环糊精介入酵母细胞催化芳香酮的不对称还原反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次系统的研究了环糊精介入酵母细胞催化芳香酮的不对称还原反应,以β-环糊精和自制的羟丙基-β-环糊精作为手性添加剂,主要考察了环糊精结构及添加量、底物芳香酮的结构和性质等对反应结果的影响(底物转化率和S-产物ee值)。主要结论如下:
     1、羟丙基-β-环糊精的优化合成条件为:反应时间为24 h,反应温度为5℃,反应物环氧丙烷与β-环糊精的摩尔比为1:6,NaOH的质量浓度为3%,收率为22.5%。
     2、通过正交实验确定了影响芳香酮-β-环糊精包合物包合率的主次因素:芳香酮与β-环糊精的摩尔比起主要作用,温度次之,时间对包合率的影响最小;苯乙酮、苯丙酮与β-环糊精的包合物在包合温度为50℃,摩尔比为1:7,时间为2 h时形成稳定的包合物,此时包合率分别为80.6%和59.1%。4’-甲基苯乙酮-β-环糊精与4’-氯苯乙酮-β-环糊精包合物在包合温度为50℃,摩尔比为1:7,包合时间为1 h形成稳定的包合物,该条件下包合率分别为74.8%和65%。
     3、研究了手性添加剂介入酵母细胞催化芳香酮的不对称还原反应,分别考察了添加剂β-环糊精和羟丙基-β-环糊精对催化芳香酮的不对称还原反应的影响,结果表明芳环上取代基的空间效应和电子效应对底物转化率和产物对映体过量值有显著的影响,苯丙酮的转化率提高了18.5%,S-(4'-氯苯基)乙醇的ee值提高了22.9%。同时研究了在添加适量β-环糊精和羟丙基-β-环糊精后,转化时间对各芳香酮反应结果的影响。由实验结果可以知,酵母细胞催化芳香酮的不对称还原反应中,不对称催化还原反应结果由底物羰基两边取代基的空间效应和电子效应共同决定,整个生物催化过程中,酵母细胞中的氧化还原酶和手性添加剂共同影响反应结果;但反应本质是由酵母细胞和底物特性决定,它们决定着添加剂对反应结果影响的程度和性质。
The asymmetric reduction of aromatic ketones catalyzed by yeast cell in the presence of cyclodextrin is systematicly studied in this paper, employingβ-cyclodextrin and self-made hydroxypropyl-β-cyclodextrin as chiral additives. The impact of the structure and addition amount of cyclodextrin, the structure and nature of aromatic ketone on the reaction results(conversion and ee) is detailed researched. Main conclusions are as follows:
     1 The optimized condition for synthesis of hydroxypropyl-β-cyclodextrin was: the reaction time was 24 h, the reaction temperature was 5℃, the molar ratio of epoxypropane toβ-cyclodextrin was 1:6, and the concentration of NaOH was 3%. The yield of hydroxypropyl-β-cyclodextrin reached 22.5% under the condition.
     2 Range an alysis showed the molar rate of aromatic ketones toβ-cyclodextrin was the most important factor affecting the inclusion rate of aromatic ketones-β- cyclodextrin, followed by the inclusion temperature and then the inclusion time. Acetophenone-β- cyclodextrin and propiophenone-β-cyclodextrin can form steady inclusion complex and the inclusion rate respectively was 80.6% and 59.1% under this conditions: inclusion temperature was 50℃, the molar ratio was 1:7 and the inclusion time was 2h. While for 4'-methyl- acetophenone-β-cyclodextrin and 4'-chlorophenyl-acetophenone-β-cyclodextrin, the inclusion rate reached 74.8% and 65% when inclusion temperature was 50℃, the molar ratio was 1:7 and the inclusion time was 1 h.
     3 The asymmetric reduction of aromatic ketones catalyzed by yeast cell in the presence of chiral additiveβ-cyclodextrin and hydroxypropyl-β-cyclodextrin were detailed investigated by studying the influences of additiveβ-cyclodextrin and hydroxypropyl-β-cyclodextrin. The results showed that the substrate conversion rate and the product enantiomeric excess value were markedly affected by both steric effect and electronic effect of substituted group. The acetophenone conversion rate increased by 18.5 % and ee value of S-(4'-chlorobenzene) ethanol improved by 22.9%. Cyclodextrions affected the reaction results by enhancing the catalytic efficiency of yeast fermentation broth and inclusion of the substrate, among which the key factor is p-substituted group of the substrate aromatic cycle. According to the above experiments, the results of asymmetric reduction of aromatic ketones catalyzed by yeast cells were determined by both the space and electronic effects which join the carbonyl. In the whole biocatalysis process, oxidoreductase in yeast cells and chiral additives affect the reaction results together, however, the essence of reaction were determined by yeast cells and substrate characteristics, which determined the effect of additives on the extent and nature of the reaction.
引文
1.林国强,陈新滋.手性合成[M].北京:科学出版社,2000.5-8
    2.朱文洲,许建和,俞俊棠.面包酵母催化乙酰乙酸乙酯的不对称还原反应[J].华东理工大学学报,2000,26(2):154-156
    3.梁华.酶催化作用的应用[J].江西教育学院学报,1996 (6):45-49
    4.闫婕,陈五岭,秦蓉.酵母细胞催化4-氯-乙酸乙酯的不对称还原反应[J].现代化工,2004 (4):46-48
    5.廖春阳,孙立力,李声时.催化不对称和成——2001年诺贝尔化学奖简介[J].自然杂志,23 (6):349-354
    6. Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation[J]. J Am Chem Soc,1980,102(18):5974-5976
    7.钱延龙,陈新滋主编.金属有机化学与催化[M].化学工业出版社,2001.98-101
    8. Fischer E.Influence of configuration on the action of enzymes[J]. J Chem Soc,1894,27: 3479-3483
    9.蒋耀忠,邓金根.不对称催化反应与手性药物合成[M],北京:科学出版社,2000: 12-42
    10.张文虎,蔡燕,刘湘,等.芳香酮的不对称还原[J].化学进展2007,19(10): 1537-1551
    11.吴海臣,徐东成,花文廷.羰基的不对称还原催化剂.化学学报,2001,59 :1340-1343
    12. Vinogradov M G, Gorshkova L S, Chel′tsova G V, et al. Russ. Chem. Bull., 2000, 49:460-465
    13. Vinogradov M G, Gorshkova L S, Chel′tsova G V, et al. Russ. Chem. Bull. Int.Ed., 2003, 52:471-479
    14. Vinogradov M G, Gorshkova L S, Chel′tsova G V, et al. Russ. Chem. Bull. Int.Ed., 2003, 52:1841-1846
    15.李光兴,张秀兰,纪元.不对称催化及药物合成[J].湖北化工,2002 (1):3-5
    16. Rajanbabu T V, Burk M J. Beyond nature's chiral pool:enantioselective catalysis in industry[J].Science,1993,25(9):479-483
    17. Knowles W S,Milton S. Catalytic asymmetric hydrogenation employing a soluble optically active rhodium complex[J]. J Org Chem Chemical ,1968, (22):1445-1446
    18. Ryoji Noyori,Takeshi Ohkuma.Asymmetric catalysis by Architectural and functional molecular engineering:practical chemo- and stereoselectivd hydrogenation of ketones [J].Angew Chem Int Ed ,2001,40:40-73
    19. Katsuki T,Sharpless K B. The first practical method for asymmetric epoxidation[J]. J AmChem Soc ,1980, 102(18): 5974-5976
    20.吴梧桐.生物化学[M].北京:人民卫生出版社,2000:3-10
    21.张树政,王修垣.工业微生物成就[M].北京:科学出版社,1988.17
    22.陆熙炎.绿色化学与有机合成及有机合成中的原子经济性[J].化学进展,1998,10 (2): 123-131
    23.杜灿屏.生物合成和生物转化领域的研究[J].化学进展,1999,11(11):218-220
    24. Drauz K,Waldmann H. Enzyme Catalystin Organic Synthesis[M].VCH publishers, 1995:20-26
    25.刑雪荣,刘斌.工业生物技术发展现状及未来趋势[J].科学发展,2007,22 (3):216-222
    26. R N帕尔特编,方唯硕译.立体选择性生物催化[M].北京:化学工业出版社,2004.327 -328
    27.许峰,王煤,李敏杰.绿色化学与有机合成[J].化学与生物过程,2005 (5):7-11
    28.郭海明,牛红英,蒋耀忠.离子液体在不对称催化反应中的应用进展[J].合成化学,2005, 13(1):6-15
    29.傅滨,肖玉梅,谭兆海,等.有机催化剂在不对称合成中的应用[J].有机化学,2006,26 (7):899-905
    30.李志伟,曹丽琴,胡仁权,等.超临界二氧化碳中的不对称合成研究进展[J].广州化学, 2006,34(4):5-12
    31.孟祥启,张卫红,刘云华,等.D-葡萄糖衍生物在不对称催化反应中的研究进展[J].有机化学,2006,26(6):793-802
    32.赵刚.绿色有机催化化学——高分子负载催化剂的设计、合成及应用[J].精细化工原料及中间体,2006 (6):9-11
    33. Roffler S R , Blanch H W , Wilke C R. Trends Biotechnol , 1984 , 2 (5) : 129-136
    34. Roddick F A , Britz M L. J Chem Technol Biotechnol ,1997 , 69 (3) : 383-391
    35.马晓魁,王吉之,陈五岭.酵母发酵液直接催化4-氯-乙酰乙酸乙酯不对称还原生成4-氯-3-羟基-丁酸乙酯[J].催化学报,2006,27(4):314-318
    36. Persidis A. Biotechnology 2000[J]. Nature Biotechnology,1999(15):594-602
    37.Ghanem A.,Schurig V. Peracetylatedβ-cyclodextrin as additive in enzymatic reactions:enhanced reaction rate and enantionmeric ratio in lipase-catalyzed transesterifications in organic solvents[J],Tetrahedron:asymmetry ,2001,12:2761-2766
    38. Villiers A.Compt Rend Acard Sci Pairs,1891,112:536
    39.刘凤兰.药用辅料β-CD在中药方面的应用[J].医用与保健,2008(1):181-182
    40.刘鄂湖,蔡光明,夏新华,等.羟丙基—环糊精增溶难溶性药物研究进展[J].药学专论,2007,16(8):25-27
    41.张国梅,双少敏,钞建宾等.环糊精超分子化学在生命科学研究中的新进展[J].分析科学学报,2005,21(2):200-204
    42.熊晓莉,李宁,陈锦锦.环糊精包合技术研究进展[J].新药新用,2007,4(5):281-283
    43. Ferancova A, Labuda J.Electrochemical sensors using screen-printed carbon electrode assemblies modified with theβ-cyclodextrin or carboxymethylatedβ-cyclodextrin polymer films for determination of tricyclic antidepressive drugs. Fresenius J Anal Chem,2001,370:1
    44. Mischnick P, Carbohydrate Research,1989,192 :233
    45.付云峰,沈兴海,徐宝财.药物分子与β-环糊精之间形成包合物的研究[J].北京大学学报(自然科学版),2002,19(1):42-47
    46.黄乃聚,项明,叶明新,等.β-环糊精-β-萘酚包合物的固相不对称氧化偶联反应[J].复旦大学(自然科学版),1994,33(4):473-476
    47.郭生金.环糊精催化诱导不对称合成的新进展[J].化学试剂,1996,18(2):92-97
    48. TROTTA1 F, CRAVOTTO G , ROSSIGNOLI S.Asymmetric Synthesis in the Presence of Cyclodextrins[J] Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002, 44: 293–296
    49. Breslow R., Dong, S. D. Sequence selective binding ofpeptides by artificial receptors in aqueous solution[J].Chem.Rev 1998, 98, 1997-2011
    50. Breslow R., Canary J.W, Varney M., Wadell S.T., Yang D.Bifunctional zinic-imidazole and zinc-thiophenol catalysts[J].Am. Chem. Soc., 1990, 112, 5212-5219
    51. Tabushi, Y. Kuroda, M. Yamada, M.Higshimura. et al.A-(modified B6 )-B-[w-amino (ethylamino)]-β-cyclodextrin as an artificial B6 enzyme for chiral aminotransfer reaction[J].Am. Chem. Soc, 1985, 107, 5545
    52. Yin M M, Li N, Shi X Y,et al.Synthesis of Some Allyl-b-Cyclodextrin Derivatives and their Properties as Capillary GC Stationary Phases[J]. Chromatographia 2003, 58:301-305
    53. Puglisi G,Santagati N A,Pignatello R. Inclusion complexation of 4-biphenylacetic acid withβ-cyclodextrin[J]. Drug Dev Ind Pharm,1990,16(3):395-413
    54. Kata M,Haragh L,Pitye Hodi K. Production and investigation of tablets containing furosemide andβ-cyclodextrin[J].Acta Pharm Hung,1990,60(1):40-45
    55. Okemoto Hisashi.Gekkan Femikaru. Effect ofβ- cyclodextrin of the dissolution behavior and anti-inflammatory activity of quercetin[J]. Fac Pharm,1993,9(10):51-55
    56. Szejtli J.Minutes Int Symp Cyclodextrins 6th,1992:380
    57.童林荟.环糊精化学—基础与应用[M].北京:科学出版社,2001
    58.刘育,尤长城,张衡益.超分子化学———合成受体的分子识别与组装[M].天津:南开大学出版社,2001
    59. Jozsef S. Chem Rev. [J],1998 ,98(5):1731
    60. Kaneto U,Fumitoshi H,Tetsumi L. Chem Rev [J] ,1998 ,98(5):2045
    61. Manosroi A, Saowakhon S, Manosroi J. Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique. Journal of Steroid Biochemistry & Molecular Biology,2008,108:132–136
    62. Bardi L, Mattei A, Steffan S,et al. Hydrocarbon degradation by a soil microbial population withβ-cyclodextrin as surfactant to enhance bioavailability.Enzyme and Microbial Technology, 2000, 27:709–713
    63. Jones J B. Enzymes in organic synthesis[J]. Tetrahedron,1986,42:3351
    64.甘景镐,甘纯玑,胡炳环.天然高分子化学[M].北京:高等教育出版社,1993.264
    65. Gutmann S,Annalen L. Baker's research on the non-combination of dry hydrogen chlorid and ammonia, vapor density of dry ammonium chlorid [J].J Phys Chem 1898,2(8), 511-520
    66. Prelog V.specification of the stereospecificity of some oxido-reductases by diamond lattice sections Pure Appl Chem,1964,9(1):119-130
    67.张玉彬.生物催化的手性合成[M].北京:化学工业出版社,2000.190-198
    69.连少鸿,肖美添,张亚武,等.面包酵母催化不对称还原2,5-己二酮[J].化学研究与应用,2008,20(1):45-48
    70.吕腾飞,徐岩,穆晓清,等.木糖辅助底物对近平滑假丝酵母催化(R,S)-苯基乙二醇不对称氧化还原合成(S)-苯基乙二醇体系稳定性的促进作用[J].催化学报,2007,28(5):446-450
    71. Hayakawa R, Nozawa K, Shimizu M,et al. From (S)- -aminoβ-hydroxyacids to (R)-,β-diamino-γ-hydroxyacid N-carboxyanhydrides viaβ-lactams Tetrahedron Lett,1998,9:2725-2728
    72.黄和,杨忠华,姚善泾.面包酵母催化羰基不对称还原合成手性醇的研究[J].生物加工过程,2004,2(2):52-55
    73.杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应[J].催化学报,2004,25(6):434-438
    74. Erdélyi B, SzabóA, Seres G, et al. Tetrahedron Asymmetry, 2006, 17:268-274
    75. Chu Y,Zhang B L, Silvestre V,et al.Hydrogen transfer pathways of the asymmetricreduction of a,b-unsaturated ketone mediated by baker’s yeast[J]. Bioorganic Chemistry, 2006,34:158–166
    76. Kroutil1 W, Mang H, Edegger K,et al.Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols[J]. Current Opinion in Chemical Biology,2004, 8:120–126
    77. Dumanski P G, Florey P, Smallridge A J,et al.The baker’s yeast-mediated reduction of conjugated methylene groups in an organic solvent[J], Journal of Molecular Catalysis B: Enzymatic,2001,11:905–908
    78. Ishihara K,Higashi Y,Utaka M.et al. Enzymatic Production of (S)-l-Acetoxy-2- Alkanol with Bakers’Yeast Cell-Free Extract in a Membrane Reactor, JOURNAL OPFERMENTATION AND BIOENOINEERING. 1996,81( 3): 266-268.
    79..Tanaka F,Ando A, Nakamura T, et al. Functional genomic analysis of commercial baker’s yeast during initial stages of model dough-fermentation[J], Food Microbiology, 2006, 23: 717-728
    80. Eichberger G ,Faber J ,Griengl H, et al. Reduction of 4-substituted acetophenones by yeast[J]. Chem 1985,116(10):1233-1236
    81. Nakamura K ,Ushio K ,Oka S. Stereochemical control in yeast reduction[J]. Tetrahedron Lett, 1984,25(36):3979-3982
    82. Zhi Liang W,Zu Yi L,Guo Qiang L.Baker’s yeast mediated mono-reduction of 1,3-cycloh- exanediones bearing two identical C(2) substituents. Tetrahedron: Asymmetry,2001,12: 229 -233
    83. Fontana G, Manitto P, Speranza G,et al.Enantioselectivity in the reduction of tricyclic hydroaromatic ketones by baker’s yeast[J]. Tetrahedron: Asymmetry,1998, 9 : 1381–1387
    84.刘湘,孙培冬,李明,等.面包酵母用于苯乙酮的不对称还原研究[J].分子催化,2002,4:107-112
    85. Liu X, Zhu T Sh, Sun P D,et al. Asymmetric reduction of aromatic ketones by the baker's yeast in organic solvent systems[J]. Synth Commun,2001,31 (10):1521- 1526
    86.刘湘,方志杰,许建和.酵母细胞催化芳香酮的不对称还原反应[J].催化学报,2006,27 (1):20-24
    87.杨忠华,姚善泾,王光辉.引入树脂吸附促进酵母细胞不对称还原芳香酮[J],化工学报,2006,57(10):2388-2392
    88.杨忠华,曾嵘,姚善泾,等.酵母细胞不对称还原4’-氯苯乙酮合成相应手性醇[J],精细化工,2007,24(1):63-66
    89. Fontana G, Manitto P, Speranza G,et al.Enantioselectivity in the reduction of tricyclichydroaromatic ketones by baker’s yeast[J]. Tetrahedron: Asymmetry,1998, 9 : 1381–1387
    90. Wills M R. Meldoda lecture. Recent developments in asymmetric synthesis[J]. J Chem Soc Rev,1995,24(3):177-185
    91. Santaniello E,schi P,Grisenti P,et al. The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks[J].Chem Rev 1992, 92(5):1071-1140
    92.张学农,唐丽华,阎雪莹,等.羟丙基-β--环糊精对紫杉醇的增溶作用及其分子包合机制研究[J].中草药,2007,39(9):1317-1320
    93.熊晓莉,李宁,陈锦锦.环糊精包合技术研究进展[J].西部医学,2007,4(5):281-283
    94.刘海燕,郭秒,慕跃,等.环状糊精的性质和应用[J].中国食品添加剂,2004 (5):67-69
    95.李文德,周俊侠,张力田,等.环糊精的改性研究及进展注[J].1997,12(1):29-31
    96.童林荟.环糊精化学基础与应用[M].北京:科学出版社,2001,122-124
    97.全易,夏天喜,孙玲,等.羟丙基-β-环糊精的合成与包络性能[J].印染助剂,2004,21(1): 52-54
    98.郝爱友,童林荟,金道森.2-氧-(2-羟基丙基)-β-环糊精的简便合成及纯化[J].化学试剂,1995,17(3):161-162,178
    99.赵榆林,杨波,毕莉,等.羟丙基-β-环糊精的制备及其表征[J].云南化工, 2005,32(2):9-13
    100.Villiers A.Compt Rend Acard .Sci Pairs,1891,112:536-539
    101.王潮霞,刘丽雅,陈水林.β-环糊精制备香精微胶囊的机理及应用[J].印染助剂,2003,20 (4):5~7
    102.王潮霞,陈水林.β-环糊精香精微胶囊微观形态和包合机理[J].纺织学报,2005, 26(6): 22-24
    103.刘丽雅,王潮霞,陈水林,薰衣草β-环糊精包合物的制备工艺研究.印染助剂,2003, 20( 3):30-31
    104.毕莉,杨波,杨万明,等.紫苏子油-β-环糊精包合物制备研究[J].中国药业,2005,14(8): 43-44.
    105.葛艳蕊,冯薇,王奎涛.β-环糊精玫瑰香精微胶囊的制备[J].河北科技大学学报, 2004,25 (2):14-17
    106.杨波,杨光,李代禧,等.苯乙醇香精与β-环糊精包合物的制备工艺研究[J].食品科学工业,2007,28(1):210-230
    107.王潮霞,刘丽雅,李励,等,影响β-环糊精香精微胶囊缓释性能的因素分析[J].印染助剂,2004,21(1):39-44
    108. Nakamura K,Yamanaka R,Matasuda T,et al. Recent developments in asymmetric reduction of ketones with biocatalysts [J].Tetrahedron: Asymmetry,2003,14 (18): 2659- 2681
    109. Wei Zh-L , Li Z-Y, Lin G-Q. Baker's yeast mediated mono-reduction of 1,3-cyclohexan- ediones bearing two identical C(2) substituents[J], Tetrahedron: Asymmetry,2001, 12(2): 229-233
    110. Yang F, Russell A J. Optimization of bakers' yeast alcohol dehydrogenase activity in an organic solvent[J],Biotechnol Prog,1993,9(3):234-241
    111. Csuk R, Glanzer B I. Baker's yeast mediated transformations in organic chemistry [J]. Chem Rev, 1991, 91(1):49-97
    112.何成,许建和,刘幽燕,等.固定化酵母非水相催化羰基不对称还原反应的研究[J].化学研究与应用,2001,13 (6):632
    113.刘湘,方志杰,许建和.酵母细胞催化芳香酮的不对称还原反应[J].催化学报, 2006,27(1):20
    114.史景江,马熙中.色谱分析法[M].(第二版).重庆:重庆大学出版社,2000.9-33
    115.顾蕙祥,阎宝石主编.气象色谱使用手册[M].(第二版).化学工业出版社,2001, 497-509
    116. Zhu D M, Rios B E, Rozzell J D, et al. Evaluation of substituent effects on activity and enantioselectivity in the enzymatic reduction of aryl ketones Tetrahedron: Asymmetry,2005, 16(8):1541-1547
    117. Sfihi H, Legrand A P, Doussot J, et al. Solid-state 13CNMR study ofβ-cyclodextrin/ substituted aromatic ketone complexes: evidence for two kinds of complexation of the guest molecules[J], Colloids Surf A,1996,115:115-126
    118.弗斯特.杜锦珠,茹炳根,卫新成译.酶的结构和作用机制[M].北京:北京大学出版社,1991,240-244
    119.李再资.生化工程和酶催化[M].广州:华南理工大学出版社,1995:135-138
    120.张文虎,刘湘,方云,等.环糊精介入酵母细胞催化芳香酮的不对称还原反应[J].分子催化,in press.
    121. Barkakaty B,Takaguchi Y, Tsuboi S. New synthetic routes towards variousα-fluorinated aryl ketones and their enantioselective reductions using baker’s yeast Tetrahedron, 2007, 63:970-976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700