超声波/零价铁体系降解五氯酚的作用机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在课题组前期研究基础上,以五氯酚为目标污染物,对超声波/零价铁(US/Fe0)体系降解五氯酚动力学与作用机理开展了进一步研究,采用气相色谱-质谱联用仪分析鉴定反应中间产物,据此探讨五氯酚降解途径,取得如下研究成果,为深入研究其它氯酚的降解动力学和降解机理奠定基础。
     (1)在US/Fe0体系中,五氯酚的降解符合拟一级反应动力学;US/Fe0体系对五氯酚的拟一级速率常数分别是单独US、单独Fe0体系的4倍和15倍,并大于两者之和。当五氯酚的初始浓度为0.5-20mg?L-1,溶液初始pH值2-8,铁粉投加量为0.5-6mg?L-1时,降解速率常数随着初始浓度和pH值的增加而减小、铁粉投加量的增加而增大;
     (2) US/Fe0体系对五氯酚的作用机理主要有羟基自由基的氧化作用和零价铁的还原作用,其中羟基自由基的氧化作用占主导;
     (3) US/Fe0体系中OH?的产生主要通过四种途径,其一:声空化导致水分子热解;其二:Fenton反应;其三:超声波与类Fenton反应的复合效应;其四:铁粉颗粒效应。并当pH值为2和3,铁粉投加量为2.0g?L-1时,OH?生成量相对较高;
     (4)在US/Fe0体系中,超声空化对零价铁具有冲刷、碎裂、清洗、气蚀和熔合等多种效应,活化和增强铁粉的表面性能;同时铁粉可以促进羟基自由基的生成,强化超声波作用;
     (5)在US/Fe0体系中降解五氯酚,检测到Fe2+和Fe3+,且前者浓度明显大于后者,Fe2+主要起催化分解超声空化过程中生成的H2O2以增加OH?生成量的作用;红外光谱分析证明了体系中存在铁聚合物:δ?FeOOH、γ?FeOOH、α?Fe2O3以及和以羟桥连接的聚合物(Fe-OH-Fe);
     (6)通过气相色谱-质谱联用分析检测到中间产物:2,3,4,6-四氯苯酚、四氯对苯二酚、八氯二苯并-p-二噁英;并结合相关研究,提出超声波/零价铁体系中五氯酚降解主要有羟基自由基的氧化脱氯,五氯酚氧自由基的自身耦合,以及零价铁的还原脱氯三种降解途径。
In this paper, the mechanism and kinetics of the degradation of pentachlorophenol by the ultrasound/zero-valent iron system (US/Fe~0) were further reported based on the success of the prophase's researches. Its degradation intermediates were analyzed and identified by the Gas Chromatograph-Mass Spectrometer. On the basis of the above studies, the degradation pathway of pentachlorophenol was proposed. The following is main achievements. The achievements would provide a basis for the better understanding removal of other chlorophenols.
     (1) The degradation of pentachlorophenol in the US/Fe~0 system was found to obey the pseudo-first-order reaction. The pseudo-first-order rate constant in the US/Fe~0 system is 4 times as big as that of ultrasound alone and 15 times as big as that of zero-valent iron alone, and it is more than the sum of the latter two. With the initial PCP concentration of 0.5-20 mg?L-1, the initial pH range of 2-8 and the iron loading range of 0.5-6 mg?L-1, the rate constant in the combined system decreases with the increase of the initial concentration and the initial pH value, but it increases with the increase of the dosage of iron.
     (2) In the US/Fe0 system, the results indicate that the pentachlorophenol degradations are mainly attributed to the oxidation of hydroxyl radicals and the reduction of iron, and the oxidation of hydroxyl radicals plays a dominant role.
     (3) There are four main pathways in the hydroxyl radical production: molecular pyrolysis in the the cavitation process, Fenton reaction, the synergism of ultrasound and modified Fenton reaction, and the granular effect of Fe0. Its production was greater at pH value of 2 and 3 and the iron dosage of 2.0 g·L~(-1).
     (4) Characterization of iron surface is highly improved by erosion, fragmentation, cleaning, cavitation erosion and melted of the acoustic cavitation; the effect of ultrasonic on the PCP degradation is strengthened by iron through advancing the generation of hydroxyl radical.
     (5) The ferrous ion and ferric ion were detected in the combined system, and the former concentration is larger than the latter. The ferrous ion can enhance the catalytic decomposition of hydrogen peroxide as to increasing the hydroxyl radical quantity. The infrared spectrophometry analysis of iron polymeric compound had indicated the presence ofδ-FeOOH,γ?FeOOH,α-Fe2O3 and Fe-OH-Fe.
     (6) 2,3,4,6-TeCP, TeCHQ and OCDD are identified as intermediates in the US/Fe0 system. Three pathways of the oxidative dechlorination of hydroxyl radicals, the coupling of pentachlorophenoxy radicals and the zero-valent iron dechlorination of pentachlorophenol are proposed on the basis of major intermediates and correlation studies.
引文
[1] 丛燕青.氯酚的电化学降解行为及治理研究[D].杭州:浙江大学,2005:6-25.
    [2] 聂晶磊,刘锋,周春玉等.氯酚类化合物对金鱼的急性和亚急性毒性研究[J].环境科学研究,2001,14(3):6-8.
    [3] Ahring B K and N Christiansen. Introduction of bioremediation ability into granular sludge[J]. Wat. Sci. Technol., 1994, 29(5-6): 189-193.
    [4] Ahring B K and N Christiansen and I Mathrani et al., Introduction of a de novo bioremedi-ation ability, aryl reductive dechlorination, into granular sludge by inoculation of sludge with D.teidjei[J]. Appl. Environ. Microbiol., 1992, 58: 3677-3682.
    [5] Juteau P, R Beaudet and G McSween et al., Anaerobic biodegradation of PCP by a methnogenic consortium[J]. Appl. Environ. Microbiol., 1995, 44: 218-224.
    [6] Bhatnagar L and B Z Fathepure. Mixed culture in deoxifacation of hazardous waste[M]. In Zerkus J G (Eds.), Mixed cultures in biotechnology: NY Mc Graw-Hill Book Co.1995:293-340.
    [7] 韦朝海,焦向东,陈焕钦.有毒难降解有机污染物治理方法的研究进展[J].重庆环境科学,1998,20(2):22-27.
    [8] 马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:1-279.
    [9] 徐向阳,祁华宝,王其于.厌氧颗粒污泥还原脱氯与降解五氯酚(PCP)的研究[J],浙江大学学报(农业与生命科学版),2001,27(2):145-150.
    [10] 李海英,李小明,陈昭宜.微生物厌氧降解五氯酚适宜条件的研究[J],湖南大学学报(自然科学版),2000,27(1):81-85.
    [11] 袁松虎,陆晓华.电-Fenton 法对五氯酚的降解研究[J],化工环保,2004,24:49-52.
    [12] 夏璐.AOP 降解含酚含氯混合废水的研究[J],化工技术与开发,2005,34:36-42.
    [13] 赵玲,彭平安,黄伟林.二氧化锰氧化降解五氯酚[J],环境科学,2006,(27):1388-1392.
    [14] Mason T J., Lorimer J P. Sonochemistry: theory, applications and uses of ultrasound in chemistry. Ellis Horwood[M], New York. 1988.
    [15] Christian Petrier, et al., Characteristic of pentachlorophenate degration in aqueous solution by means of ultrasound[J]. Environ. Sci. Technol., 1992, 26: 1639-1642.
    [16] Christian Petrier, et al. Sonochemical degradation of phenol in dilute aqueous solution: comparison of the reaction rates at 20 and 487KHz[J]. Phys.Chem, 1994, 98: 1052.
    [17] Entezari M H, Kruus P, Otson R. Effect of frequence on sonochemical reaction IINissociation of carbon disulfide[J]. Ultrasonics Sonochemistry, 1997, 4(1): 49-61.
    [ 18 ] Inez Hua et al., Optimization of ultrasonic irradiation as an advancedoxidation technology[J]. Environ.Sci.Technol, 1997, 31: 2237-2248.
    [19] Alex De Visscher et al., Kinetic model for the sonochemical degradation of monocyclic compounds in aqueous solution[J]. Phys.Chem, 1996, 100: 11636-11642.
    [20] 冯若.声化学基础研究中的声学问题[J].物理学进展,1996,16:402.
    [21] Entezari M H, Kruus P, Otson R. Effect of frequence on sonochemical reaction Ill Aissociation of carbon disulfide. Ultrasonics Sonochemistry[J], 1997, 4(1): 49-61. [ 22 ] Wu J M et al., Sonochemical destruction of chlorinated compounds in aqueous solution[J].Environmental Progress, 1992, 11(3): 195.
    [23] Olson T M. et al.,Oxidation Kinetics of natural organic mater by sonolysis and ozone[J]. Water research, 1994, 28(6): 1383. [ 24 ] Jih-Gaw Lin, et al., Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process[J]. Wat.Sci.Tech, 1996, 33(6): 75-81.
    [25] Yoo Y E, Takenaka N, Bandow H, et al., Characteristics of volatile facty acids degradation in aqueous solution by the action of ultrasound[J]. Wat Res., 1997, 31(6): 1532-1535.
    [26] Drijvers D, Van Langenhove H, Vervaet K. So nolysis of chlorobenzene in aqueous solution: organic intermediates[J]. Ultrasonics Sonochemistry, 1998, 5(1): 13-19.
    [27] Drijvers D, Van Langenhove H, Kim LNT, Bray L. Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene[J]. Ultrasonics Sonochemistry, 1999, 6(1-2): 115-121.
    [28] Seymour J D, Gupta R B. Oxidation of aqueous pollution using ultrasound: Salt induced enhancement[J]. Ind.Eng.Chem.Res, 1997, 36(9): 3453-3457.
    [29] Lin J, et al., Enhancement of decomposition of 2-chlorophenol with ultrasound/H2O2 process[J]. Wat Sci Tech., 1996, 34 (9): 41-48.
    [30] S.Okouchi, et al., Cavition-induced degradation of phenol by ultrasound[J]. Wat Sci Tech., 1992, 26(9-11): 2053-2056.
    [31] Kotronarou A, et al., Decomposition of parathion in aqueous solution by ultrasonics irradiation[J]. Environ.Sci.Technol., 1992, 26(7): 1460-1462.
    [32] Shirgaonkar I E, Pandit A B. Sonophotochemical destruction of aqueous solution of 2,4,6-trichlorophenol[J]. Ultrasonics Sonochemistry, 1998(5): 53-61.
    [33] 卞华松,张大年,赵一先.水污染物的超声波降解研究进展[J],环境污染治理技术与设备,2000,1(1):56-64.
    [34] lnez Hua and M Hofmann. Kinetics and mechanism of the sonolytic degradation of CC14:intermediates and byproducts[J]. Environ. Sci. Technol., 1996, 30: 864-867.
    [35] H Michael Cheng and Shreckumar Kurup. Sonochemical destruction of CFC11 and CFC113 in dilute aqueous solution[J]. Environ. Sci. Technol., 1998, 33: 562-565.
    [36] P.E.Wheat, M.A.Tumeo. Ultrasound induced aqueous polycyclic aromatic hydrocarbon reactivity[J]. Ultrasonic Sonochemistry, 1997, 4: 55.
    [37] 钟爱国.功率超声波诱导降解水体中乙酞甲胺磷[J].水处理技术,2001,27(1):47-49.
    [38] Lin J.G. et al., Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process[J]. Wat. Sci.Tech., 1996, 33(6): 75-81.
    [39] Mason T J. An introduction to the uses of power ultrasound in chemistry[J]. Practical sonochemistry, Elli Horwood Limited, 1991: 17-51.
    [40] Okouchi S., et al., Cavitation-induced degradation of phenol by ultrasound[J]. Wat.Sci. Tech., 1992, 26(9-11): 2053-205.
    [41] Kotronarou A, et al., Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation[J]. Environ. Sci. Technol., 1992, 26(12): 2420-242.
    [42] Okitsu K, Iwasaki K, Yobiko Y, et al., Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes[J]. Ultrasonics Sonochemistry, 2005, 12: 255-262.
    [43] Gutierrez M, et al., Sonolytic decomposition of poly (vinylpyrrolidone), ethanol, and tetranitromethane in aqueous solution[J]. J. Phys. Chem. 1988, 92(10): 2978-2981.
    [44] Comption R G, et al., Dual activation: coupling ultrasound to electrochemistry-an overview[J]. Electrochimica Acta, 1997, 42(19): 2919-2927.
    [45] Shirgaonkar I Z, Pandit A B. Sonophotochemical destruction of aqueous solution of 2, 4, 6-trichlorophenol[J]. Ultrasonics Sonochemistry, 1998, 5: 53-61.
    [46] Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphateion[J]. Water Research, 2002, 36: 4699-4708.
    [47] Arnold W A, Roberts A L. Pathways and kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe0 Particles[J]. Environ. Sci. Technol., 2000, 34: 1794-1805.
    [48] Kim Y H, Carraway E R. Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons[J]. Environ. Sci. Technol., 2000, 34: 2014-2017.
    [49] Gillham R W, O’Hannesin S F. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron [J]. Ground Water, 1994, 32: 958-967.
    [50] Bradley R Heland, Pedro J J Alvarez, Jerald L Schnoor. Reductived echlorination of carbon tetrachloride with elemental iron[J]. Journal of Hazardous Materials, 1995, 41:205-216.
    [51] Leah J Matheson, Paul Q Tramyek. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ. Sci. Technol., 1994, 28: 2045-2053.
    [52] W Scot Orth, Roert W Gillham. Dechlorination of trichloroethene in aqueous solution using Fe0[J].Environ.Sci.Technol., 1996, 30: 66-71
    [53] Jiann-long Chen, Souhail R AI-Abed, James A Ryan, Zhenbin Li. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, B83: 243-254.
    [54] Hwa K Yak, Qingyong Lang, Chien M Wai. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlotination by zero-valent iron in subcritical water[J]. Environ.Sci.Technol., 2000, 34: 2792-2798.
    [55] Stephen J Monson, Li Ma, David A Cassada, Roy F. Spalding. Confirmation and method development for dechlorinate datrazine from reductive dehalogenation of atrazine with Fe0[J]. Analytica Chimica Acta, 1998, 373: 153-160.
    [56] T Dombek, E Dolan, J Schultz, D Klarup. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions[J]. Environmental Polution, 2001, 111: 21-27.
    [57] William A Arnold, A Lynn Roberts. Pathways and kinetics of chlorinated ethylene and chlorinateda cetylene reaction with Fe(0) particles[J]. Environ. Sci. Technol., 2000, 34: 1794-1805.
    [58] K J Lampron, P C Chin, D K Cha. Reductive dehalogenation of chlorinatede thenes with elemental iron: the role of microorganisms[J].Water Research, 2001, 35(13): 3077-3084.
    [59] Deng B, Burris D R, Campbell T J. Reduction of Vinyl Chloride in Metallic Iron-Water Systems [J]. Environ. Sci. Technol., 1999, 33: 2651-2656.
    [60] Roberts A L, Totten L A, Arnold W A, et al., Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals[J]. Environ. Sci. Technol., 1996, 30: 2654-2659.
    [61] Scherer M M, Balko B A, Gallagher D A, et al., Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron[J]. Environ .Sci.Technol., 1998, 32: 302-3033.
    [62] Timothy L Johnson, Michele M Scherer, Paul G Trathyek. Kinetics of halogenated organic compound degradation by iron metal[J]. Environ. Sci. Technol., 1996, 30: 2634-2640.
    [63] Hwa K Yak, Qingyong Lang, Chien M Wai. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlotination by zero-valent iron in subcritical water[J]. Environ.Sci.Technol., 2000, 34: 2792-2798. [ 64 ]Gerald R Eykholt, Douglas T Davenport. Dechlorination of the chloroacetanilideherbicides alachlor and metolachlor by iron metal[J]. Environ. Sci. Technol., 1998, 32: 1482-1487.
    [65] Michele M Scherer, Barbara A Balko, David A. Galagher, Paul G Tratnyek. Correlation analysis of rate constants for dechlorination by zero-valent iron[J]. Environ. Sci. Technol., 1998, 32: 3026-3033.
    [66] Paul D Burrow, Kayvan Aflatooni, et al., Dechlorination rate constants on iron and the correlation with electron attachment energies[J]. Environ. Sci. Technol., 2000, 34(16): 3368.
    [67] Leah J Matheson, Paul Q Tramyek. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ. Sci. Technol., 1994, 28: 2045-2053.
    [68] Bradley R Helland, Pedro J J Alvarez, Jerald L Schnoor. Reductived echlorination of carbon tetrachloride with elemental iron[J]. Journal of Hazardous Materials, 1995, 41: 205-216.
    [69] Jiann-long Chen, Souhail R AI-Abed, et al., Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, B83: 243-254.
    [70] T Dombek, E Dolan, J Schultz, D Klarup. Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions[J]. Environmental Polution, 2001, 111: 21-27.
    [71] Zhang H, Duan L, Zhang Y, Wu F. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron[J].Dyes and Pigments, 2005, 65(1): 39-43.
    [72] 胡文勇,郑正,郑寿荣,郭照冰.超声波/零价铁降解对硝基苯胺的试验研究[J].环境污染治理技术与设备,2005,6(3):28-36.
    [73] C L Geiger, N E Ruiz, C A Clausen, D R Reinhart, J W Qinn.Ultrasound pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement and surface efects[J]. Wat Res., 2002, 36: 1342-1350.
    [74] 汤心虎,黄丽莎,莫测辉等.中性条件下超声波/零价铁协同降解活性艳红X-3B[J].环境化学,2006,25(2):199-202.
    [75] 张选军,戴友芝,曹建平等.纳米铁协同超声降解氯苯的研究[J].环境污染治理技术与设备,2004,5(8):32-34.
    [76] 张选军,戴友芝,宋勇等.超声波协同纳米铁降解 2,4-二氯苯酚的研究[J].湘潭大学自然科学学报,2005(27):87-90.
    [77] 宋勇,戴友芝.超声波与零价铁联合降解五氯苯酚的初步研究[J].湖南工程学院学报,2005,15(2):76-79.
    [78] Hung H M, Hoffmann M R. Kinetics and Mechanism of the Enhanced ReductiveDegradation of CCl4 by Elemental Iron in the Presence of Ultrasound[J]. Environ. Sci. Technol., 1998, 32:3011-3016.
    [79] Hung H M, Ling F H. Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J]. Environ. Sci. Technol., 2000, 34:1758–1763.
    [80] 张翼.超声强化化学氧化/还原法处理染料废水的研究[D].武汉:武汉大学硕士学位论文,2003.
    [81] Dai Y, Li F, Ge F, et al., Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron [J]. Journal of Hazardous Materials, 2006, 137: 1424-1429.
    [82] A De Visscher, P Van Eenoo, DDrijvers, H Van Langenhove. Kinetic Model for the Sonochemical Degradation of Monocyclic Aromatic Compounds in Aqueous Solution [J]. J. Phys. Chem., 1996, 100 (28): 11636-11642.
    [83] Mackay D, Shiu W Y, Ma K C. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals[M]. Lewis Publishers: BocaRaton, Vo1(IV), Oxygen, Nitrogen and Sulhtr Containing Compounds, 1995.
    [84] Schellenberg K, Leuenberger C, Schwarzenbach R P. Sorption of chlorinated phenols by natural sediments and aquifer materials [J]. Environ. Sci. Techno1., 1984, 18(9): 652-657.
    [85] 罗刚,黄君礼,于克浩等.[Fe(phen)32+]光度法研究Fenton试剂体系中·OH生成率的影响因素[J].化学工程师,2001,87(6):23.
    [86] 张乃东,郑威.UV-Vis-草酸铁络合物-H2O2体系产生羟自由基的Fe(phen)32+光度法测定[J].分析测试学报,2002,21(5):36-39.
    [87] 田宝珍,汤鸿霄.Ferron 逐时洛合比色法测定 Fe(Ⅲ)溶液聚合物的形态[J].环境化学,1989,8:27-33.
    [88] Murphy P L, Posner A M, Quirkj P. Charaterization of partially neutralized ferric perchlorate solutions[J ]. J Colloid Interface Sci, 1976, (56): 298-311.
    [89] Lorimer J P , Mason T J , Cuthbert T C. Effect of ultrasound on the degradation of aqueous native dextran [J]. Ultrason. Sonochem., 1995, 2: 55-57.
    [90] C.H. Fischer, E.J. Hart and A. Henglein. H/D isotope exchange in the HD-H2O system under the influence of ultrasound [J].J Phys. Chem., 1986, (90):3059.
    [91] Keck A, Gilbert E, K?ster R. Influence of particles on sonochemical reactions in aqueous solutions[J]. Ultrasonics., 2002, 40: 661-665.
    [92] Yak H K, Wenclawiak B W, Cheng J F, et al., Reductive Dechlorination of Polychlorinated Biphenyls by Zero valent Iron in Subcritical Water[J]. Environ Sci Technol., 1999, 33:1397-1399.
    [93] Ishikawa T, Cai Y W, Kandori K. Characterization of the Thermal Decomposition Products of δ-FeOOH by Fourier-transform Infrared Spectroscopy and N2 Adsorption[J]. Chem. Soc. Faraday Trans., 1992, 88(8): 1173-1177.
    [94] Lewis D G, Farmer V C. Infrared Absorption of Surface Hydroxyl Groups and Lattice Vibrations in Lepidocrocite (γ-FeOOH) and Boehmite (γ-AlOOH) [J]. Clay Miner., 1986, 21(1): 93-100.
    [95] 李若林,李增发,张春平等.球形α?Fe2O3超微粒的红外光学特性和表面膜吸附[J].物理学报,1989,38(10):1585-1592.
    [96] 孟哲,魏雨.δ-FeOOH 的制备及研究进展[J],纳米材料与结构,2005,11:512.
    [97] 都有为,张毓昌,焦洪震等.δ-FeOOH 的结构与相变过程的研究[J].物理学报,1979,6:773-783.
    [98] 孟哲,贾振斌,魏雨.非晶态δ-FeOOH液相合成纳米级α-Fe2O3粉体的历程研究[J].化学学报,2004,62:485-188.
    [99] 马子川,魏雨,郑学忠等.亚铁盐空气氧化生成 γ-FeOOH 反应的动力学研究[J].化学研究与应用,1998,10(2):213-316.
    [100] 竹湘锋,奚胜兰,徐新华.邻氯苯酚废水 Fenton 氧化反应动力学研究[J].浙江大学学报(理学版),2004,31:670-673.
    [101] Mills G, Hoffmann M R. Photocatalytic degradation of pentachlorophenol on TiO2 particles: identification of intermediates and mechanism of reaction[J]. Environmental Science and Technology, 1993, 27: 1681-1689.
    [102] Chauhan S M S, Kalra B, Mohapatra P P. Oxidation of 1-naphthol and related phenols with hydrogen peroxide and potasium superoxide catalysed by 5,10,15,20-tetraarylporphyrinatoiron (Ⅲ) chlorides in different reaction conditions[J]. J Mo1 Catal, 1999, 137: 85-92.
    [103] Hong J, Kim G, Cheong D, et al. Identification of photolytical transformation products of pentachlotophenol in water[J]. Anal Sci, 2000, 16: 621-626.
    [104] Terzian, R., Serpone, N., Barton Draper, R., Fox, M. A., Pelizzetti, E. Pulse radiolytic studies of the reaction of pentahalophenols with OH radicals: formation of pentahalophenoxyl, dihydroxypentahalocyclohexadienyl, and semiquinone radicals. Langmuir, 1991. 7, 3081-3089.
    [105] Dlofing J, Harrison B K. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments[J]. Environ.Sci.Techno1., 1992, 26: 2213-2218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700