环丙沙星在水溶液中的光化学降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环丙沙星作为喹诺酮类抗生素的一种,被广泛用于医疗、畜牧业、农业和水产养殖业等行业,可以通过很多渠道进入到环境水体中。环丙沙星可以对人体产生中枢系统毒性、肝肾毒性、血液系统毒性以及光毒性,也可以使环境中的细菌对其产生抗性,所以它在环境中的存在会对生态系统和人类健康构成潜在的危害,环丙沙星在环境中的迁移转化越来越引起人们的关注。在表层水体中,有机物最主要的降解方式是光降解,因此本文模拟自然水体中的各种主要因素,研究其对环丙沙星光降解的影响。
     在利用高效液相色谱仪确立了水体中环丙沙星的监测分析方法后,首先研究了环丙沙星在光、暗条件下的降解反应。在没有光源照射的条件下,环丙沙星几乎没有降解,而对500W氙灯的照射下进行的光降解反应所得数据进行拟合,发现符合一级反应动力学规律。通过对不同初始浓度的环丙沙星进行光降解研究发现光降解速率常数随浓度的增大而减小,由此可知环丙沙星的光降解符合表观的一级反应动力学。
     通过在实验中通入氧气和氮气来研究溶解氧对环丙沙星的光降解产生的影响,发现通氧气抑制了光降解,而通氮气则促进了光降解。这是由于环丙沙星的光降解可以分为直接光降解和自敏化光降解,溶解氧能促进自敏化光降解而抑制直接光降解,由于自敏化增加的反应速率小于直接降解减小的反应速率,造成环丙沙星光降解速率减慢。
     然后研究了水中无机氮随着环境pE值改变而发生形态(NO_3~-,NO_2~-和NH_4~+)变化时,对环丙沙星光降解的影响。结果表明,NO_3~-受到光照能够产生活性基团,促进光降解;NO_~-能够猝灭环丙沙星自敏化反应中产生的活性基团,从而抑制光降解;而由于NH_4~+的光稳定性很强,因此没有对光降解产生影响。在研究不同pE值对环丙沙星光降解时,发现光降解速率随着pE的增长先增大后减小,当亚硝酸根和铵根离子共存时,两者相互不起作用;当亚硝酸根和硝酸根共存时,通过对比实际抑制率和理论抑制率可以发现,亚硝酸根能够与硝酸根光敏化产生的羟基自由基反应,生成不活泼物质,抑制了硝酸根光敏化降解环丙沙星。
     同时还研究了pH以及环境水体中不同的共存物质对环丙沙星光降解的影响,发现pH在5-8范围内时,光降解速率随pH的增大而增大;Zn~(2+)和Cl-在高浓度的时候能够对环丙沙星的光降解产生一定的影响,Zn~(2+)抑制光降解,而Cl-促进光降解,但影响都很小;Cu~(2+)和腐殖酸都能够非常明显的抑制环丙沙星光降解的进行,抑制率随浓度的增加而增大;阴离子表面SDBS活性剂能够对环丙沙星的光降解产生非常明显的促进作用,在低浓度的时候随浓度的增加而增大,而达到一定浓度之后随浓度的增加而有所减小;Fe~(3+)在低浓度的时候能够对环丙沙星的光降解起到明显的促进作用,促进率随浓度的增大而增加,而达到一定浓度之后,促进率随浓度的增大而减小,进一步加大浓度会出现抑制作用。
As a fluoroquinolone antibiotic, ciprofloxacin which is widely applied in medical, animal husbandry, agriculture and aquaculture can enter the aquatic environment through variety of ways. Ciprofloxacin which exit in the environment would damage the health of human body and ecological ,because it not only can be toxic to the central nervous system, liver , kidney, and hematologic system of human body, but also have bacterial resistance. So its environmental behavior already arouse people’s more and more attention. In surface waters, photochemical degradation is the main factor in determining the fate of organic matter. This present study the effect of photodegradation of ciprofloxacin when add the different compounds which simulate the environment.
     After established the analysis method of ciprofloxacin in water, we studied the infection in the dark or under 500W Xenon light. The research results show that: no photodegradation occurred in the dark and the photolysis of ciprofloxacin followed first-order kinetics under the light. With increase of initial concentration of ciprofloxacin, the photo-degradation rate of ciprofloxacin decreased gradually.
     We also studied the different influences on photo-degradation of ciprofloxacin in different dissolved oxygen levels, the different concentrations of nitrate, nitrite, ammonium ions, and different pE values when these three forms of N elements coexisted. The result showed that nitrate promoted the degradation of ciprofloxacin, nitrite inhibited it and ammonium had little effect. the influence of the dissolved oxygen levels to the photo-degradation of ciprofloxacin is the same with that of nitrate. The photodegradation rate of ciprofloxacin decreased and then increased follow with the increase of pE value. When nitrate coexisted with ammonium, they wouldn’t affect each other. When nitrite coexisted with nitrate, the degradation rate was less than theoretical value. It indicated that nitrite inhibited the photo-degradation of ciprofloxacin by nitrate.
     At the same time, we study the affect of photodegradation by the factor which we simulated the nature water , such as pH, humic acid, Cl~- and so on. The result showed that with increase of pH among the 5-8, the photodegradation rate of ciprofloxacin decreased gradually. Cl- promoted the degradation of ciprofloxacin, Zn~(2+), Cu~(2+) and HA inhibited it and both CTAB and Tween-80 had little effect. Fe~(3+) and SDBS promoted the degradation in low concentrations, and in high concentrations inhibited it.
引文
[1] Koga H, Itoh A, Murayama S, et al.Structure activity relationships of antibacterial 6,7-distubstituted and 7,8-disbustituted1-alkyl-14-dihydro-4-oxiquinoline-3-carboxylic acids [J]. Med Chem, 1980, 23(12): 1358-1363.
    [2] Domagala J M, Hann L D, Heifetz C L. New structure-activity relationships of the quinolone antibacterials using the targetenzyme. The development and application of a DNA gyrase assay [J]. Med Chem, 1986, 29: 394-404.
    [3]陶萍.浅谈喹诺酮类药物的合理使用[ J].中国现代药物应用, 2009, 3(11) : 136-138.
    [4]张茜倩.喹诺酮类药物简介[J].长江大学学报,2009, 6(4): 201-202.
    [5]吴洁.氟喹诺酮类药物市场概览[J].世界临床药物,2004, 25(11): 703-705.
    [6]韩云晓.喹诺酮类药物金属配合物的荧光光谱特性的研究及分析应用[D].济南:山东大学,2004
    [7]周飞雪,代朝猛,张亚磊等.水体环境中氟喹诺酮类药物的污染现状及分析方法[J].化工环保,2008, 28(6): 505-508.
    [8]叶赛.水环境抗生素分析及全国沿岸陆源排海浓度分布研究[D].大连:大连海事大学,2008.
    [9] Vasconcelos T G,Kummerer K,Henriques D M et al. Ciprofloxacin in hospital effluent: Degradation by ozone and photoprocesses [J]. 2009, 169(1-3): 1154-1158.
    [10] Capone D G, Weston D P, Miller V, et al. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture [J]. Aquaculture, 1996, 145(1-4): 55-75.
    [11] Diaz-Cruz M S, de Alda M J L, Barcelo D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge [J]. Trac-Trends in Analytical Chemistry , 2003, 22(6): 40-351.
    [12] Samuelsen O B, Lunestad B T, Huseva B, et al. Residues of oxolinic acid in wild fauna following medication in fish farms [J]. Dis Aquat Org, 1992, 12(2): 111-119.
    [13] Hektoen H, Berge J A, Hormazabal V, et al. Persistence of antibacterial agents in marine sediments [J]. Aquaculture, 1995, 133(3-4): 175-184.
    [14] Addison J B. Antibiotics in sediments and run-off water from feed lots [J]. Residu Reviews, 1984,92: 1-28.
    [15] Velagaleti R. Behavior of pharmaceutical drugs ( human and animal health ) in the environment [J]. Drug Information Journal, 1997, 31: 715-722.
    [16]贾瑷,胡建英,孙建仙等.环境中的医药品与个人护理品[J].化学进展, 2009, 21(2-3): 389-399.
    [17] Watkinson A J, Murby E J, Kolpin D W, et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water [J]. Science of the Total Environment, 2009, 407(8): 2711-2723.
    [18] Tamtam F, Mercier F, Le Bot B, et al. Occurrence and fate of antibiotics in the Seine River in varioushydrological conditions [J]. Science of the Total Environment, 2008, 393(1): 84-95.
    [19] Vieno N, Tuhkanen T, Kronberg L. Elimination of pharmaceuticals in sewage treatment plants in Finland [J]. Water Research, 41(5): 1001-1012.
    [20]安婧,周启星.药品及个人护理用品(PPCPs)的污染来源、环境残留及生态毒性[J].生态学杂志,2009, 28(9): 1878-1890.
    [21] Tong L, Li P, Wang Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74(8): 1090-1097.
    [22] Golet E M, Alder A C, Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland [J]. Environmental Science & Technology, 2002, 36(17): 3645-3651.
    [23] Xu W H, Zhang G, Zou S C, et al. Determination of selected antibiotics in the Victoria Harbour and Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Environmental Pollution, 2007, 145(3): 672-679.
    [24] Minh T B, Leung H W, Loi I H, et al. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour [J]. Marine Pollution Bulletin, 2009, 58(7): 1052-1062.
    [25]孙广大,苏钟毅,陈猛等.固相萃取-超高压液相色谱-串联质谱同时分析环境水样中四环素类和喹诺酮类抗生素[J].色谱, 2009, 27(1): 54-58.
    [26] Mantovi P, Baldoni G, Toderi G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: Effects of long-term application on soil and crop [J]. Water Research, 2005, 39(2-3): 289-296.
    [27] Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enroxacin in crop plants [J]. Chemosphere, 2003, 52(7): 1233-1244.
    [28] Redshawa C H, Wootton V G. Rowland S J. Uptake of the pharmaceutical fluoxetine hydrochloride from growth medium by Brassicaceae [J]. Phytochemistry, 2008, 69(13): 2510-2516.
    [29]郑云雁,李小芳.世贸组织反对欧洲关于食用过激素的牲畜的禁令[J].中国食品卫生杂志,1998, 10(4): 49
    [30] 235号,动物性食品最高残留限量[S].北京:中华人民共和国农业部,2002.
    [31]许建平,乔福元,刘海意等.三维超声对妊娠前及早期妊娠阶段意外接触致畸物质者胎儿结局的检测[J].医学临床研究,2004, 21(9): 998-1006.
    [32] Galatti L, Giustini S E, Sessa A, et al. Neuropsychiatric reactions to drugs: An analysis of spontaneous reports from general practitioners in Italy [J]. Pharmacol Res, 2005, 51(3): 211-216.
    [33] Ramirez A, Molina J, Dolmann A, et al. Gatifloxacin treatment in patients with acute exacerbations of chronic bronchitis: Clinical trial results [J]. J Respir Dis, 1999, 20: 30-39.
    [34] Kang J S, Wang L, Chen X L, et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG [J]. Mol Pharmacol, 2001, 59(1): 122-126.
    [35] Renau T E, Gage J W, Dever J A, et al. Structure-activityrelationships of quinolone agents againstmycobacteria: Effect of structural modifications at the 8 position [J]. Antimicrob Agents Ch, 1996, 40(10): 2363-2368.
    [36] Zhanel G G, Ennis K, Vercaigne L, et al. A critical review of the fluoroquinolones --Focus on respiratory tract infections [J]. Drugs, 2002, 62: 13-59.
    [37] Lowe N J, Fakouhi T D, Stern R S, et al. Photoreactions with a fluroquinolone antimicrobial -- Evening versus morning dosing [J]. Clin Pharmacol Ther, 1994, 56: 587-591
    [38]张婷,屠曾宏.氟喹诺酮类药物的光毒性[J].世界临床药物,2003, 24: 167-170
    [39] Stahlmann R, Lode H. Toxicity of quinolones [J]. Drugs, 1999, 58: 37-42.
    [40]陈杖榴.兽医药理学(第二版) [M].北京:中国农业出版社, 2004: 197.
    [41]陈迁.自动化微生物比浊法测定血清中环丙沙星浓度[J].中国临床药理学与治疗学,1998(3): 190- 191.
    [42] Barron D, Jimenez-Lozano E, Bailac S, et al. Determination of difloxacin and sarafloxacin in chicken muscle using solid-phase extraction and capillary electrophoresis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 767(2): 313-319.
    [43]黄文静,洪建文,蒋忠军等.HPLC-DAD法检测化妆品中的氧氟沙星和环丙沙星[J].广州化工,2010, 38(6): 150-151.
    [44]刘丽贞,周婉苹,薛冰.高效液相色谱-荧光检测法同时测定鱼肉组织中的诺氟沙星、环丙沙星和恩诺沙星残留[J].中国卫生检验杂志,2008, 18(7): 1296-1297.
    [45]王圣义,胡娟,张瑞廷等.高压液相色谱-荧光检测法测定蜂蜜中诺氟沙星、环丙沙星和恩诺沙星残留量[J].中国蜂业,2010, 61(8): 32-33.
    [46]谢君,陈金,张富华.反相离子对高效液相色谱法测定动物血浆中的恩诺沙星及其代谢产物[J].色谱,1998, 16(3): 58-260.
    [47]孟勇,吴光红,朱晓华等.RP-HPLC同时测定中华绒鳌肝脏中诺氟沙星、环丙沙星和恩诺沙星残留[J].中国水产科学,2005, 12(6): 772-778.
    [48]陈雪昌,郑代明,金彩杏.高效液相色谱法同时测定水产品中盐酸环丙沙星和恩诺沙星残留量[J].中国科技信息,2005, 14: 16.
    [49]蒋赛平,陈建,卢晓阳等.复方环丙沙星栓剂的制备及其含量测定[J].中国现代应用药学,2008,25(4): 350-352.
    [50]彭涛,雍炜,安娟等.反相高效液相色谱/质谱法同时测定肌肉中5种喹诺酮药物残留[J].分析化学,2006, 34: 10-14.
    [51]刘媛,谢孟峡,丁岚等.高效液相色谱法测定鸡蛋中呋喃唑酮的残留量[J].分析化学,2004, 32(3): 352-355.
    [52] Johnston L, Mackay L, Croft M. Determination of quinolones and fluoroquinolones in fish tissue and seafood by high-performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection [J]. Journal of Chromatography A, 2002, 982(1): 97-109.
    [53] van Vyncht G, Janosi A, Bordin G, et al. Multiresidue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography–tandem mass spectrometry [J]. Journal of Chromatography A, 2002, 952(1-2): 121-129.
    [54]厉文辉,史亚利,高立红等.加速溶剂萃取-高效液相色谱-蝉联质谱法同时检测鱼肉中喹诺酮、磺胺与大环内脂类抗生素[J].分析测试学报,2010, 29(10): 987-992.
    [55] Bhowal S K, Das T K. Spectrophotometric determination of some recently introduced antibacterial drugs using ferric chloride [J]. Analytical letters, 1991, 16(6): 434.
    [56] Chowdary K P R, Devala Rao G. A new spectrophotometric method for the determination of norfloxacin in dosage forms and in dissolution rate studies [J]. Indian drugs, 1992, 29(13): 612.
    [57] Mathur S C, Lal S, Murugesan N, et al. Spectrophotimetric method detn. of ciprofloxacin in its dosage forms [J]. Indaian drugs, 1990, 27(7): 398.
    [58] Sultan S M, Suliman F O. Flow injection spectrophotometric determination of the antibiotic ciprofloxacin in drug formulations [J]. Analyst, 1992, 117(9): 1523-1526.
    [59] Biligic Z.Two kinds of spectrophotometric determination of ciprofloxacin [J]. Acta Pharm Turc, 1991, 33(1): 19.
    [60]何献伟.离子对比色法测定氟哌酸胶囊含量[J],药物分析杂志,1991, 212(2): 107-108.
    [61]杨锐,朱琳,张侠等.氟哌酸胶囊剂含量测定方法和体外溶出的考察[J],中国抗生素杂志,1991,16(6): 434-437.
    [62] EI-Yazbi F A. Spectrophotometric determination of ofloxacin [J]. Spetrose Letter, 1992, 25(2): 279-281.
    [63] Chapman J S, Georgopapadakou N H. Fluorometric assay for fleroxacin uptake by bacterial cells [J]. Antimicro Agents Chemother, 1989, 33(1): 27-29.
    [64]黄淑萍,陈亮.抗菌素磺酸培氟沙星荧光分析法的研究[J].光谱学与光谱分析,1997, 17(2): 45-47.
    [65]金文第,靳建中.荧光分光光度法测定盐酸环丙沙星片的含量[J].中国抗生素杂志,1996, 21(3): 195-197.
    [66]张瑞萍,王素芳.荧光分光光度法测定氟罗沙星片的含量[J].中国抗生素杂志,1998, 23(6): 431-432.
    [67]鲍霞.荧光光度法直接测定氧氟沙场的含量[J].光谱实验室,2001, 18(2): 265-267.
    [68]付丽红,玉素甫,范广建.荧光分光光度法测定诺氟沙星胶囊的含量[J].西北药学杂志,1999,14(1): 6.
    [69]张文伟,李晓辉.乳酸环丙沙星的荧光特性及其应用[J].光谱实验室,1999, 16(2): 183-185.
    [70]连宁,孙春燕.诺氟沙星的铽敏化化学发光法研究与应用[J].分析测试学报,2002, 21(1): 79-81.
    [71]张若燕,欧阳晓玫.荧光分光光度法测定洛美沙星注射液及胶囊的含量[J].中国药房,2002, 13(1): 45-46.
    [72]王磊,桑立红,姜维林等.左氟沙星分散片的荧光分光光度法测定[J].中国医药工业杂志,2003, 34(5): 243-244.
    [73]王静萍,杜黎明,段亚丽.铽-依诺沙星荧光特性研究及应用[J].分析化学,2004, 32(1): 50-52.
    [74] Veiopoulou C J, Loannou P C, Lianidou E S. Application of terbium sensitized fluorescence for the determination of fluoroquinolone antibiotics pefloxacin, ciprofloxacin and norfloxacin in serum [J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(12): 1839-1844.
    [75] Drakopoulos A I, Ioannou P C. Spectrofluorimetric study of the acid–base equilibria and complexation behavior of the fluoroquinolone antibiotics ofloxacin, norfloxacin, ciprofloxacin and pefloxacin in aqueous solution [J]. Analytica Chimica Acta, 1997, 354(1-3): 197-204.
    [76]陈国珍.荧光分析法[M].北京:科学出版社,1990: 93
    [77]王艳红,谭华蓉,祁克宗等.高效毛细管电泳同时测定4种喹诺酮类抗菌药.中国兽药杂志[J],2007, 41(11): 8-11.
    [78]吴凌荔,秦卫东.喹诺酮类抗生素的高效毛细管电泳法分离检测[J].北京师范大学学报(自然科学版),2006, 42(1): 66-69.
    [79]马文鑫,陈卫中,任建军等.制药废水预处理技术探索[J].环境污染与防治.2001, 23(2): 87-89.
    [80]张满生,章劲松.物理吸附法处理制药废水.青海环境[J].1999, 9(3): 106-107.
    [81]饶义平,唐文浩.复合絮凝处理抗生素废水对其抑菌效力的影响[J].上海环境科学.1996, 15(8): 37.
    [82]赵玲玲,蔡照胜.混凝-Fenton氧化预处理抗生素废水的研究[J].环境科学与技术.2010, 33(11): 138-141.
    [83]潘志彦,陈朝霞,王泉源等.制药业水污染防治技术研究进展[J].水处理技术.2004, 30(2): 67-70.
    [84]商佳吉,邢子鹏,孙德智.水解酸化-好氧MBBR藕合Fenton法处理抗生素废水研究[J].工业水处理,2008,28(12): 45-48.
    [85]孙振龙,陈绍伟,吴志超.一体式平片膜生物反应器处理抗生素废水研究[J].工业用水与废水,2003, 34(1): 33-35.
    [86]周平,钱易.庆大霉素和金霉素废水的处理实验研究[J].环境科学,1995, 16(5): 45-48.
    [87]张彦波,樊利江.UBF反应器在抗生素废水处理工程中的应用[J].工业用水与废水.2004, 35(3): 60-61.
    [88] Calvert J G, P itts J N. Photochemistry [M]. New York: Wiley, 1996: 1-83.
    [89]葛林科.水中溶解性物质对氯霉素类和福喹诺酮类抗生素光降解的影响[D].大连:大连理工大学, 2009.
    [90] Torrents A, Anderson B G, Bilboulian S, et al. Atrazine photolysis: Mechanistic investigations of direct and nitrate mediated hydroxyl radical processes and the influence of dissolved organic carbon from the Chesapeake Bay [J]. Environmental Science & Technology, 1997, 31(5): 1476-1482.
    [91] Chin Y P, Miller P L, Zeng L K, et al. Photosensitized degradation of bisphenol A by dissolved organic matter [J]. Environmental Science & Technology, 2004, 38(22): 5888-5894.
    [92] Walse S S, Morgan S L, Kong L, et al. Role of dissolved organic matter, nitrate, and bicarbonate in the photolysis of aqueous fipronil [J]. Environmental Science & Technology, 2004, 38(14): 3908-3915.
    [93] Zepp R G, Braun A M, Hoigne J, et al. Photoproduction of hydrated electrons from natural organicsolutes in aquatic environments [J]. Environmental Science & Technology, 1987, 21(5): 485-490.
    [94] Cogan S, Hass Y. Self-sensitized photo-oxidation of para-indenylidene-dihydropyridine derivatives [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193(1): 25-32.
    [95] Engel E, Schraml R, Maisch T, et al. Light-induced decomposition of indocyanine green [J]. Investigative Ophthalmology & Visual Science, 2008, 49(5): 1777-1783.
    [96] Edhlund B L, Arnold W A, McNeill K. Aquatic photochemistry of nitrofuran antibiotics [J]. Environmental Science & Technology, 2006, 40(17): 5422-5427.
    [97] Ter Halle A, Richard C. Simulated solar light irradiation of mesotrione in natural waters [J]. Environmental Science & Technology, 2006, 40(12): 3842-3847.
    [98] Martinez L J, Sik R H, Chignell C F. Fluoroquinolone antimicrobials: Singlet oxygen, superoxide and phototoxicity [J]. Photochem Photobiol, 1998, 67(4): 399~403.
    [99] Agrawal N, Ray R S, Farooq M, et al. Photosensitizing potential of ciorofloxacin at ambient level of UV radiation [J]. Photochemistry and Photobiology, 2007, 83(5): 1226-1236.
    [100] Lorenzo F, Navaratnam S, Edge R, et al. Primary photophysical properties of moxifloxacin- A Fluoroquinolone antibiotic [J]. Photochemistry and Photobiology, 2008, 84(5): 1118-1125.
    [101]井文杰.硝酸盐对水中氯苯光降解的敏化作用研究[D].新乡:河南师范大学,2009.
    [102] Boreen A L, Arnold X A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups [J]. Environmental Science & Technology, 2004, 38(14): 3933-3940.
    [103] Boreen A L, Arnold X A, McNeill K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct [J]. Environmental Science & Technology, 2005, 39(10): 3630-3638.
    [104]谢国红.啶虫脒在环境中水解与光解行为的实验研究[D].哈尔滨:哈尔滨工业大学,2009.
    [105] Latch D E, Packer J L, Stender B L, et al. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 517-525.
    [106] Latch D E, Stender B L, Packer J L, et al. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine [J]. Environmental Science & Technology, 2003, 37(15): 3342-3350.
    [107] Espinoza L T, Neamtu M, Frimmel F H. The effect of nitrate, Fe(III) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation [J]. Water Research, 2007, 41(19): 4479-4487.
    [108] Shankar M V, Nélieu S, Kerhoas L, et al. Natural sunlight NO3-/NO2- -induced photo-degradation of phenylurea herbicides in water [J]. Chemosphere, 2008, 71(8): 1461-1468.
    [109] MatykiewiczováN, KurkováR, KlánováJ, et al. Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187(1): 24-32.
    [110] Shankar M V, Nélieu S, Kerhoas L, et al. Photo-induced degradation of diuron in aqueous solution bynitrites and nitrates: Kinetics and pathways [J]. Chemosphere, 2007, 66(4): 767-774.
    [111] Vione D, Minero C, Housari F, et al. Photoinduced transformation processes of 2,4-dichlorophenol and 2,6-dichlorophenol on nitrate irradiation [J].Chemosphere, 2007, 69(10): 1548-1554.
    [112] Nélieu S, Shankar M V, Kerhoas L, et al. Phototransformation of monuron induced by nitrate and nitrite ions in water: Contribution of photonitration [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193 (1): 1-9.
    [113] Malouki M A, Lavédrine B, Richard C. Phototransformation of methabenthiazuron in the presence of nitrate and nitrite ions [J]. Chemosphere, 2005, 60(11): 1523-1229.
    [114] Mack J, Bolton J R. Photochemistry of nitrite and nitrate in aqueous solution: a review [J]. Journal of Photochemistry and Photobiology A: Chemistry , 1999, 128(1-3): 1-13.
    [115]刘国光,丁雪军,张国治等.硝酸根对罗丹明B光解的敏化作用[J].环境化学,2003, 22(6): 564-567.
    [116]杨会荣,李学德,罗永明等.阿维菌素在水溶液中的光化学降解[J].安徽农业科学,2009, 37(26): 12686-12688.
    [117]辛颖,萧潇,汪磊等.水溶液中活性成分对壬基酚聚氧乙烯醚光降解的影响[J].环境化学,2007,26(6):730-734.
    [118]王丹军,岳永德,汤锋等.阴离子对氯苯嘧啶醇光化学降解的影响[J].农业环境科学学报,2008, 27(5): 2023-2027.
    [119] Chiron S, Minero C, Vione D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters [J]. Environmental Science & Technology, 2006, 40(19): 5977-5983.
    [120] Liao C H, Kang S F, Wu F A. Hydroxyl radical scacenging role of chloride and bicarbonate ions in the H2O2/UV process [J]. Chemosphere, 2001, 44(5): 1193-1200.
    [121] Zhai G S, Liu J F, He B, et al. Ultraviolet degradation of methyltins: Elucidating the mechanism by identification of a detected new intermediary product and investigating the kinetics at various environmental conditions. Chemosphere, 2008, 72(3): 389-399.
    [122] Mě?t’ánkováH, Mailhot G, Pilichowski J F, et al. Mineralisation of Monuron photoinduced by Fe(III) in aqueous solution [J]. Chemosphere, 2004, 57(10): 1307–1315.
    [123] Poulain L, Mailhot G, Wong-Wah-Chung P, et al. Photodegradation of chlortoluron sensitised by iron(III) aquacomplexes [J]. Photochem Photobiol A: Chemistry, 2003, 159(1): 81-88.
    [124] Catastini C, Sarakha M, Mailhot G. Iron (III) aquacomplexes as effective photocatalysts for the degradation of pesticides in homogeneous aqueous solutions [J]. Sci Total Environ, 2002, 298 (1-3): 219–228.
    [125]刘彩娟.表面活性剂的应用与发展[J].河北化工, 2007, 30(4): 20-21.
    [126] Lara-Martín P A, Gómez-Parra A, González-Mazo E. Reactivity and fate of synthetic surfactants in aquatic environments [J]. Trends Anal Chem, 2008, 27(8): 684-695.
    [127] Prevot A B, Pramauro E, Guardia M de la. Photocatalytic degradation of carbaryl in aqueous TiO2 suspensions containing surfactants [J]. Chemosphere, 1999, 39(3): 493-502.
    [128] Li X L, Huang J, Yu G, et al. Photodestruction of BDE-99 in micellar solutions of nonionic surfactants of Brij 35 and Brij 58 [J]. Chemosphere, 2010, 78(6): 752-759.
    [129]薛志欣,杨桂朋,夏延致.水环境腐殖质的光化学研究进展[J].海洋科学, 2008, 32(11): 74-79.
    [130] Zhan M J, Yang X, Xian Q M, et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances [J]. Chemosphere, 2006, 63(3): 378-386.
    [131] Garbin J R, Milori D M, Sim?es M L. Influence of humic substances on the photolysis of aqueous pesticide residues [J]. Chemosphere, 2007, 66(9): 1692-1698.
    [132] Werner J J, Chintapalli M, Lundeen R A, et al. Environmental photochemistry of tylosin: Efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. Journal of Agricultural and Food Chemistry, 2007, 55(17): 7062-7068.
    [133] Dodd M C, Shah A D, Von Gunten U, et al. Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: Reaction kinetics, mechanisms, and transformation pathways. Environmental Science & Technology, 2005, 39(18): 7065-7076.
    [134] Araki T, Kawai Y, Ohta I, et al. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution. Chemical & Pharmaceutical Bulletin, 2002, 50(2): 229-234.
    [135]范晓明.水体溶解有机物的光降解及其对Cu2+、Pb2+结合能力的影响[D].青岛:中国海洋大学, 2009.
    [136]展漫军,杨曦,杨洪生等.天然水体腐殖质对双酚A光降解影响的研究[J].环境科学学报,2005, 25(6): 816-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700