum Press, 1986,12
    [13] Daelemans, F F, Mehlum, F, Lydersen, C. et al. Mono-ortho and non-ortho substituted PCB in Arctic ringed seal (Phoca hispida) from the Svalbard area: analysis and determination of their toxic threat. Chemosphere . 1993, 27:429-437.
    [14] Davis D, Safe S. Dose-response immunotoxicities of commercial PCBs and their interaction with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology Letters. 1989, 48:35-43.
    [15]Dunbar John, Ticknor Lawrence O. and Kuske Cheryl R..Assessment of Microbial Diversity in Four Southwestern United States Soils by 16S rRNA Gene Terminal Restriction Fragment Analysis .Applied and Environmental Microbiology, 2000, 2943-2950.
    [16] Eisenreich S J, Capel P D, Robbins J A, et al. Accumulation and Diagenesis ofChlorinated Hydrocarbons in Lacustrine Sediments" Environ.Sci.Technol. 1989,23,1116-1126
    [17] Eisenreich, S. J.; Looney, B. B.; Thornton, J. D. "Airborne organic contaminants in the Great Lakes ecosystem. Environ. Sci. Technol. 1981, 15, 30-38
    [18] F Wania, D mackay. Modelling the global distribution of toxaphene: a discussion of feasibility and desirability. Chemosphere. 1993, 27:1010, 2079-2094.
    [19] Falconer, R L, Bidleman, T. F, Cotham,WE. Preferential Sorption of Non- and Monoortho- Polychlorinated Biphenyls to Urban Aerosols, Environ. Sci. Technol. 1995, 29,1666-1673
    [20] Fianagan WP, May R J. Metabolite Detection as Evidence for Naturally Occurring Aerobic PCB Biodegradation in Hudson River Sediments. Environ. Sci. Technol. 1993, 27:2207-2212
    [21] Fish KM, Principe JM. Biotransformations of Aroelor 1242 in Hudson River test tube Microcosm. Appl. Environ. Microbiol, 1994, 60:4289-4296.
    [22] Garland JL, Mills AL. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Applied and Environmental Microbiology. 1991, 57:2351-2359.
    [23] Gobas F A, Z'Graggen M N, Zhang X. Time Response of the Lake Ontario Ecosystem to Virtual Elimination of PCBs", Environ. Sci. Technol. 1995, 29:2038-2046
    [24] Godfrey S. A. C, Harrow S. A., Marshall J. W. and Klena J. D. 2001. Characterization by 16S rRNA Sequence Analysis of Pseudomonads Causing Blotch Disease of Cultivated Agaricus bisporus.Applied and Environmental Microbiology. 4316-4323.
    [25] Gomez-Belinchon JI, Grimalt JO, Albalges J. Clean-up of animal fats and dairy products for the analysis of chlorinated pesticide residues. Environ. Sci. Technol. 1988, 22:677-682.
    [26] Hardell L, van Bavel B, Lindstrom G, et al. Higher concentrations of specific polychlorinated biphenyl congeners in adipose tissue from non-Hodgkin's lymphoma patients compared with controls without a malignant disease. Int J Oncol. 1996, 9:603-608.
    [27] Harner T, Mackay D, Jones K C. Model of the Long-term Exchange of PCBs between Soil and the Atmosphere in the Southern U.K. Environ. Sci. Technol. 1995, 25:1200-120
    [28] Henckel Thilo, Friedrich Michael and Conrad Ralf.1999.Molecular Analyses of the Methane-Oxidizing Microbial Community in Rice Field Soil by Targeting the Genes of the 16S rRNA, Particulate Methane Monooxygenase and Methanol Dehydrogenase.Applied and Environmental Microbiology.May.p. 1980-1990.
    [29] Hills G T, Mitkowskia N A, Aldrich—Wolfeb L, et al. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000,15:25-36
    [30] I Schuphan, W Ebing, J Holthofer, et al. Bleidner vapour phase extraction technique for the determination of organochlorine compounds in lake sediments. Analytical and Bioanalytical Chemistry. 1990, 336:564-571.
    [31]Iwata H, Tanabe S, Ueda K et al. Persistent Organochlorine Residues in Air,Water, Sediments, and Soils from the Lake Baikal Region, Russia, Environ. Sci. Technol. 1995,29,792-801.
    [32] J Kim, G Rhee. Population Dynamics of Polychlorinated Biphenyl-Dechlorinating Microorganisms in Contaminated Sediments. Applied and Environmental Microbiology. 1997,63: 1771-1776
    [33] Jansson B, Andersson R, Asplund L, et al. Multiresidue method for the gas-chromatographic analysis of some PCB and PBB pollutants in biological samples. Fresenius. J. Anal. Chem. 1991, 340: 439-445.
    [34] Jeon, CO, Park, W, Padmanabhan, P, DeRito, C, Snape, JR, Madsen, EL. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA, 2003, 100: 13591-13596
    [35] Jonsson A, Gustafsson O, Axelman J, et al. Global accounting of PCBs in the continental shelf sediments. Environ Sci Technol, 2003, 37:245-255.
    [36] Kelly JJ, Haggblom M, Tate RL. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. 1999, 31:1455-1465
    [37] Kim J, Rhee G. Population Dynamics of Polychlorinated Biphenyl-Dechlorinating Microorganisms in Contaminated Sediments. Applied and Environmental Microbiology, 1997,63:1771-1776.
    [38] Kim S,Picardal Fw. Microbe growth on dichloro biphenyls chlorinated on both rings as asole carbon and energy sourse. Appl. Environ. Microbiol. 2001, 67: 1953 —1955.
    [39] Komancova M, Jurcova I, Kochankova L, et al. Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere. 2003, 50: 537-543.
    [40] Larsson P. Contaminated Sediments of Lake and Oceans Act as Sources of Chlorinated Hydrocarbons for Release to Water and Atmosphere", Nature 1985, 317:347-349
    [41] Lei F, VanderGheynst JS. The effect of microbial inoculation and pH on microbial community structure changes during composting. Process Biochemistry, 2000, 35:923-929.
    [42] Ley RE,Schmidt SK. Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils. Soil biology & biochemistry, 2002,34:989-995.
    [43] Loomis D, Browning SR, Schenck AP, et al. Cancer mortality among electric utility workers exposed to polychlorinated biphenyls . Occup Environ Med. 1997, 54:720-728.
    [44] Mackay D, Paterson S. Evaluation the Multimedia Fate of Orgamic Chemicals: A Level Fugacity III Model. Environ. Sci. Technol. 1991, 25:427-432
    [45] Maskaoui K, Zhou JL, Zheng TL, et al. Organochlorine micropollutants in the JiuLong River Estuary and Western Xiamen sea,china. Marine Pollutin Bulletin. 2004.
    [46] Masuda Y. The Yusho Rice Oil Poisoning Incident. In: A. Schecter. Ed. Dioxins and Health New York : Plenum Press. 1994, 633—659.
    [47] MD Mullin, CM Pochini, S McCrindle, et al. SH safe, LM Safe. Environ. Sci. Technol. 1984, 18(6):468-476.
    [48] MF Yueh, M Kawahara, J Raucy. Cell-based high-throughput bioassays to assess induction and inhibition of CYP1A enzymes. Toxicol In Vitro. 2005. 19: 275-287
    [49] MH Wong, SC Wu, WJ Deng, et al. Export of toxic chemicals e A review of the case of uncontrolled electronic-waste recycling. Environmental Pollution, 2007, 1-10
    [50] Mi Y, Zhang C. Toxic and hormonal effects of polychlorinated biphenyls on cultured testicular germ cells of embryonic chickens. Toxicol Lett. 2005, 155(2): 297-305.
    [51]Moza P, Scheunert L, Klein W et al. Studies with 2,4',5-Trichlorobiphenyls' 14C and 2,2',4,4',6-Penchloribiphenyl-14C in Carrots, Sugar Beets and Soil", J. Agric. Food Chem. 1997,27:1120-1124.
    [52] Nakata H, Hirakawa Y, et al. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China. Environ Pollut. 2005: 133(3):415-29
    [53] Nogales B, Moore ERB, Abraham WR, et al. Identification of the metabolically active members of a bacterial community in a polychlorinated biphenylpolluted moorland soil. Environmental Microbiology. 1999, 1(3): 199-212
    [54] Pawliszyn J. Solid Phase Microextraction: Theory and Practice. [M]. New York, Wiley-VCH. Inc, 1997.
    [55] Quensen JF, Mousa MA, Boyd SA, et al. Reduction of Ah receptor mediated activity of PCB mixtures due to anaerobic microbial dechlorination. Environ Toxicol Chem. 1998,17:806-813.
    [56] Rogers HR. Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci. Total Environ. 1996, 185:3-26
    [57] Sanders G, Hamilton-Taylor J, Jones K C. PCB and PAH Dynamics in a Small Rural Lake, Environ. Sci. Technol. 1996, 30, 2958-2966
    [58] Schulz Bull DE, Petrick G, Duinker JC. Complete characterization of polychlorinated biphenyl congeners in commercial aroclor and clophen mixtures by multi-dimentional gas chromatography-electron capture detection. Environ Sci Technol. 1989, 23:852-859.
    [59] Singer AC. Integrated system enhancement for polychlorinated biphenyls bioremediation. PhD. Dissertation,California: University of California. 2000
    [60] Sinkkonen S, Paasivirta J. Degradation half-life times of PCDDs, PCDFs, and PCBs for environmental fate modeling. chemosphere. 2000, 40:943-949.
    [61] SJ Harrad, AS Sewart, R Boumphrey, et al. A method for the determination of PCB congeners 77, 126 and 169 in biotic and abiotic matrices. Chemosphere(Oxford), 1992, 24:1147-1152.
    [62] Stephen JR, Kowalchuk GA, Bruns MV, et al. Martin and Prosser James I. Analysis of β-Subgroup Proteobacterial Ammonia Oxidizer Populations in Soil by Denaturing Gradient Gel Electrophoresis Analysis and Hierarchical Phylogenetic Probing. Applied and Environmental Microbiology, 1998, 2958-2965
    [63] Sterzenbach D, Wenclawiak BW, Weigelt V. Determination of Chlorinated Hydrocarbons in Marine Sediments at the Part-per-Trillion Level with Supercritical Fluid Extraction. Anal. Chem. 1997,69:831-836.
    [64] Stuart J, Harrad D. PCBs in environment in British. Environment Pollution. 1994, 13:131-142
    [65] Suneja S, Dogra RC. Effect of aldrin and lindine seed treatment on symbiosis of chickpea rhizobium with Bengal gram. Trop Agric , 1984, 62 :110-114.
    [66] Svensson BG, Hallberg T, Nilsson A, et al. Parameters of immunological competence in subjects with high consumption of fish contaminated with persistent organochlorine compounds. Int Arch Occup Environ Health. 1994, 65:351-358.
    [67] Tabatabai. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties.
    ??Soil Science Socity of America,Wisconsin WI,1994. 775-833.
    
    [68] Tanabe S. PCB problems in the future: foresight from current knowedge. EvironmentalPollution. 1998, 50: 5-28
    
    [69] Tryphonas H. Immunotoxicity of PCBs(Aroclors)in relation to GreatLakes. EnvironHealth Perspect. 1995,103:35-46.
    
    [70] Tyson Gene W., Chapman Jarrod, Philip Hugenholtz,et al., Community structure andmetabolism through reconstruction of microbial genomes from the environment. Nature,2004, 428(4):37-43
    
    [71] Venter J. Craig, Remington Karin, Heidelberg John F., Halpern Aaron L., et al.Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science, 2004,304(2): 66-74
    
    [72] Watanabe Kazuya, Kodama Yumiko and Harayama Shigeaki. Design and evaluation ofPCR primers to amplify bacterial 16S ribosomal DNA fragments used for communityfingerprinting. Journal of Microbiological Methods, 2001, 44:253-262.
    
    [73] Wong J W C, LI K, FANG M, et al. Toxicity evaluation of sewage sludges in HongKong[J]. Environment International, 2001, 27: 373-380.
    
    [74] Wu QZ, Bedard D L, Wiegel J. Effect of Incubation temperature on the Route ofMicrobial Reductive Dechlorination of 2, 3, 4, 6-Tetrachlorobiphenyl in Poly chlorinatedBiphenyl (PCB)-Contaminated and PCB-Free Freshwater Sediments", Appl. Environ.Microbiol. 1997, 63:2836-2843
    
    [75] Yahai Lu. In Situ Stable Isotope Probing of Methanogenic Archaea in the RiceRhizosphere. Science, 2005, 309:1088-1090
    
    [76] Zeng E Y, Yu C C, Tran K. in Situ Measurements of Chlorinated Hydrocarbons in theWater Column of the Palos Verdes Peninsula, California, Environ. Sci. Technol. 1999,33:392-398
    
    [77]毕新慧,储少岗.多氯联苯在土壤中的吸附行为.中国环境科学.2001,21(3):284- 288.
    
    [78]储少岗,童逸平.多氯联苯在典型污染地区环境中的分布及其环境行为.环境科学 学报.1995,15(3):199-203.
    
    [79]丁克强,骆永明.多环芳烃菲对淹水土壤微生物动态变化的影响.土壤,2002, 34:229-232
    
    [80]杜欢政,王怡云,固体废弃物拆解业对环境影响评估及整治,中国资源综合利 用.2002(6).-34-36
    
    [81]冯瑞华,2000.用AFLP技术和16SrDNA PCR-RFLP分析毛苜蓿根瘤菌的遗传多样性.??微生物学报.40(4):339-345.
    
    [82]宫璇.土壤的芘污染与土壤酶活性.农村生态环境,2004, 20:53-55.
    
    [83]关荫松,土壤酶及其研究方法.1986.
    
    [84]韩关根,徐盈,等.环境多氯联苯污染状况研究.卫生研究.2006,35:168-170,
    
    [85]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价.土壤,2000,32(3):130- 134.
    
    [86]刘沿仁,吴世培,王斌.长江口以北沿海主要经济贝类中有机氯农药和多氯联苯的 分布及评价.海洋环境科学,1996,15:29-35.
    
    [87]孟庆昱,储少刚,徐晓白.多氯联苯的环境吸附研究进展.科学通报,2000, 45:1572-1583.
    
    [88]聂湘平,蓝崇钰,栾天罡,等.珠江广州段水体、沉积物及底栖生物中的多氯联苯, 中国环境科学,2001,21(5):417-421。
    
    [89]聂湘平.多氯联苯的环境毒理研究动态.ECOLOGIC SCIENCE. 2003,22(2): 171-176.
    
    [90]丘东茹,吴振宾.环境雌激素对动物和人体的影响及其作用机制.水生生物学报, 1997,21:365-373.
    
    [91]沈东升,王君琴,进口废电器拆解对周围土壤和作物的污染性研究,农业环境科学学 报.2004,23(2).-352-354
    
    [92]沈东升,王君琴,进口废电器拆解过程的主要污染因子及其排污系数研究,浙江大学学 报:农业与生命科学版.2004,30(3).-237-240
    
    [93]沈国清.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征.应用与环境 生物学报2005,11:479-482
    
    [94]杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境, 2000,9:15-18.
    
    [95]张红,吕永龙,辛晓云等.杀虫剂类POPs对土壤中微生物群落多样性的影响.生 态学报.2005,25:937-942
    
    [96]张晓君,冯清平,白玲.1999.分子生态学方法在微生物多样性研究中的应用.微生 物学通报.26(1):68-70.
    
    [97]周红艺,何志桥,潘志彦,等.金属铁及其化合物还原脱氯有机氯化物的研究,浙 江工业大学学报,2002,30:63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700