Calpains对机械通气肺损伤早期炎性反应的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     对于呼吸功能严重受损的患者,机械通气是必不可少的治疗手段。然而机械通气是把双刃剑,在提供有效呼吸支持的同时,还能导致肺部严重损伤,即机械通气所致肺损伤(ventilator-induced lung injury VILI).这是机械通气最严重的并发症,易诱发炎症反应综合征(SIRS)和多器官功能衰竭(MSOF),死亡率近50%。
     肺牵张是VILI的主要原因。机械牵张可使气道上皮屏障功能降低,肺泡毛细血管通透性增强,中性粒细胞迁移浸润。而机体如何将机械信号转为生物信号并释放各种致炎因子促进中性粒细胞(PMN)浸涧肺,最终导致SIRS及MSOF,其早期机制仍未知,因此阐明VILI的早期机制,了解起始免疫反应,有助于VILI的早期治疗,意义重大。
     Calpains是存在于细胞浆的Ca2+依赖性半胱氨酸蛋白酶(蛋白水解酶),自从1964年由Guroff第一次将Calpain描述为钙激活的中性蛋白酶,关于其形态、结构、活性、位置、生理及病理作用已经被越来越多的阐述。到目前,哺乳动物中已被识别的Calpain蛋白酶家族成员有15个,基于其组织表现形式不同分为普遍存在型和组织特异型。其中Calpain1、Calpain2、Calpain10存在于所有哺乳动物细胞中Calpain3(肌肉P94)、Calpain8(胃nCL-2)是组织特异表达型。Calpain1和Calpain2是最主要的两种亚型,它们由两种不同的催化亚基(80KDa)和一种相同的调节亚基(28KDa)组成,两者的激活分别需要微摩尔和毫摩尔的Ca2+浓度来活化,所以又分别被称为u-Calpain和m-Calpain。当细胞内Ca2+浓度超过各亚型所需阈浓度时,其两种亚基产生催化、自溶反应,使其构象改变从而产生了活性。
     目前Calpains的生理作用还未完全阐明,但研究表明Calpains参与了细胞运动、凋亡、炎症等过程。短暂的Calpains活性参与细胞信号和蛋白逆转录过程,而持续的Calpains活性与急性神经系统损伤和阿尔茨海默病有关。Calpainl基因缺失小鼠将导致血小板功能障碍,Calpainl和Calpain2基因缺失小鼠将导致胚胎死亡。Calpainl调节了脓毒血症中肺血管内皮细胞的凋亡,Calpain抑制剂降低了酵母多糖所致的多器官功能衰竭和出血性休克大鼠的多器官损伤和NF-kB活性。
     目前Calpain在VILI的作用及调节机理,未见报道。
     本研究显示大潮气量机械通气早期即诱发了迅速的Caiapain活性和以中性粒细胞浸润、肺毛细血管通透性增高、肺水肿形成为特征的炎性反应:分别以体内转染小干扰RNA基因沉默技术和药物途径干预Calpain表达后,降低了支气管灌洗液(BAL)内中性粒细胞数和蛋白含量、同时TNF-a、IL-6降低,肺毛细血管外肺水含量(ELW)减少、肺MPO活性降低,说明Calpain在VILI发病机理中起关键性作用,是机械通气肺损伤早期炎性反应发病机理的关键因素。进‘步的研究显示,大潮气量机械通气诱发Calpain活性后,介导了NOS-3磷酸化,使NOS-3磷酸化来源的N()产物聚集增多,后者刺激细胞粘附因子ICAM-1磷酸化,使P-ICAM-1蛋白表达增高,刺激PMN浸润入肺产生VILI。提示由大潮气量机械通气刺激Calpain活性增高触发的早期肺炎性反应是通过Akt_P-NOS3_NO_Src_P-ICAM1_PMN途径而产生的。
     研究方法
     动物实验。
     本研究分四部分
     第一部分小鼠机械通气肺损伤模型的建立及大潮气量机械通气肺炎性反应
     1.小鼠机械通气肺损伤模型:育龄8-12周、体重25-30克重的雄性C57BL/6J小鼠,以氯胺酮腹腔注射麻醉(75mg/kg),后行气管切开,分别以大潮气量(28ml/kg、呼吸频率60次/分钟)和普通潮气量(7ml/kg、呼吸频率120次/分钟)行机械通气。1%异氟醚与空气混合维持麻醉。机械通气维持呼气末二氧化碳35-45cmH2O、保温灯维持体温37-38℃。(Fig1)
     2.大潮气量机械通气肺炎性反应:机械通气2小时后分别测定支气管肺泡灌洗液(BAL)内的蛋白含量、中性粒细胞数目、TNF-a、IL-6、肺毛细血管外肺水(ELW)、肺MPO活性测定。每种检测指标需要小鼠6-8只。
     第二部分Calpain活性分析及Calpain抑制剂对VILI的作用
     1.Calpain活性测定:分别取大潮气量机械通气15分钟、30分钟、60分钟、120分钟肺组织,测定Calpain活性。每组3-4只,数据取其平均值。
     2. Calpain抑制剂对其活性的影响:Calpain抑制剂Ⅰ分别以0、5mg/kg、10mg/kg、20mg/kg于机械通气前1小时行腹腔注射,机械通气2小时后测定Calpain活性。每组3-4只,数据取其平均值。
     3.Calpain抑制剂对VILI的作用:Calpain抑制剂10mg/kg使用前后观察机械通气对支气管肺泡灌洗液(BAL)内的蛋白含量、中性粒细胞数目、TNF-a、 IL-6、肺毛细血管外肺水(ELW)、肺MPO活性的影响
     第三部分脂质体转染Calpain1/2siRNA基因模型的建立及Calpain1/2基因knockdown对VILI的作用
     1.采用新鲜制备的脂质体介导的基因转染法。新鲜制备脂质体,将脂质体与Calpain1或Calpain2siRNA以一定比例混匀,于机械通气前48小时行尾静脉注射,Calpain scsiRNA相同比例与脂质体混合作为对照。Calpain1或Calpain2siRNA是否成功转染由Western blotting分析验证。
     2. Calpain1/2基因knockdown对VILI的作用:Calpain1/2基因knockdown后对ELW、BAL内(蛋白含量、PMN数目、TNF-a、IL-6)、肺MPO活性的作用。小鼠分普通潮气量机械通气、大潮气量机械通气Sc siRNA、Calpainl siRNA、Calpain2siRNA共四组,每组6只,取均值。于机械通气48小时前行尾静脉注射Sc siRNA或Calpainl/2siRNA,后行Western blotting分析,确定成功转染的标本保留其ELW、BAL内(蛋白含量、PMN数目、TNF-a、IL-6)、肺MPO活性数据,未转染者剔除。
     第四部分Calpain对VILI的作用机制
     1. Calpain活性对P-ICAM-1、CAM-1蛋白表达的影响
     2. Calpain活性对NO产物的影响
     3.NOS抑制剂L-NAME对P-ICAM-1蛋白表达的影响
     4.ICAM-1在Tyr518位点磷酸化抑制剂Genistein对P-ICAM-1蛋白表达的影响和对BAL内PMN数目的影响
     5.Calpain活性对P-NOS-3、NOS3、NOS2蛋白表达的影响
     6.Calpan活性对P-Akt、Akt蛋白表达的影响
     结果
     1与普通潮气量机械通气相比,大潮气量机械通气2小时产生了以肺泡-毛细血管通透性增强、肺水肿形成、中性粒细胞浸润入肺为特征的VILI
     使ELW增加三倍、BAL的中性粒细胞数目由正常的几乎为零上升到8.5*105、BAL的总蛋白含量增加5倍、肺组织MPO活性增加4倍、BAL内IL-6、 TNF-a由正常的几乎为零分别上升到110pg/ml和360pg/ml。(Fig2)
     2大潮气量机械通气产生了迅速的Calpain活性,Calpain抑制剂显著降低VILI(Fig3.4)
     大潮气量机械通气15分钟即引起Calpain活性加倍并维持至2小时,而普通潮气量机械通气2小时Calpain活性不变。Calpain抑制剂降低其活性呈剂量依赖性,10mg/kg浓度的抑制剂即可完全阻滞其活性。
     Calpain抑制剂减轻了机械通气肺炎性反应:提示药物抑制Calpain活性对减轻VILI有显著作用。
     3Calpainl或Calpain2基因knockdown降低了VILI(Fig5)
     提示以基因沉默技术干预Calpainl或Calpain2蛋白表达对减轻VILI有显著作用。两种亚型对VILI的作用无显著差异,提示两种亚型在VILI中发挥相同作用
     4.1Calpain活性在VILI中通过调节ICAM-1磷酸化发挥作用(Fig6)
     最近的研究显示ICAM-1位于络氨酸的磷酸化介导了早期炎性反应的白细胞的迁移。本实验我们假定大潮气量机械通气通过Calpain活性诱发ICAM-1磷酸化。实验数据显示大潮气量机械通气15分钟ICAM-1磷酸化开始发生于Tyr518位点并持续至机械通气2小时。Calpain抑制剂显著降低了机械通气诱发的ICAM-1tyrosine的磷酸化:与此相似,Calpainl或Calpain2knockdown也明显降低了VILI的ICAM-1磷酸化。Calpain抑制剂或Calpainl、Calpain2siRNA本身对ICAM-1磷酸化没有影响。数据还显示:2小时的机械通气没有改变ICAM-1的蛋白表达。
     以上结果显示Calpain介导了ICAM一1的tyrosine磷酸化。
     4.2Calpain活性介导了NO产物的形成刺激ICAM-1磷酸化从而引起PMN浸润入肺(Fig7)
     体内研究发现肺炎性反应中NO来源于NOS-2和NOS-3两种途径,NO在VILI的发病机制中起重要作用。本研究数据显示:与自主呼吸相比,机械通气15分钟NO即升高3倍并在2小时的机械通气中继续缓慢升高至4倍,Calpain抑制剂阻滞了这种表现,而Calpain抑制剂本身没有改变基础NO浓度;与此相同,Calpainl或Calpain2基因knockdown也显著抑制了机械通气NO浓度的升高。
     4.3NO刺激了一系列蛋白的磷酸化(Fig8)
     本实验我们重点判定在小鼠肺内,大潮气量机械通气诱发的ICAM-1磷酸化和相应的PMN浸润是否为NO依赖机制。数据显示:非特异性NOS抑制剂L-NAME消除了ICAM-1在Tyr518位点的磷酸化并使BAL内PMN显著降低。
     4.4ICAM-1tyrosine磷酸化在肺PMN浸润的作用
     我们采用tyrosine特异性抑制剂genistein预先于机械通气1小时前腹腔注射,显著消除了ICAM-1在Tyr518位点的磷酸化并显著减轻了肺内PMN浸润(Fig8)。
     4.5Calpain活性上调了NOS-3磷酸化水平,使NOS-3来源而非NOS-2来源的NO产物增加
     实验数据显示:大潮气量机械通气诱导产生的NO产物来自于NOS-3磷酸化和NOS-2两种途径。如图7所示:机械通气15分钟,NOS-3磷酸化提高2.5倍并持续维持高水平至2小时,NOS-2蛋白表达增高,NOS-3蛋白表达不变;Calpain抑制剂显著降低NOS-3磷酸化而对NOS-2蛋白表达没有影响;与此相似,Calpainl或Calpain2基因knockdown后也显著降低NOS-3磷酸化而对NOS-2蛋白表达没有影响。这些结果说明大潮气量机械通气时,Calpain通过NOS-3磷酸化途径而非NOS-2途径介导NO产物增加(Fig9)。
     4.6为了明确Calpain对NOS-3活化(磷酸化)的作用,我们观察了Calpain对NOS-3上游信号AKt磷酸化的作用
     结果显示:Akt磷酸化程度在大潮气量机械通气的增强是时间依赖性的,机械通气1小时,达到最高,2小时较1小时下降。Calpain抑制剂或Calpain knockdown后,AKt磷酸化活性也降低。说明Calpain在VILI使NOS-3磷酸化是通过活化其上游信号Akt而产生的(Fig9)。
     结论
     1大潮气量机械通气产生了迅速的Calpain(?)舌性
     2Calpain活性诱发了以中性粒细胞浸润、肺泡-毛细血管通透性增高、肺水肿形成为特征的炎性反应;运用脂质体介导小干扰RNA体内转染基因沉默技术和药物干预Calpain表达后,炎性反应降低,产生了一系列肺保护作用。
     3机械通气早期Calpain1/2都被激活,两种亚型在VILI中具有相同作用
     4Calpain活性增高介导的早期肺部炎性反应是通过Akt-P-NOS3-NO-Src-P-ICAM1-PMN途径而产:生的。(Fig10)
     意义
     首次探讨Calpain在机械通气肺损伤早期炎性反应的发病机理中起决定性作用,是治疗机械通气肺损伤的关键靶点。基因沉默技术或药物干预Calpain活性、对VILI的早期治疗有重要意义,为VILI的早期治疗提供了理论依据和实验基础。
Backgroung and objective Mechanical ventilation is currently a therapeutic mainstay in the critically ill patients with acute lung injury and acute respiratory distress syndrome. It is now well recognized from animal experiments and increasing evidence in humans that mechanical ventilation per se can cause further lung injury and perhaps lead to the development of multiple organ failure
     Ventilator-induced lung injury (VILI) as a result of mechanical stretch is characterized by massive inflammatory responses in the lung as evidenced by alveolar-capillary hyperpermeability, protein-rich edema formation and polymorphonuclear neutrophil (PMN) infiltration into lung interstitium and alveoli Calpains are Ca2+-dependent. non-lysosomal cysteine proteases (proteolytic enzymes). Several calpain isoforms, including calpain1(or μ-calpain), calpain2(or m-calpain), and calpain10, are ubiquitously expressed in mammals, whereas calpain3(muscle p94) and calpain8(stomach nCl-2) reveal tissue-specific expression patterns (25). Calpain1and calpain2, the two major isoforms of calpain. are heterodimers comprised of a unique large (80kDa) catalytic subunit and a common small (28kDa) regulatory subunit. Calpain1and calpain2require micromolar (1to20μM) and millimolar (0.25to0.75mM) concentration of intracellular Ca2+for activation. respectively. Elevations in intracellular Ca2+above isoform-specific thresholds induce Ca2+binding and subsequent activation via a conformational change that creates an active catalytic triad, as well as autolysis of both subunits. Calpain1-deficient mice have a platelet dysfunction (5), whereas knocking down both calpain1and2simultaneously leads to an embryonic-lethal phenotype. The physiological functions of calpains are not yet fully elucidated. Transient calpain activation has been shown to be involved in essential functions such as cell signaling and protein turnover, while sustained activation of calpains contributes to acute neurological injuries and Alzheimer's disease. Recently, calpains have been implicated in apoptotic cell death and tissue injury, and appear to be an essential regulator of inflammation. During sepsis, calpain1has been shown to induce apoptosis in pulmonary microvascular endothelial cells. In addition, inhibition of calpains attenuated zymosan-induced multiple organ failure, the activation of NF-κB and organ injury in hemorrhagic shock in the rat. There is not any about Calpain in VILI and metabolism. However,whether and how Calpain participates in the regulation of Ventilator-induced lung injury induced by ventilator remains important and unknown.
     In the present study, using genetic and pharmacological approaches we identified a crucial role for calpains in the pathogenesis of ventilator-induced lung inflammation and injury. Rapid calpain activation following mechanical stretch triggers PMN infiltration into the lung via endothelial nitric oxide synthase or eNOS (NOS-3)-nitric oxide (NO)-mediated ICAM-1phosphorylation. Our data suggest that calpains may be a key mechanical sensor of early lung inflammation and injury.
     Methods
     Experimental protocols
     Mice model of VILI
     Mice were anesthetized with ketamine (75mg/kg). underwent tracheotomy and ventilated for2h with1%isoflurane in room air to maintain anesthesia, using either high or normal tidal volume. For high tidal volume ventilation, mice were connected to a Harvard Apparatus ventilator (MiniVent. Harvard Biosciences:Holliston. MA), with a tidal volume of28ml/kg, a respiratory rate of60breath/min. and0cm H2O end-expiratory pressure. For normal volume ventilation, mice received7ml/kg of tidal volume, a respiratory rate of120breath/min and0cm H2O end expiratory pressure. In order to maintain PaCO2between35and45torr (4.7-6.0kPa),~5ml of dead space was added to the ventilator circuit. Body temperature was maintained between37℃and38℃, using a heating lamp (15). In some experiments, animals were pretreated with inhibitor of both calpain1and calpain2. calpain inhibitor I (ALLN,5-20mg/kg, intraperitoneally. i.p.). NOS inhibitor L-NAME (15mg/kg, i.p.) or tyrosine phosphorylation inhibitor genistein (50mg/kg, i.p.)1h before exposure to mechanical ventilation. After2h of mechanical ventilation, various measurements were obtained. Depletion of calpain1and calpain2in mouse lungs
     Calpain1and2small interfering RNAs (siRNAs) are a pool of3target-specific20-25nt siRNAs (Santa Cruz). Calpain1/2was depleted in mouse pulmonary vasculature by retro-orbital injection of cationic liposome-siRNA complexes as described previously. The liposome-siRNA complexes were prepared by addition of0.5mg/kg siRNA into150μl of liposome suspensions. A scramble siRNA was employed as control. Successful transfection of calpain1and calpain2siRNAs was confirmed by Western blotting analysis of lung homogenates. All animal experiments were performed48h after transfection.
     Calpain activity assays
     Analysis of calpain activity in the lung was performed using a calpain activity assay kit (Abeam, Cambridge, MA) according to the manufacturer's instructions
     Western blot analysis
     At the end of experiments, lungs were homogenized and lysed in lysis buffer (50mM Tris-HCl, pH7.5,150mM NaCl,1mM EDTA,0.25%sodium deoxycholate,1.0%NP-40,0.1%SDS,1mM Na3VO4,1mM NaF,1mM PMSF, and protease inhibitor mixture). Protein concentrations were determined by the Bicinchoninic Acid (BCA) assay. Equal amounts of protein from each lysate were separated by SDS/PAGE and transferred to nitrocellulose membranes, blocked, and then incubated with relevant blotting antibodies.Protein bands were visualized using Pierce ECL reagent. Densotometric measurement was preformed from scanned films using Imagej software (NIH).
     NO production measurement
     NO production in the lung was determined using a commercial nitrate/nitrite colorimetric assay kit (Cayman Chemical Company. Ann Arbor. MI) according to the manufacturer's instructions.
     Lung MPO assay
     The azurophilic granules of PMNs contain MPO, a potent oxidizing and chlorinating agent which can be used as a marker for PMN infiltration into the lung MPO activity was determined using a MPO assay kit (Invitrogen) according to manufacturer's protocol.
     Determination of PMN counts in bronchoalveolar lavage (BAL) fluid
     Assessment of pulmonary vascular permeability and edema formation
     Cytokine assay
     Statistical analysis
     RESULTS
     1Rapid calpain activation by high tidal volume mechanical ventilation in the mouse lung
     2Calpain inhibitor attenuates mechanical ventilation-induced lung inflammation
     3Depletion of calpain1or calpain2in pulmonary vasculature reduced mechanical ventilation-induced lung inflammation
     4Calpain activation regulates ICAM-1phosphorylation during VILI
     5Calpain-mediated NO production stimulates ICAM-1phosphorylation and subsequent PMN infiltration into the lung
     6A critical role of calpain in NOS-3-derived NO production after mechanical ventilation
     Conclusion
     1Mechanical ventilation with high tidal volume induced rapid (within15minutes) and persistent calpain activation
     2Calpain triggered lung inflammation evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition and Depletion of calpain1or calpain2significantly attenuated these inflammatory responses caused by lung hyperinflation and had a protective effect against ventilator-induced lung inflammatory responses.
     3Both calpain land calpain2were activated in the early stage of the mechanical ventilator. They have the same enfluence inVILI.
     4.calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1phosphorylation and neutrophil recruitment.
     In summary. our study identifies calpain activation as an early event of lung inflammatory injury induced by hyperinflation.These findings suggest that calpain may represent a novel therapeutic target for the prevention and treatment of VILI.
引文
1. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New England Journal of Medicine 2000; 342: 1301-8.
    2.Li LF,Ouyang B,ChoukrounG,et al.Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-Kb-inducing kinases.Am J Physiol lung Cell Mol Physiol,2003.285(4):464-475
    3.Li CH,XuQB.Mechanical stress-initiated signal transductions in vascular smooth muscle cells.Cellular Signaling,2000,12(3):435-445
    4. Uhlig S, Uhlig U. Pharmacological interventions in ventilatorinduced lung injury. Trends in Pharmacological Sciences 2004;25:592-600.
    5. Wang YL, Malik AB, Sun Y, Hu S, Reynolds AB, Minshall RD, Hu G. Innate Immune Function of the adherens junction protein p120-catenin in endothelial response to endotoxin. J Immunol 186:3180-3187,2011.
    6. Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. European Respiratory Journal 2012; 39:1162-70.
    7. Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. European Journal of Cell Biology 2012; 91:590-601.
    8. Zosky GR, Janosi TZ, Adamicza A, et al. The bimodal quasistatic and dynamic elastance of the murine lung. Journal of Applied Physiology 2008; 105:685-92.
    9. dos Santos CC, Shan Y, Akram A, et al. Neuroimmune regulation of ventilator-induced lung injury. American Journal of Respiratory and Critical Care Medicine 2011; 183:471-82.
    10 Jenkins RG, Su X, Su G, Scotton CJ, Camerer E, Laurent GJ, Davis GE, Chambers RC, Matthay MA, Sheppard D. Ligation of proteaseactivated receptor 1 enhances_v_6 integrin-dependent TGF-_ activation and promotes acute lung injury. J Clin Invest 116:1606-1614,2006.
    11.Jesus Villar,Nuria E Cabrera etal Mechanical ventilation modulates TLR4 and IRAK-3in a non-infections,ventilator-induced lung injury model.Respiratory Research 2010,11:27
    12.Carrie D Chun etal Mechanical ventilation modulates toll-like receptor-3-induced lung inflammation via a MyD88-dependent TLR4-independent pathway,a controlled animal study.BMC Pulmonary Medicine 2010; 10:57
    13. Parker JC, Townsley MI, Rippe B. Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 1984;57:1809-16.
    14. Plotz FB, Slutsky AS, van Vught AJ, Heijnen CJ. Ventila-tor-induced lung injury and multiple system organ failure:a critical review of facts and hypotheses. Intensiv Care Med 2004;30:1865-72.
    15. Wilson MR, Choudhury S, Goddard ME, et al. High tidal volume upregulates intrapulmonary cytokines in an in vivo mouse model of ventilator-induced lung injury. Journal of Applied Physiology 2003; 95:1385-93.
    16. Yang G, Hamacher J, Gorshkov B, et al. The dual role of TNF in pulmonary edema. Journal of Cardiovascular Disease Research 2010; 1:29-36.
    17. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respiratory Research 2006; 7:125.
    18. Vlahakis NE, Schroedr MA, Limper AH, Hubmayr RD.Stretch induces cytokine release by alveolar epithelia cells in vitro. Am J Physiol 1999;277:L167-73.
    19-17. Nonas SA, Moreno-Vinasco L, Ma SF, Jacobson JR, Desai AA, Dudek SM et al. Use of consomic rats for genomic insights into ventilator-associated lung injury. Am J Physiol Lung Cell Mol Physiol 2007;293:L292-302.
    20. Deheinzelin D, Jatene FB, Saldiva PH, Brentani RR. Up regulation of collagen messenger RNA expression occurs immediately after lung damage. Chest 1997;112:1184-8.
    21.Tremblay LN,Slutsky As.Ventilator-induced lung injury:from the bench to bedside.Intensive Care Med 2006.32:24-33
    22Li LF,Ouyang B,ChoukrounG,et al.Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-Kb-inducing kinases.Am J Physiol lung Cell Mol Physiol,2003.285(4):464-475
    23. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010;298:L715-31.
    24.24. Haitsma JJ, Uhlig S, Goggel R, Verbrugge SJ, Lachmann U,Lachmann B. Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med 2000;26:1515-22.
    25.Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 279:L1137-L1145,2000.
    26. Bertok S, Wilson MR, Dorr AD, et al. Characterization of TNF receptor subtype expression and signaling on pulmonary endothelial cells in mice. American Journal of Physiology-Lung Cellular and Molecular Physiology 2011; 300:L781-9.
    27. Dorr AD, Wilson MR, Wakabayashi K, et al. Sources of alveolar soluble TNF receptors during acute lung injury of different etiologies. Journal of Applied Physiology 2011; 111:177-84.
    28. Bertok S, Wilson MR, Morley PJ, et al. Selective inhibition of intra-alveolar p55 TNF receptor attenuates ventilator-induced lung injury. Thorax 2012; 67:244-51.178 Anaesthesi
    1 Goll D E, Thompson V F, Li H, Wei W & Cong J (2003) The calpain system. Physiol Rev 83,731-801
    2 Hanna R A, Campbell R L & Davies P L (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456,409-413
    3 Sorimachi H, Hata S & Ono Y (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 87,287-327
    4 Zhang W, Lu Q, Xie Z J & Mellgren R L (1997) Inhibition of growth of W1-38 fibroblast by benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone: evidence that cleavage of P53 by a calpain-like protease is necessary for G1 to S phase transition. Oncogene 14,255-263
    5 Yuelan Wang,Richard D,Minshall,et al.Cyclic stretch induces alveolar epithelial barrier dysfunction via calpain-mediated degradation of P120-catenin.Am J Physiol Lung Cell Mol Physiol.2011,301:L197-206
    6 Ariyoshi H, Okahara K, Sakon M, Kambayashi J, Kwashima S, Kawasaki T & Monden M (1998) Possible involvement of m-Calpain in vascular smooth muscle cell proliferation. Arterioscler Thromb Vase Biol 18,493-8
    7 Cheng G, Shan J, Xu G, Huang J, Ma J, Ying J & Zhu L (2003) Apoptosis induced by simvastatin in rat vascular smooth muscle cell through Ca2+- Calpain & Caspase-3 dependent pathways. Pharmacol Res 48,571-578
    8 Garcia M, Bondada V & Geddes J W (2005) Mitochondrial localization of μ-Calpain. Biochem Biophys Res Commun 339,1241-1247
    9 Sorimachi Y, Harada K, Saido TC, Ono T. Kawashima S & Yoshida K (1997) Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J Biochem 122,743-748
    10 Weber H, Huhns S. Luthen F & Jonas L (2009) Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini. Int J Exp Pathol 90,387-399
    11 Hu H,Li X,Li Y et al Calpain-1 induced apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res,2009,78:33-39
    12 Zhu H, Zhang L, Huang X, Davis J J, Jacob D A, Teraishi F, Chiao P & Fang B (2004) Overcoming acquired resistance to TRAIL by chemotherapeutic agents and calpain inhibitor I through distinct mechanisms. Mol Ther 9,666-673
    13 Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 1:S 12-8.
    14 Dedieu S, Poussard S, Mazeres G, Grise F, Dargelos E, Cottin P & Brustis J J (2004) Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp Cell Res 292,187-200
    15 Zhang Y, Matkovich S J, Duan X, Diwan A, Kang M Y & Dorn G W 2nd (2011) Receptor-independent protein kinase C alpha (PKCalpha) signaling by calpain-generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J Biol Chem 29, 26943-26951
    16 Rojas F J, Brush M & Rojas I M (1999) Calpain-calpastatin:a novel, complete Ca-dependent potease system in human spermatozoa. Mol Hum Reprod 5,520-526
    17 Haim K, Aharon-Ben I & Shalgi R (2006) Expression and immunolocali-zation of the calpain-calpastatin system during parthenogenetic activation and fertilization in the rat egg. Reproduction 131,35-43
    18 Bastian Y, Espitia A L R, Mujica A & Gonzalez E O H (2010) Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton. Reproduction 140,673-684
    19 Gonlalez A, Saez M E. Avagon M J, Galan J J, Vettori P. Molika L, Rubio C. Real L M, Ruiz A & Loca R R (2006)Specific haplocytes of the calpain-5 gene are associated with polycystic ovary syndrome. Hum Reprod 21.943-951
    20 Takano J, Mihira N, Fujiona R, Hosoki E, Chishti A H & Saido T C (2011) Vital role of the calpain-calpastatin system for placental integrity dependent embryonic survival. Mol Cell Biol 31,4097-4106
    21 Pfaff M, Du X & Ginsnerg M H (1999) Calpain cleavage of integrin cytoplasmic domains. FEBS Lett 460,17-22
    22 Fox J E & Saido T C (1999) Calpain:Pharmacology and Toxicology of Calcium-Dependent Protease (Wang K K W & Yuen P, eds), pp 103-126, Taylor & Francis, Philadelphia
    23. Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury:the anatomical and physiological framework. Crit Care Med38, Suppl 10:S539-S548, 2010. Kishimoto A, Mikawa K, Hashimoto K, Yasuka I, Tanaka S, Tominaga M, Kuroda T & Nishimura Y (1989). Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264,4088-4092
    24. Rahman A, Fazal F. Hug tightly and say goodbye:role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 11:823-839,2009. Storr S J, Carragher N O, Frame M C, Parr T & Martin S G (2011) The calpain system and cancer. Nat Rev Cancer 11,364-374
    25 Karcz S R, Podestrs R B, Siddiqui A A, Dekaban G A, Strejan G H & Clarke M W (1991) Molecular cloning and sequence analysis of calcium activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol 49,333-366
    26 Glading A, Bodnar R J, Reynolds I J, Shiraha H, Satish L, Potter D A, Blair H C & Wells A (2004) Epidermal growth factor activates m-calpain (calpain Ⅱ), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24, 2499-2512
    27 Hirai S, Kawasaki H, Yaniv M & Suzuki K (1991) Degradation transcription factors, c-Jun and c-Fos by calpain. FEBS Lett 287,57-61
    28 Kubbutat M H G & Vousden K H (1997) Proteolytic cleavage of human p53 by calpain-a potential regulator of protein stability. Mol cell Biol 17,460-468
    29 Samanta K, Kar P, Ghosh B, Chakraborti T & Chakraborti S (2007) Localization of m-calpain and calpastatin and studies of their association in pulmonary smooth muscle endoplasmic reticulum. Biochim Biophys Acta 1717, 1297-1307
    30 Ashby M C (2001) ER calcium and the functions of intracellular organelles. Cell 12,11-17
    31 Nakagawa T & Zhu H (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403,98-103
    32 Samanta K, Kar P, Chakraborti T, Shaikh S & Chakraborti S (2010) Characteristic properties of endoplasmic reticulum membrane m-calpain, calpastatin and lumen m-calpain:A comparative study between membrane and lumen m-calpains. J Biochem 147,765-779
    33 Roychoudhury S, Ghosh S K, Chakraborti T & Chakraborti S (1996) Role of hydroxyl radical in the oxidant H2O2-mediated Ca2+release from pulmonary smooth muscle mitochondria. Mol Cell Biochem 21,95-103
    34 Roychoudhury S, Chakraborti T, Ghosh S K, Ghosh J J & Chakraborti S (1996) Redox state of pyridine nucleotides, but not glutathione, regulate Ca2+ release by H2O2 from mitochondria of pulmonary smooth muscle. Indian J Biochem Biophys 33,218-222
    35 Chakraborti T, Das S, Mondal M, Roychoudhury S & Chakraborti S (1999) Oxidant, Mitochondria and Calcium:An Overview. Cell Signal 2, 77-85
    36 Kar P, Chakraborti T. Samanta K & Chakraborti S (2008) Sub mitochondrial localization of associated μ-calpain and calpastatin. Arch Biochem Biophys 15,176-186
    37 Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T & Chakraborti S (2010) Mitochondrial calpain system:an overview. Arch Biochem Biophys 495,1-7
    38 Squier M K T, Sehert A J, Sellins K S, Malkinson A M, Takano E & Cohen J J (1999) Calpain & calpastatin regulate neutrophil apoptosis. J Cell Physiol 178,311-319
    39 Ruiz-Vela A, Serrano F, Gonzalez M A, Abad J L, Benard A, Maki M & Martinez A C (2001) Transplanted long-term cultured pre-B1 cells expressing calpastatin are resistant to B-cell receptor induced apoptosis. J Exp Med 194.247-254
    40 Chua B T, Guo K & Li P (2000) Direct cleavage by the calcium activated protease calpain can lead to inactivation of caspases. J Biol Chem 275,5131-5135
    41 Martinez J A, Zhang Z, Svetlov S I, Hayes R L, Wang K K & Larner S F (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis 15,1480-1493
    42 Knepper-Nicolai B, Savill J & Brown S B (1998) Constitutive apoptosis in human neutrophils requires synergy between calpains & the proteosome down stream of caspases. J Biol Chem 273,30530-30536
    43 Giovanni A, Keramaris E, Morris E J, Hou S T, O'Hare M, Dyson N J, Robertson G S, Slack R S & Park D S (2000) E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275,11553-11560
    44 Xiang H, Kinoshita Y, Knudson C M, Korsmeyer S J, Schwartzkroin P A & Morrison R S (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18,1363-1373
    45 Sedarous M, Keramaris E, O'Hare M, Melloni E, Slack R S, Elce J S, Greer P A & Park D S (2003) Calpains Mediate p53 Activation and Neuronal Death Evoked by DNA Damage. J Biol Chem 278,26031-26038.
    46 Inserte J, Barrabes J A, Hernando V & Garcia-Dorado-D (2009) Orphan target for reperfusion injury. Cardiovasc Res 83,169-178
    47 Chen M, Won D J, Krajewaski S & Gottileb R A (2002) Calpain and mitochondria in Ischemia/reperfusion injury. J Biol Chem 277, 29181-29186
    48 Lametsch R, Lonergan S & Huff-Lonergan E (2008) Disulfide bond within mu-calpain active site inhibits activity and autolysis. Biochim Biophys Acta 1784,1215-1221
    49. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266-1269,1990.
    SOParker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84:1113-1118,1998.
    51 Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M.Actin cytoskeleton regulates stretchactivated Ca2_ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43: 26-34,2010.
    1. Miyoshi H, Umeshita K, Sakon M,Imajoh-Ohmi S, Fujitani K, et al.1996. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury.Gastroenterology 110:1897-904
    2. Edelstein CL, Wieder ED, Yaqoob MM,Gengaro PE, Burke TJ, et al.1995. The role of cysteine proteases in hypoxiainduced rat renal proximal tubular injury. Proc. Natl. Acad. Sci. USA 92:7662-66
    3. Edelstein CL, Yaqoob MM, Alkhunaizi AM, Gengaro PE, Nemenoff RA, et al. 1996. Modulation of hypoxia-induced calpain activity in rat renal proximal tubules. Kidney Int.50:1150-57
    4. Edelstein CL, Ling H, Gengaro P, Nemenoff RA, Bahr BA, et al.1997. Effect of glycine on prelethal and postlethal increases in calpain activity in rat renal proximal tubules. Kidney Int.52:1271-78
    5. Edelstein CL, Ling H, Schrier RW.1997.The nature of renal cell injury. Kidney Int.51:1341-51
    6. Edelstein CL, Shi Y, Schrier RW.1999.Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules. J.Am. Soc. Nephrol.10:1940-49
    7. Liu X, Schnellmann RG.2003. Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. J. Pharmacol.Exp. Ther.304:63-70
    8. Goll D E, Thompson V F, Li H, Wei W & Cong J (2003) The calpain system. Physiol Rev 83,731-801
    9. Hanna R A, Campbell R L & Davies P L (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456.409-413
    10. Sorimachi H, Hata S & Ono Y (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 87,287-327
    11.Anita C.K. Miller', Lori D. Dwyer-Nield. Alvin M. MalkinsonVery early changes in pulmonary protein kinase C-a and calpain Ⅱ contents following injection of butylated hydroxytoluene (BHT) into mice.Toxicology 97 (1995) 141-149
    12. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4:calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20:4474-4481,2000.
    13. Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q, Chen R, Peng T. Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res 78:33-39,2009.
    14.Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH.Disruption of the mouse_-calpain gene reveals an essential role in platelet function. Mol Cell Biol 21:2213-2220,2001.
    15. Lemasters JJ, DiGuiseppi J, Nieminen AL, Herman B.1987. Blebbing, free Ca2C and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78-81
    16. Harriman JF, Liu XL, Aleo MD, Machaca K, Schnellmann RG.2002. Endoplasmic reticulum Ca2C signaling and calpains mediate renal cell death. Cell Death Differ.9:734-41
    17. Waters SL, Wong JK, Schnellmann RG.1997. Depletion of endoplasmic reticulum calcium stores protects against hypoxiaand mitochondrial inhibitor-induced cellular injury and death. Biochem. Biophys.Res. Commun.240:57-60
    18. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266-1269.1990.
    19.Parker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84: 1113-1118,1998.
    20. Ho S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M,Naruse K, Hasegawa Y, Sokabe M. Actin cytoskeleton regulates stretchactivated Ca2_ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43: 26-34,2010.
    1. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 279:L1137-L1145,2000.
    2. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301-1308,2000.
    3. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4:calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 20:4474-4481,2000.
    4. Averna M, Stifanese R, De Tullio R, Salamino F, Bertuccio M,Pontremoli S, Melloni E. Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90.FEBS J 274:6116-6127,2007.
    5. Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH.Disruption of the mouse_-calpain gene reveals an essential role in platelet function. Mol Cell Biol 21:2213-2220,2001.
    6. Beckman JS. Koppenol WH. Nitric oxide, superoxide, peroxynitrite:The good, the bad, ugly. Am J Physiol Cell Physiol 271:C1424-C1437,1996.
    7. Cuzzocrea S, Chatterjee PK, Mazzon E, Serraino I, Dugo L, Centorrino T, Barbera A. Ciccolo A, Fulia F, McDonald MC, Caputi AP, Thiemermann C. Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat. Crit Care Med 30: 2284-2294,2002.
    8. Dong Y, Wu Y. Wu M, Wang S, Zhang J, Xie Z, Xu J, Song P, Wilson K, Zhao Z, Lyons T, Zou MH. Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J Cell Mol Med 13: 2899-2910,2009.
    9. Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA. High tidal volume ventilation induces NOS2 and impairs cAMP-dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol 284:L791-L798,2003.
    10. Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM,Malik AB. Caveolin-1 regulates NF-_B activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol 177:4853-4860,2006.
    11. Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury:the anatomical and physiological framework. Crit Care Med 38,Suppl 10:S539-S548, 2010.
    12. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system.Physiol Rev 83:731-801,2003.
    13. Hegeman MA, Hennus MP, Heijnen CJ, Specht PA, Lachmann B,Jansen NJ, van Vught AJ, Cobelens PM. Ventilator-induced endothelial activation and inflammation in the lung and distal organs. Crit Care 13:R182,2009.
    14. Hosfield CM, Elce JS, Davies PL, Jia Z. Crystal structure of calpain reveals the structural basis for Ca2_-dependent protease activity and a novel mode of enzyme activation. EMBO J 18:6880-6889,1999.
    15. Hu G, Malik AB, Minshall RD. Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation. Crit Care Med 38:194-201,2010.
    16. Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res 102:e 120-e131, 2008.
    17. Hu H, Li X, Li Y, Wang L. Mehta S. Feng Q, Chen R, Peng T. Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res 78:33-39,2009.
    18. Ischiropoulos H. Biological tyrosine nitration:A pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 356:1-11,1998.
    19. Ito S. Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M,Naruse K, Hasegawa Y. Sokabe M. Actin cytoskeleton regulates stretchactivated Ca2_ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43: 26-34,2010.
    20. Jenkins RG, Su X, Su G, Scotton CJ. Camerer E, Laurent GJ, Davis GE, Chambers RC, Matthay MA, Sheppard D. Ligation of proteaseactivated receptor 1 enhances_v_6 integrin-dependent TGF-_ activation and promotes acute lung injury. J Clin Invest 116:1606-1614,2006.
    21. Kuchay SM, Chishti AH. Calpain-mediated regulation of platelet signaling pathways. Curr Opin Hematol 14:249-254.2007.
    22. Li LF, Yu L, Quinn DA. Ventilation-induced neutrophil infiltration depends on c-Jun N-terminal kinase. Am J Respir Crit Care Med 169:518-524,2004.
    23. Lin SM, Lin HC, Lee KY, Huang CD, Liu CY, Wang CH, Kuo HP.Ventilator-induced injury augments interleukin-lbeta production and neutrophil sequestration in lipopolysaccharide-treated lungs. Shock 28:453-460,2007.
    24. Liu G, Vogel SM, Gao X, Javaid K, Hu G, Danilov SM, Malik AB,Minshall RD. SRC phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol 31:1342-1350,2011.
    25. Liu J, Liu MC, Wang KK. Calpain in the CNS:from synaptic function to neurotoxicity. Sci Signal 1:rel,2008.
    26. Mallozzi C, Di Stasi AM, Minetti M. Peroxynitrite modulates tyrosinedependent signal transduction pathway of human erythrocyte band 3.FASEB J 11:1281-1290, 1997.
    27. McDonald MC, Mota-Filipe H, Paul A, Cuzzocrea S, Abdelrahman M, Harwood S, Plevin R, Chatterjee PK, Yaqoob MM, Thiemermann C. Calpain inhibitor I reduces the activation of nuclear factor-_B and organ injury/dysfunction in hemorrhagic shock. FASEB J 15:171-186.2001.
    28. Miyao N, Suzuki Y, Takeshita K, Kudo H, Ishii M, Hiraoka R, Nishio K, Tamatani T, Sakamoto S, Suematsu M, Tsumura H, Ishizaka A, Yamaguchi K, Various adhesion molecules impair microvascular leukocyte kinetics in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 290: L1059-L1068,2006.
    29. Moldoveanu T, Hosfield CM. Lim D, Elce JS, Jia Z, Davies PL. A Ca2 switch aligns the active site of calpain. Cell 108:649-660,2002.
    30. Monteiro HP. Gruia-Gray J, Peranovich TM, de Oliveira LC, Stern A. Nitric oxide stimulates tyrosine phosphorylation of focal adhesion kinase, Src kinase, and mitogen-activated protein kinases in murine fibroblasts. Free Radic Biol Med 28: 174-182,2000.
    31. Parker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84: 1113-1118,1998.
    32. Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder R, Garcia JG, Hassoun PM. Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Medl72:470-479,2005.
    33. Peranovich TMS, da Silva AM, Fries DM, Stern A, Monteiro HP.Nitric oxide stimulates tyrosine phosphorylation in murine fibroblasts in the absence and presence of epidermal growth factor. Biochem J 305:613-619,1995.
    34. Rahman A, Fazal F. Hug tightly and say goodbye:role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 11:823-839,2009.
    35. Schmidt EP, Damaria M, Rentsendorj O, Servinsky LE, Zhu B, Moldobaeva A, Gonzalez A, Hassoun PM, Pearse DB. Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 295: L1056-L1065,2008.
    36. Sithu SD, English WR, Olson P, Krubasik D, Baker AH, Murphy G,D'Souza SE. Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration.J Biol Chem 282: 25010-25019,2007.
    37. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898-1902,1992.
    38. Su Y, Block ER. Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 278: L1204-L1212,2000.
    39. Takakura K, Beckman JS. MacMillan-Crow LA. Crow JP. Rapid and irreversible inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. Arch Biochem Biophys 369:197-207,1999.
    40. Vaporidi K. Francis RC. Bloch KD, Zapol WM. Nitric oxide synthase 3 contributes to ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299:L150-L159,2010.
    41. Wang YL, Malik AB, Sun Y, Hu S, Reynolds AB, Minshall RD, Hu G. Innate Immune Function of the adherens junction protein p120-catenin in endothelial response to endotoxin. J Immunol 186:3180-3187,2011.
    42. Ware LB, Summar M. Understanding the role of NOS-3 in ventilatorinduced lung injury:don't take NO for an answer. Am J Physiol Lung Cell Mol Physiol 299: L147-L149,2010.
    43. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266-1269,1990.
    44. Youn JY, Wang T, Cai H. An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res 104: 50-59,2009.
    45 Goll D E, Thompson V F, Li H, Wei W & Cong J (2003) The calpain system. Physiol Rev 83,731-801
    46 Hanna R A, Campbell R L & Davies P L (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456,409-413
    47 Sorimachi H, Hata S & Ono Y (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 87,287-327
    48. Lemasters JJ.1998. The mitochondrial permeability transition:from biochemical curiosity to pathophysiological mechanism. Gastroenterology 115:783-87
    49. Peters SMA, Tijsen MJH, Bindels RJM, van Os CH, Wetzels JFM.1996. Rise in cytosolc Ca2C and collapse of mitochondrial potential in anoxic, but not hypoxic, rat proximal tubules. J. Am. Soc. Nephrol.7:2348-56
    50. Aguilar HI. Botla R, Arora AS, Bronk SF, Gores GJ.1996. Induction of the mitochondrial permeability transition by protease activity in rats:a mechanism of hepatocyte necrosis. Gastroenterology 110:558-66
    51. Gores GJ, Miyoshi H. Botla R, Aguilar HI, Bronk SF.1998. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis:a potential role for mitochondrial protease. Biochim. Biophys. Acta 1366:167-75
    52. Gao G, Dou QP.2000. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J. Cell.Biochem.80:53-72
    53. Wood DE, NewcombEW.2000. Cleavage of Bax enhances its cell death function. Exp. Cell. Res.256:375-82
    54. Nakagawa T, Yuan J.2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell. Biochem.150:887-94
    55. Shimizu S. Konishi A, Kodama T. Tsujimoto Y.2000. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci.USA 97:3100-5
    56. Liu X, Rainey JJ, Harriman JF, Schnellmann RG.2001. Calpains mediate acute renal cell death:role of autolysis and translocation. Am. J. Physiol. Renal Physiol. 81:F728-38
    57. Liu X, Harriman JF, Schnellmann RG.2002. Cytoprotective properties of novel nonpeptide calpain inhibitors in renal cells. J. Pharmacol. Exp. Ther.302:88-94
    58.Schnellmann RG, Yang X, Cross TJ.1994. Calpains play a critical role in renal proximal tubule (RPT) cell death. Can. J. Physiol. Pharmacol.72:602 (Abstr.)
    59. Waters SL, Sarang SS, Wang KKW, Schnellmann RG.1997. Calpains mediate calcium and chloride influx during the late phase of cell injury. J. Pharmacol. Exp. Ther.283:1177-84
    60. Harriman JF,Waters-Williams S, Chu DL, Powers JC, Schnellmann RG.2000. Efficacy of novel calpain inhibitors in preventing renal cell death. J. Pharmacol. Exp. Ther.294:1083-87
    61. Chatterjee PK, Brown PA, Cuzzocrea S, Sacharowski K, Stewart KN, et al. 2001. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in rat. Kidney Int.59:2073-83
    62. Schnellmann RG, Waters-Williams SL.1998. Proteases in renal cell death: calpains mediate cell death produced by diverse toxicants. Ren. Fail.20:679-86
    63. Thevananther S, Kolli AH, Devarajan P.1998. Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds alpha-Na. K-ATPase. J. Biol. Chem.273:23952-58
    64. Doctor RB, Chen J. Peters LL, Lux SE, Mandel LJ.1998. Distribution of epithelial ankyrin (Ank3) spliceoforms in renal proximal and distal tubules. Am. J. Physiol-Renal Physiol.274:F129-38
    1 Goll D E, Thompson V F, Li H, Wei W & Cong J (2003) The calpain system. Physiol Rev 83,731-801
    2 Hanna R A, Campbell R L & Davies P L (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456,409-413
    3 Sorimachi H, Hata S & Ono Y (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci 87,287-327
    4 Zhang W, Lu Q, Xie Z J & Mellgren R L (1997) Inhibition of growth of W1-38 fibroblast by benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone: evidence that cleavage of P53 by a calpain-like protease is necessary for G1 to S phase transition. Oncogene 14,255-263
    5 Barr F E (2005) A new target in pulmonary hypertension. Crit Care Med 33,623-628
    6 Ariyoshi H, Okahara K, Sakon M, Kambayashi J, Kwashima S, Kawasaki T 6 Monden M (1998) Possible involvement of m-Calpain in vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol 18.493-8
    7 Cheng G, Shan J, Xu G, Huang J, Ma J, Ying J & Zhu L (2003) Apoptosis induced by simvastatin in rat vascular smooth muscle cell through Ca2+- Calpain & Caspase-3 dependent pathways. Pharmacol Res 48,571-578
    8 Garcia M, Bondada V & Geddes J W (2005) Mitochondrial localization of μ-Calpain. Biochem Biophys Res Commun 339,1241-1247
    9 Sorimachi Y, Harada K, Saido TC, Ono T, Kawashima S & Yoshida K (1997) Downregulation of calpastatin in rat heart after brief ischemia and reperlusion. J Biochem 122,743-748
    10 Weber H, Hiihns S, Luthen F & Jonas L (2009) Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini. Int J Exp Pathol 90,387-399
    11 Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G & Arumugam M (2010) Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium. Free Radic Biol Med 48.483-492
    12 Zhu H, Zhang L, Huang X, Davis J J, Jacob D A, Teraishi F, Chiao P & Fang B (2004) Overcoming acquired resistance to TRAIL by chemotherapeutic agents and calpain inhibitor I through distinct mechanisms. Mol Ther 9,666-673
    13 Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 1:S12-8.
    14 Dedieu S, Poussard S, Mazeres G, Grise F, Dargelos E, Cottin P & Brustis J J (2004) Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp Cell Res 292,187-200
    15 Zhang Y, Matkovich S J, Duan X, Diwan A, Kang M Y & Dorn G W 2nd (2011) Receptor-independent protein kinase C alpha (PKCalpha) signaling by calpain-generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J Biol Chem 29, 26943-26951
    16 Rojas F J, Brush M & Rojas I M (1999) Calpain-calpastatin:a novel, complete Ca-dependent potease system in human spermatozoa. Mol Hum Reprod 5,520-526
    17 Haim K, Aharon-Ben I & Shalgi R (2006) Expression and immunolocali-zation of the calpain-calpastatin system during parthenogenetic activation and fertilization in the rat egg. Reproduction 131,35-43
    18 Bastian Y, Espitia A L R, Mujica A & Gonzalez E O H (2010) Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton. Reproduction 140,673-684
    19 Gonlalez A, Saez M E, Avagon M J, Galan J J, Vettori P, Molika L, Rubio C. Real L M, Ruiz A & Loca R R (2006)Specific haplocytes of the calpain-5 gene are associated with polycystic ovary syndrome. Hum Reprod 21,943-951
    20 Takano J. Mihira N, Fujiona R. Hosoki E, Chishti A H & Saido T C (2011) Vital role of the calpain-calpastatin system for placental integrity dependent embryonic survival. Mol Cell Biol 31,4097-4106
    21 Pfaff M, Du X & Ginsnerg M H (1999) Calpain cleavage of integrin cytoplasmic domains. FEBS Lett 460,17-22
    22 Fox J E & Saido T C (1999) Calpain:Pharmacology and Toxicology of Calcium-Dependent Protease (Wang K K W & Yuen P, eds), pp 103-126, Taylor & Francis, Philadelphia
    23 Kishimoto A, Mikawa K, Hashimoto K, Yasuka I, Tanaka S, Tominaga M, Kuroda T & Nishimura Y (1989). Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 264,4088-4092
    24 Storr S J, Carragher N O, Frame M C, Parr T & Martin S G (2011) The calpain system and cancer. Nat Rev Cancer 11,364-374
    25 Karcz S R, Podestrs R B, Siddiqui A A, Dekaban G A, Strejan G H & Clarke M W (1991) Molecular cloning and sequence analysis of calcium activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol 49,333-366
    26 Glading A, Bodnar R J, Reynolds I J, Shiraha H, Satish L, Potter D A, Blair H C & Wells A (2004) Epidermal growth factor activates m-calpain (calpain Ⅱ), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24, 2499-2512
    27 Hirai S, Kawasaki H, Yaniv M & Suzuki K (1991) Degradation transcription factors, c-Jun and c-Fos by calpain. FEBS Lett 287,57-61
    28 Kubbutat M H G & Vousden K H (1997) Proteolytic cleavage of human p53 by calpain-a potential regulator of protein stability. Mol cell Biol 17,460-468
    29 Samanta K, Kar P, Ghosh B, Chakraborti T & Chakraborti S (2007) Localization of m-calpain and calpastatin and studies of their association in pulmonary smooth muscle endoplasmic reticulum. Biochim Biophys Acta 1717. 1297-1307
    30 Ashby M C (2001) ER calcium and the functions of intracellular organelles. Cell 12,11-17
    31 Nakagawa T & Zhu H (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403,98-103
    32 Samanta K, Kar P, Chakraborti T, Shaikh S & Chakraborti S (2010) Characteristic properties of endoplasmic reticulum membrane m-calpain, calpastatin and lumen m-calpain:A comparative study between membrane and lumen m-calpains. J Biochem 147,765-779
    33 Roychoudhury S, Ghosh S K, Chakraborti T & Chakraborti S (1996) Role of hydroxyl radical in the oxidant H2O2-mediated Ca2+release from pulmonary smooth muscle mitochondria. Mol Cell Biochem 21,95-103
    34 Roychoudhury S, Chakraborti T, Ghosh S K, Ghosh J J & Chakraborti S (1996) Redox state of pyridine nucleotides, but not glutathione, regulate Ca2+ release by H2O2 from mitochondria of pulmonary smooth muscle. Indian J Biochem Biophys 33,218-222
    35 Chakraborti T, Das S, Mondal M, Roychoudhury S & Chakraborti S (1999) Oxidant, Mitochondria and Calcium:An Overview. Cell Signal 2, 77-85
    36 Kar P, Chakraborti T, Samanta K & Chakraborti S (2008) Sub mitochondrial localization of associated μ-calpain and calpastatin. Arch Biochem Biophys 15,176-186
    37 Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T & Chakraborti S (2010) Mitochondrial calpain system:an overview. Arch Biochem Biophys 495,1-7
    38 Squier M K T, Sehert A J. Sellins K S, Malkinson A M, Takano E & Cohen J J (1999) Calpain & calpastatin regulate neutrophil apoptosis. J Cell Physiol 178,311-319
    39 Ruiz-Vela A, Serrano F, Gonzalez M A, Abad J L, Benard A, Maki M & Martinez A C (2001) Transplanted long-term cultured pre-B1 cells expressing calpastatin are resistant to B-cell receptor induced apoptosis. J Exp Med 194.247-254
    40 Chua B T, Guo K & Li P (2000) Direct cleavage by the calcium activated protease calpain can lead to inactivation of caspases. J Biol Chem 275,5131-5135
    41 Martinez J A, Zhang Z, Svetlov S I, Hayes R L, Wang K K & Larner S F (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC 12 cells. Apoptosis 15,1480-1493
    42 Knepper-Nicolai B, Savill J & Brown S B (1998) Constitutive apoptosis in human neutrophils requires synergy between calpains & the proteosome down stream of caspases. J Biol Chem 273,30530-30536
    43 Giovanni A, Keramaris E, Morris E J, Hou S T, O'Hare M, Dyson N J, Robertson G S, Slack R S & Park D S (2000) E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275,11553-11560
    44 Xiang H, Kinoshita Y, Knudson C M, Korsmeyer S J, Schwartzkroin P A & Morrison R S (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18,1363-1373
    45 Sedarous M, Keramaris E, O'Hare M, Melloni E, Slack R S, Elce J S, Greer P A & Park D S (2003) Calpains Mediate p53 Activation and Neuronal Death Evoked by DNA Damage. J Biol Chem 278,26031-26038.
    46 Inserte J, Barrabes J A, Hernando V & Garcia-Dorado-D (2009) Orphan target for reperfusion injury. Cardiovasc Res 83,169-178
    47 Chen M, Won D J, Krajewaski S & Gottileb R A (2002) Calpain and mitochondria in Ischemia/reperfusion injury. J Biol Chem 277, 29181-29186
    48 Lametsch R, Lonergan S & Huff-Lonergan E (2008) Disulfide bond within mu-calpain active site inhibits activity and autolysis. Biochim Biophys Acta 1784,1215-1221
    49 Martinez J A, Zhang Z, Svetlov S I, Hayes R L, Wang K K & Larner S F (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PCI2 cells. Apoptosis 15,1480-1493
    50 Liang B, Duan B Y, Zhou X P, Gong J X & Luo Z G (2010) Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem 285,27737-27744
    51 Levesque S, Wilson B, Gregoria V, Thorpe L B, Dallas S, Polikov V S, Hong J S & Block M L (2010) Reactive microgliosis:extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133,808-821
    52 Guemez-Gamboa A, Estrada-Sanchez A M, Montiel T, Paramo B, Massieu L & Moran J J (2011) Neuropathol Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. Exp Neurol 70, 1020-1035
    53 Vosler P S, Brennan C S & Chen J (2008) Calpain-mediated signaling mechanism in neuronal injury & neuro-degeneration. Mol Neurobiol 38, 78-100
    54 Higuchi M, Iwata N, Matsuba Y, Takano J, Suemoto T, Maeda J, Ji B, Ono M, Staufenbiel, M, Suhera J & Saido TC (2012) Mechanistic involvement of the calpain-calpastatin system in Alzheimer's neuropathology. FASEB J 26,1204-1217
    55 Samantaray S, Roy S K & Banik N L (2008) Calpain as a potential therapeutic target in Parkinson's disease. CNS Neuronal Disorder Drug Targets 7,305-312
    56 Chera B, Schaecher K E, Roechini A, Iman S Z, Sribnick E A, Ray S K, Ali S F & Banik N L (2004) Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-pheny 1-1,2,3,6-tetrahydropyridine-treated mice. Brain Res 1006,150-156
    57 Kang H, Han B S, Kim S J & Oh Y J (2012) Mechanisms to prevent caspase activation in rotenone induced dopaminergic neurodegeneration:role of ATP depletion and procaspase-9 degradation. Apoptosis Epub ahead of print
    58 Esteves A R, Arduino D M, Swerdlow R H, Oliveira C R & Cardoso S M (2010) Dysfunctional mitochondria uphold calpain activation:contribution to Parkinson's disease pathology. Neurobiol Dis 37,723-730
    59 Southwell A L, Bugg C W, Kaltenbach L S, Dunn D, Butland S. Weissd A. Paganetti P. Lo D C & Patterson P H (2011) Perturbation with intrabodies reveals that calpain cleavage is required for degradation of hungtinton exon-1. PLos One 6, e16676
    60 Gafri I & Ellerby L M (2002) Calpain activation in Hungtington's disease. J Neurosci 22,4842-4849
    61 Gafri J, Hermel E, Young J E, Wellington C L, Hayden M R & Ellerby L M (2004) Inhibition of calpain cleavage of hungtinton reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279, 20211-20220
    62 Kaneko T, Yamashima T, Tohma Y, Nomura M, Imajoh-Ohmi S, Saido T C, Nakao M, Saya H, Yamamamoto & Yamashita J (2011) Calpain dependent proteolysis of merlin occurs by oxidative stress in meningiomas:a novel hypothesis of tumorigenesis. Cancer 92,2662-2672
    63 Kamoshima Y, Terasaka S, Kabayashi H & Houkin K (2012) Radiation induced intraparenchymal meningioma occurring 6 years after CNS germinoma:case report. Clin. Neurol. Neurosurg Epub ahead of print
    64 Martinez-Gomez L E, Cruz M, Martinez-Nava G A, Madrid-Marina V, Parra E, Garcia-Mena J, Espinoza-Rojo M, Estrada-Velasco B I, Piza-Roman L F, Aguilera P & Burguete-Garcia A I (2011) A replication study of the IRS 1, CAPN10, TCF7L2, and PPARG gene polymorphismsassociated with type 2 diabetes in two different populations of Mexico. Ann Hum Genet 75, 612-620
    65 Arrington D D, Van Vleet T R & Schnellmann R G (2006) Calpain 10:a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291,1159-1171
    66 Azoulay-Alfaguter I, Yaffe Y, Licht-Murava A, Urbanska M, Jaworski J, Pietrokovski S, Hirschberg K & Eldar-Finkelman H (2011) Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region:functional role in calcium/calpain signaling. J Biol Chem 286,13470-13480
    67 Maeno Y, Li Q, Park K, Rask-Madsen C, Gao B, Matsumoto M, Liu Y, Wu I H, White M ,. Feener E P & King G L (2012) Inhibition of insulin signaling in endothelial cells by protein kinase C-induced phosphorylation of p85 subunit of phosphatidylinositol 3-kinase (PI3K). J Biol Chem 287,4518-4530
    68 Mani S K, Balasubramanian S, Zavadzkas J A. Jeffords L B, Rivers W T, Zile M R, Mukherjee R, Spinale F G & Kuppuswamy D (2009) Calpain inhibition preserves myocardial structure and function following myocardial infarction. Am J Physiol Heart Circ Physiol 297,1744-1751
    69 Smolock A R, Mishra G, Eguchi K. Eguchi S & Scalia R (2011) Protein kinase C upregulates intercellular adhesion molecule-1 and leukocyte-endothelium interactions in hyperglycemia via activation of endothelial expressed calpain. Arterioscler Thromb Vase Biol 31,289-296
    70 Li Y, Ma J, Zhu H, Singh M, Hill D, Greer P A, Arnold J M, Abel E D & Peng T (2011) Targeted inhibition of calpain reduces myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. Diabetes.60, 2985-2994
    71 Schwartz S M, Duffy J Y & Pearl J M (2003) Glucocorticoids preserve calpastatin and troponin I during Cardiopulmonary bypass in immature pigs. Pediatr Res 54,91-97
    72 Yoshikawa Y, Zhang G X, Obata K, Ohga Y, Matsuyoshi H, Taniguchi S & Takaki M (2010) Cardioprotective effects of a novel calpain inhibitor SNJ-1945 for reperfusion injury after cardioplegic cardiac arrest. Am J Physiol Heart Circ Physiol 298,643-651
    73 Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K & Zhang J H (2006) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 37, 1888-1894
    74 Hassoun P M, Mouthon L, Barbera J A, Eddahibi S, Flores S C, Grimminger F, Jones P L.Maitland M L, Michelakis E D, Morrell N W, Newman J H, Rabinovitch M, Schermuly R, Stenmark K R, Voelkel N F, Yuan J X & Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol S10-9
    75 Ma W, Han W, Greer P A, Tuder R M, Toque H A, Wang K K, Caldwell R W & Su Y (2011) Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. J Clin Invest 121,4548-4566
    76 Pearl J M, Nelson D P, Wellmann S A, Raoke J L, Wapner C J, MC Namara J L & Duffy J Y (2000) Acute hypoxia & reoxygenation impairs exhaled nitric oxide release & pulmonary mechanics. J Thorac Cardiovasc Surg 119,931-938
    77 Duffy J Y, Schwartz SM, Lyons J M, Bell J H, Wagner C J, Zingarelli B & Pearl J M (2005) Calpain inhibition decreases endothelin-1 levels and pulmonary hypertension after cardiopulmonary bypass with deep hypothermic circulatory arrest. Crit Care Med 33,623-628
    78 Pearl J M, Wellmann S A, McNamara J L, Lombardi J P, Wagner C J, Raake J L & Nelson D P (1999) Bosental prevents hypoxia-reoxygenation induced pulmonary hyper-tension and improves pulmonary function, Ann Thorac Surg 68,1714-1722
    79 Su Y & Block E R (2000) Role of Calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 278, L1204-L1212
    80 Ueda Y & Chaudhuri G (2000) Differential expression of B1-containing transcripts in Leishmania-exposed macrophages. J Biol Chem 275,19428-19432
    81 Misra S, Tripathi M K & Chaudhuri G (2005) Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages. J Biol Chem 280,29361-29373
    82 Rana T, Misra S, Mittal M K, Farrow A L, Wilson K T, Linton M F, Fazio S,Willis I M & Chaudhuri G (2011) Mechanism of down regulation of RNA polymerase Ⅲ transcribed non coding RNA genes in macrophages by leishmania. J Biol Chem 285,6614-6626
    83 Ennes-Vidal V, Menna-Barreto R F, Santos A L, Branquinha M H & d'Avila-Levy C M (2010) Effects of the calpain inhibitor MDL 28170 on clinically relevant forms of Trypanosoma Cruzi in vitro J Antimicro Chemothe 65,1395-1398
    84 Goldmann O, Sastalla I, Wos-Oxley M, Rohde M & Medina E (2009) Streptococcus pyogenes induces oncosis in macrophage through the activation of an inflammatory programmed cell death pathway. Cell Microbial 11.138-155
    85 Li Y. Bondada V. Joshi A & Geddes J W (2009) Calpain 1 and Calpastatin expression is developmentally regulated in rat brain. Exp Neurol 220,316-319
    86 Tan K T & Lip G Y (2005) The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 94,488-492
    87 Kuchay S M & Chishti A H (2007) Calpain-mediated regulation of platelet signaling pathways Curr Opin Hematol 14,249-254
    88 Young Cheryl L, Wellington Michael R & Hayden Lisa M Ellerby (2004) Inhibition of Calpain Cleavage of Huntington Reduces Toxicity J Biol Chem 279,20211-20220
    89 De Maria A, Shi Y, Kumar N M & Bassnett S (2009) Calpain expression and activity during lens fiber cell differentiation. J Biol Chem 284,13542-13550
    90 ElAli A, Doeppner T R, Zechariah A & Hermann D M (2011) Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia:role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation Stroke 42,3238-3244
    91 Hasseldam H & Johansen F F (2011) Cannabinoid treatment renders neurons less vulnerable than oligodendrocytes in Experimental Autoimmune Encephalomyelitis. Int J Neurosci 121,510-520
    92 Chen M & Fernandez H L (2005) Mu-calpain is functionally required for alpha-processing of Alzheimer's beta-amyloid precursor protein. Biochem Biophys Res Commun 13,714-721
    93 Storr S J, Woolston C M,Barros F F, Green A R, Shehata M, Chan S Y, Ellis I O & Martin S G (2011) Calpain-1 expression is associated with relapse-free survival in breast cancer patients treated with trastuzumab following adjuvant chemotherapy. Int J Cancer 1,1773-1780
    94 Raynaud F, Marcilhac A, Chebli K, Benyamin Y & Rossel M (2008) Calpain 2 expression pattern and sub-cellular localization during mouse embryogenesis. Int J Dev Biol 52,383-388
    95 Lee H Y, Morton J D, Robertson L J, McDermott J D, Bickerstaffe R, Abell A D, Jones M A, Mehrtens J M & Coxon J M (2008) Evaluation of a novel calpain inhibitor as a treatment for cataract Clin Experiment Ophthalmol 36.852-860
    96 Martinez J A. Zhang Z, Svetlov S I, Hayes R L, Wang K K & Larner S F (2010) Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC 12 cells. Apoptosis 15,1480-1493
    97 Storr S J, Safuan S, Woolston C M, Abdel-Fatah T, Deen S, Chan S Y & Martin S G (2012) Calpain-2 expression is associated with response to platinum based chemotherapy, progression-free and overall survival in ovarian cancer. J Cell Mol Med (In Press)
    98 Hauerslev S, Sveen M L, Duno M, Angelini C, Vissing J & Krag T O (2012) Calpain 3 is important for muscle regeneration:Evidence from patients with limb girdle muscular dystrophies. BMC Musculoskeletal Disorders 13,43 (In Press)
    99 De Maria A, Shi Y, Kumar N M & Bassnett S (2009) Calpain expression and activity during lens fiber cell differentiation J Biol Chem 284,13542-13550
    100 Saez M E, Martinez-Larrad M T, Ramirez-Lorca R, Gonzalez-Sanchez J L, Zabena C, Martinez-Calatrava M J, Gonzalez A, Moron F J, Ruiz A & Serrano-Rios M (2007) Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels. BMC Med Genet 8,1
    101 Hong J M, Teitelbaum S L, Kim T H, Ross F P, Kim S Y & Kim H J (2011) Calpain-6, a target molecule of glucocorticoids, regulates osteoclastic bone resorption via cytoskeletal organization and microtubule acetylation. J Bone Mineral Res 26,657-665
    102 Osako Y, Maemoto Y, Tanaka R, Suzuki H, Shibata H & Maki M (2010) Autolytic activity of human calpain7 is enhanced by ESCRT-III-related protein IST1 through MIT-MIM interaction. FEBS J 277, 4412-4426
    103 Hata S, Abe M, Suzuki H, Kitamura F, Toyama-Sorimachi N, Abe K, Sakimura K & Sorimachi H (2010) Calpain 8/nCL-2 and Calpain 9/nCL-4 Constitute an Active Protease Complex, G-Calpain, Involved in Gastric Mucosal Defense. PLoS Genet 6. e1001040
    104 Yoshikawa Y, Mukai H, Hino F, Asada K & Kato I (2000) Isolation of two novel genes, down regulated in gastric cancer. Jpn J cancer Res 91,459-463
    105 Bodhini D, Radha V. Ghosh S, Sanapala K R, Majumder P P, Rao M R & Mohan V (2011) Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in Southern Indians. Metabolism Clinical and Experimental 60,681-688
    106 Dasgupta S, Sirisha P V, Neelaveni K, Anuradha K & Reddy B M (2012) Association of CAPN10 SNPs and Haplotypes with Polycystic Ovary Syndrome among South Indian Women. PLoS ONE 7, e32192
    107 Perez-Martinez P, Delgado-Lista J, Garcia-Rios A, Ferguson J F, Gulseth H L, Williams C M, Karlstrom B, Kiec-Wilk B, Blaak E E, Helal O, Malczewska-Malec M, Defoort C, Riserus U, Saris W H, Lovegrove J A, Drevon C A, Roche H M & Lopez-Miranda (2011) Calpain-10 interacts with plasma saturated fatty acid concentrations to influence insulin resistance in individuals with the metabolic syndrome. Am J Clin Nutr 93, 1136-1141
    108 Ben-Aharon I, Brown P R, Shalgi R & Eddy E M (2006) Calpain 11 is Unique to Mouse Spermatogenic Cells. Mol Reprod Dev 73,767-773
    109 Ashizawa K, Wishart G J, Katayama S, Takano D, Maeda M, Arakawa E, Tsuzuki Y (2006) Effects of calpain and Rho-kinase inhibitors on the acrosome reaction and motility of fowl spermatozoa in vitro. Reproduction 131,71-79
    110 Kamei M, Webb G C, Young I G & Campbell H D (1998) SOLH, a human homologue of the Drosophila melanogaster small optic lobes gene is a member of the calpain and zinc-finger gene families and maps to human chromosome 16p13.3 near CATM (cataract with microphthalmia). Genomics 51,197-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700