广西贵港高砷浮选金精矿氰化浸金试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着易处理金矿资源的日益消耗,以高砷金矿为代表的难处理金矿资源的开发利用引起了世界范围内的广泛关注。我国高砷类难处理金矿资源储量丰富,分布广泛,开发利用这类金矿资源具有十分现实和长远的意义。广西贵港有较丰富的高砷金矿资源,目前主要生产浮选金精矿井作外销处理。为解决这一资源的就地处理,提高资源的开发利用价值,本论文以浮选金精矿的预处理为核心,研究了广西贵港高砷浮选金精矿的氰化浸出工艺
     高砷难处理金矿的金或以微细粒金镶嵌于砷黄铁矿或黄铁矿的裂隙中,或沉淀于硫化矿物晶粒间,或金粒以不溶体形式包裹于硫化矿物中。因此,氰化浸出前需要对其进行预处理,破坏包裹金的砷黄铁矿和黄铁矿,使金得以暴露。本文根据广西贵港难处理高砷金矿的性质特点,研究了多种预处理和氰化浸出工艺。主要包括:1、常规氰化浸金,考察了氰化钠用量、浸出时间及矿浆浓度对金浸出的影响。2、微波预处理氰化浸金,探讨了微波加热对矿物显微结构的影响,微波功率、微波处理时间、微波场中添加试剂等对预处理效果的影响及微波后细磨对浸金效果的影响。3、碱浸除砷预处理氰化浸出,考察了碱浸因素及氰化浸金因素对除砷及浸金效果的影响。4、联合工艺浸金,分别考察了微波—碱浸及细磨—碱浸联合预处理后对浸金效果的影响。
     研究结果表明:广西贵港高砷金矿属典型的难处理金矿,在试验条件下,采用常规氰化浸出,金的最大浸出率为13.6%,在大多数条件下甚至根本无法浸出;微波加热预处理可以改善氰化浸出效果,但这种改善的效果受微波作用时间、微波作用强度、矿物细度及微波场中的添加剂等因素影响;碱浸是贵港难处理金精矿最有效的预处理方法,且氰化过程中添加氧化剂助浸可获得较高的金浸出率,
    
     广西大学硕士学位论文:广西贵港高砷浮选金精矿氰化浸金试验研究
    金的最高浸出率可达72.7%;常温条件下,碱浸除砷预处理氰化浸金过程,金浸
    出率与砷脱除率呈正相关关系,提高温度将改变这种相互关系,大大降低砷的脱
    除率,并导致金无法浸出;采用微波一碱浸及细磨一碱浸联合工艺对含砷金矿进
    行预处理,在一定程度上可提高金的浸出率,但效果不明显。该研究结果对广西
    贵港高砷金矿氰化浸出工艺的设计具有重要的指导意义。
With the increasingly exhausting of easily leachable gold ores, refractory gold ores have attracted extensive attention around the world. In China, the resource of refractory gold ores containing high arsenic is very abundant and extensively distributed. Therefore, it is practically meaningful to explore better use of refractory gold ores at the present and in the future of China. Guigang of Guangxi has rich refractory gold ores containing high arsenic, which are currently explored as flotation concentrate for sale. To make better use of the gold resource in Guigang for more extra value, the thesis presented the experimental study of cyanide leaching of the refractory ore focusing on the methods of the pretreatment of the gold concentrate.
    Generally the refractory gold ores of high arsenic can not be effectively leached because micro-granular gold is inserted in the cracks of arsenopyrite and pyrite, or precipitated on the interplanars of sulfides, in addition, some gold may have formed in unsolvable form in sulfides. Therefore, the pretreatment prior to gold leaching must be conducted, so that pyrite and arsenopyrite bundling gold are destroyed and gold is exposed to be leached easily. Based on the characteristics of the refractory gold concentrate of interest, our research looked into several process methods for the pretreatment and cyanide leaching of the concentrate. They are: 1) Traditional leaching process, in which the effects of NaCN dose, leaching time and solid concentration were discussed. 2) Microwave heating pretreatment /cyanide leaching, in which the effects of microwave heating on mineral microstructure, and those of
    
    
    
    microwave power, heating time and adding alkaline material during microwave heating on leaching efficiency were studied. 3) Alkaline leaching pretreatment/ cyanide leaching, which detailed the effects of different conditions on the efficiency of alkaline leaching of arsenic and that of cyanide leaching of gold. Conjunction process of fine grinding with alkaline leaching was also investigated as the pretreatment of the cyanide leaching of the gold concentrate.
    A lot of conclusions were achieved from our experimental research as follows. Guigang gold concentrate is exactly a kind of typical refractory ore to which the traditional cyanide leaching was of very low efficiency, the highest gold leaching recovery being 12.4% and in most cases even no gold leaching taking place. Microwave pretreatment showed improvement of cyanide leaching, which was related to microwave power, heating time and addition of alkaline matters during microwave heating. The process of alkaline leaching pretreatment/cyanide leaching was verified to be the most effective process for gold extraction of Guigang gold concentrate. Meanwhile, the gold leaching recovery was directly related to arsenic removal level, and better result can be achieved by using some oxidizing agent during cyanide leaching after alkaline leaching pretreatment. Combination of fine grinding and alkaline leaching of arsenic could raise the gold leaching recovery to some extent, but the improvement was not very obvious. All these research results will provide a very meaningful instruction for the plant development of Guigang gold concentrate with cyanide leaching.
引文
[1] 王菊香.浅谈含砷金矿提金前的预处理工艺及合理选择.冶金矿山设计与建设,1997(6):23~26
    [2] 姜涛.提金化学.湖南科学技术出版社,1998,251~252
    [3] 李国民等.难处理金矿固砷焙烧工艺研究.有色冶炼,2000(2):30~33
    [4] 柯家俊.难浸金矿氰化提金的现状与问题.黄金科学技术,1998(1):33~39
    [5] 王占歧.高砷金矿细菌预氧化——氰化浸出实验研究[学位论文].中国地质大学,2001
    [6] 王俊、张全祯.炭奖提金工艺与实践.北京:冶金工业出版社,2000,15
    [7] 杨华明、邱冠周.搅拌磨机械化学氰化浸金新工艺的研究.黄金,1998(4):36~38
    [8] 闵小波、柴立元等.含砷金精矿氰化新工艺研究.黄金,1999(2):31~34
    [9] 张兴仁.微波能在矿冶工程中的应用及其前景[J].矿产综合利用,1998(5):23~28
    [10] D. A. Jones, T. R Lelyveld, S. D. Mavrofidis, S. W. Kingman and N. J. Miles.Microwave heating applications in environmental engineering—a review.Resources, Conservation and Recycling, Volume 34, Issue 2, January 2002, Pages 75-90
    [11] 陈克巧、徐勇.矿物及化合物微波化学理论与应用研究.云南冶金,1998(8):32~36
    [12] J. H. Huang and N. A. Rowson.Heating characteristics and decomposition of pyrite and marcasite in a microwave field. Minerals Engineering, Volume 14, Issue 9, September 2001, Pages 1113-1117
    [13] S. W. Kingman and N. A. Rowson. Microwave treatment of minerals-a review.Minerals Engineering, Volume 11, Issue 11, November 1998, Pages 1081-1087
    [14] K·E哈克.矿物处理过程中的微波能量.国外金属矿选矿,2000(1):18~28
    [15] 金钦汉等.微波化学.第二版,北京:科学出版社,2001,289~291
    [16] 李培铮、吴延之.黄金生产加工技术大全,长沙:中南工业大学出版社,1995
    [17] 欧启安等.广西难处理金矿提金工艺技术研究的进展.广西地质,1999(2):71~74
    [18] 吕宪俊等.氰化法提金概论.西安:陕西科学技术出版社,1997,27~30
    [19] 刘清恩.碱浸除砷氰化提金行为的探讨及矿石中金砷的回归分析.黄金,1989(3):28~31
    
    
    [20] N. J. Welham.Mechanochemical processing of gold-bearing sulphides.Minerals Engineering, Volume 14, Issue 3, March 2001, Pages 341-347
    [21] 卢宜源、宾万达.金属冶金学.工业大学出版社,1994
    [22] 吕宪俊、王志江、杨云中.氰化法提金概论.西安建筑技术出版社,1997
    [23] 陈家镛等.湿法冶金的研究与发展.冶金工业出版社,1998
    [24] 刘学胜等.含砷、碳微细粒金矿石中金的回收研究与实践.有色矿冶,1996(2):15~19
    [25] 温健康.高硫含砷金精矿焙烧-氰化浸出工艺研究.黄金,1996(9):34~36
    [26] 马尚文等.难浸金矿石提金研究的现状.河南大学学报,1996(2):63~70
    [27] 杨春芬.难处理混合型金矿的浸金研究.云南化工,1995(4):11~13
    [28] 凌海清.难浸金混合矿石及其处理工艺探讨.湖南有色金属,1995(3):43~46
    [29] 彭建容等.祥云高砷硫化金精矿脱砷试验研究.湿法冶金,1998(3):45~49
    [30] 岳铁兵等.某含石英脉型金矿石的选矿试验研究.矿产保护与利用,1998(4):29~31
    [31] 高起鹏.提高金选矿回收率的几项技术措施.有色矿冶,1997(4):23~29
    [32] 王周谭.温度及溶解氧对氰化法浸金的影响.陕西地质,1998(2) 58~63
    [33] 魏兆民.提高黄龙金矿金回收率的研究及其生产实践.黄金,1997(5):44~47
    [34] 孟宇群等.某含砷难浸金精矿常温常压强化碱浸预处理试验研究.黄金,2002(6):25~31
    [35] 夏光祥.难浸金矿提金新技术.冶金出版社,1996
    [36) 王俊等.炭浆提金工艺与实践.冶金工业出版社,2000
    [37] 魏明安、张锐敏.微波难处理微细包裹金的试验研究.矿冶,2001(3):74~77
    [38] 汪景歧.金精矿氰化前的预处理.中国矿业,1996(6):36~39
    [39] P·D·康多斯等.氰化法提金的工艺最佳化研究.国外金属矿选矿,1997(6):38~46
    [40] 张鹏飞.高锰酸钾和过氧化氢的加入次序对金氰化浸出行为的影响.长沙铁道学院学报,1999(6):20~22
    [41] Peter D. Kondos, Wesley F. Griffith and Javier O. Jara.The use of oxygen in gold cyanidation.Canadian Metallurgical Quarterly, Volume 35, Issue 1, 3 January 1996, Pages 39-45
    [42] 童雄.氧化剂强化金浸出的机理研究.国外金属矿选矿,1997(10):37~41
    [43] 刘建业.氰化浸金中氧化剂的探讨,黄金,1998(19):33~35
    [44] 王周潭.温度及溶解氧对氰化法浸金的影响.陕西地质,1998(C):58~63
    [45] M. N. Chandraprabha, J. M. Modak, K. A. Natarajan and A. M. Raichur.Strategies for
    
    efficient start-up of continuous biooxidation process for refractory gold ores. Minerals Engineering, Volume 15, Issue 10, October 2002, Pages 751-753
    [46] Tianlong Deng and Mengxia Liao. Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach.Hydrometallurgy, Volume 63, Issue 3, March 2002, Pages 249-255
    [47] M. G. Aylmore and D. M. Muir. Thiosulfate Leaching of Gold—A Review. Minerals Engineering, Volume 14, Issue 2, February 2001, Pages 135-174
    [48] J. Liu, R. Chi, Z. Zeng, J. Liang and Z. Xu.Selective Arsenic-Fixing Roast of Refractory GoldConcentrate.Metallurgical and Materials Transactions B, Volume 31B, Issue 6, December 2000, Pages 1163-1168
    [49] M. N. Lehmann, S. O'Leary and J. G. Dunn.An Evaluation of Pretreatments to Increase Gold Recovery from a Refractory Ore Containing Arsenopyrite and Pyrrhotite.Minerals Engineering, Volume 13, Issue 1, January 2000, Pages 1-18
    [50] F. P. Gudyanga, T. Mahlangu, R. J. Roman, J. Mungoshi and K. Mbeve.An acidic pressure oxidation pre-treatment of refractory gold concentrates from the kwekwe roasting plant, Zimbabwe. Minerals Engineering, Volume 12, Issue 8, August 1999, Pages 863-875
    [51] Kazi E. Haque. Microwave energy for mineral treatment processes—a brief review. International Journal of Mineral Processing, Volume 57, Issue 1, July 1999, Pages 1-24
    [52] A. J. Teague, C. Swaminathan and J. S. J. Van Deventer.The behaviour of gold bearing minerals during froth flotation as determined by diagnostic leaching.Minerals Engineering, Volume 11, Issue 6, June 1998, Pages 523-533
    [53] S. Ubaldini, F. Vegli(?), L. Toro and C. Abbruzzese. Biooxidation of arsenopyrite to improve gold cyanidation: study of some parameters and comparison with grinding. International Journal of Mineral Processing, Volume 52, Issue 1, November 1997, Pages 65-80
    [54] Zhang Yu, Fang Zhaoheng and Mamoun Muhammed. On the solution chemistry of cyanidation of gold and silver bearing sulphide ores. A critical evaluation of thermodynamic calculations, Hydrometallurgy, Volume 46, Issue 3, October 1997, Pages 251-269
    [55] J. G. Dunn and A. C. Chamberlain.The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation.Minerals Engineering, Volume 10, Issue 9, September
    
    1997, Pages 919-928
    [56] H. G. Linge and N. J. Welham. Gold recovery from a refractory arsenopyrite (FeAsS) concentrate by in-situ slurry oxidation. Minerals Engineering, Volume 10, Issue 6, June 1997, Pages 557-566
    [57] L. Curreli, G. Loi, R. Peretti, G. Rossi, P. Trois and A. Zucca. Gold recovery enhancement from complex sulphide ores through combined bioleaching and cyanidation.Minerals Engineering, Volume 10, Issue 6, June 1997, Pages 567-576
    [58] 柴小波等.浅谈机械球磨在难处理金矿浸出中的应用.中国有色金属报,1998(9):587~590
    [59] 杨华明.细磨氰化浸金新工艺的研究.稀有金属,1999(1):13~15
    [60] A. W. Breed, A. Glatz, G. S. Hansford and S. T. L. Harrison.The effect of As(Ⅲ) and As(Ⅴ) on the batch bioleaching of a pyrite-arsenopyrite concentrate.Minerals Engineering, Volume 9, Issue 12, December 1996, Pages 1235-1252
    [61] L. S. Pangum and R. E. Browner.Pressure chloride leaching of a refractory gold ore.Minerals Engineering, Volume 9, Issue 5, May 1996, Pages 547-556
    [62] N. Iglesias and F. Carranza.Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching.Minerals Engineering, Volume 9, Issue 3, March 1996, Pages 317-330
    [63] M. N. Chandraprabha, J. M. Modak, K. A. Natarajan and A. M. Raichur.Strategies for efficient start-up of continuous biooxidation process for refractory gold ores. Minerals Engineering, Volume 15, Issue 10, October 2002, Pages 751-753
    [64] Warwick Hoffmann, Nicholas Katsikaros and Gary Davis.Design of a reactor bioleach process for refractory gold treatment. FEMS Microbiology Reviews, Volume 11, Issues 1-3, July 1993, Pages 221-229
    [65] 叶忠勋等.碱度影响金浸出率的试验与研究.黄金,1996(11):44~45
    [66] 夏光祥等.难浸金矿的提金技术与展望.贵金属,2001(4):31~35
    [67] 凌敦平.氰化浸金优化工艺参数的试验研究.黄金,1996(5):32~45
    [68] 徐远志等.镇源金精矿氧化焙烧—氰化浸出工艺研究.湿法冶金,1998(3):48~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700