难选冶金矿石的微波预处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄金是一种独特的金属,与国民经济和人们的日常生活息息相关,需求量不断增大。但随着黄金资源的开发利用,世界上易选冶的黄金矿石资源愈来愈少,人们逐渐转向利用难处理的金矿资源。近年来,黄金价格持续走高,给难处理的黄金资源带来了机遇,使之逐渐成为提金的主要原料。难选冶金矿石中的金占全世界黄金储量的60%。除南非外,世界上大多数国家的金产自热液型矿床,组成复杂,从难选冶金矿石中提金被认为是“举世公认的难题”。
     本文以难选冶金矿石中具有代表性的含硫金精矿和含砷碳金精矿为原料,研究了微波预处理对其选冶特性的影响,并在升温的基础上,研究了物料中硫、砷、碳随温度的变化规律,以期得到易于氰化的合格金精矿,通过对反应过程的检测,得到了金精矿在微波中的反应机理。主要研究成果如下:
     1)本研究依据矩形谐振腔的谐振频率和谐振波长,运用正交极化方式自行研制了三馈口的矩形微波反应器,使电磁场在微波腔体内分布更均匀、更合理,消除了利用普通微波炉改装出现的电磁场分布不均现象,并在微波反应器外设计了预加热装置和气体回收装置,内部可通入保护气体,可使微波腔体内的物料在无氧状态下进行反应。
     2)运用热力学理论、电磁场理论、化学反应碰撞理论、动力学理论探讨分析了微波能够促进和强化化学反应进行的原因。
     3)在试验过程中通入保护气体,可控制金精矿中的硫和砷不与空气中的氧反应,避免了SO2和As2O3有毒有害气体的产生。
     4)微波场中金精矿的升温速率随微波功率和矿量的不同而变化,在微波功率一定时,随矿量的增加升温速率降低;在矿量一定时,随微波功率的增大升温速率提高,并呈现出不同的升温速率区段。
     5)可采用微波场外加热的方式对金精矿进行预热,在生产中可利用微波反应的余热对物料进行预热;采用传统加热方式和微波加热方式相结合的方法,金精矿中的硫、砷等去除率更高,可使反应更迅速彻底,金的浸出率更高,而且采用微波加热的方式可降低反应的温度。
     6)通过微波加热试验得到物料中硫、砷、碳的含量变化数据,利用试验数据进行曲线拟合,得到各反应的反应模型。由于在不同的温度区段物料发生不同的化学反应,因此同一种物料在不同的温度区间具有不同的反应模型。
     7)利用微波对难选冶金矿石进行预处理后金精矿氰化试验结果表明,经过微波处理后的金精矿,金的浸出率比未经过微波处理的同一金精矿高,尤其是含砷碳金精矿,浸出率提高了67.56个百分点。氰化钠用量降低幅度很大,分别是占未用微波处理时的33.33%和31.25%,说明利用微波处理难选冶金精矿是可行的。
     8)研究结果表明在微波场中,含硫金精矿在270-430℃时黄铁矿反应生成磁黄铁矿和单质硫,在430-650℃时磁黄铁矿生成单质铁和硫;含砷碳金精矿在200-320℃时毒砂反应生成硫化亚铁和单质砷,270-430℃时黄铁矿反应生成磁黄铁矿和单质硫,400-650℃时硫化亚铁生成单质铁和硫,430-650℃时磁黄铁矿生成单质铁和硫,640-700℃时碳与空气中的氧反应生成二氧化碳。
     本研究成果对难选冶金矿石资源的高效开发与利用具有一定的指导意义。
Gold is a special metal, because it is intimate correlation with national economy and people'daily life, quantity demanded is increasing.Gold resources of easy-handled in the world is becoming less shortening with gold resources exploited and used,so people begin gradually to develop and use refractory gold resources, especially, the gold price is persitent high, and this gives a good chance of refractory gold resources, and it makes them become major resources of extracting gold.The gold of refractory gold resources makes up 60% gold storage capacities in the world.The gold of majority countries in the world are originating from hydrotherm mineral deposits except South Africa, because their compositions are very complex, it is a well-known puzzle in the world which the gold is extracted from refractory gold resources.
     The samples are concentrates bearing sulfur and concentrates bearing arsenic and carbon which have representations in refractory gold ores in this article.The influences are studied by microwave pretreating them, then on the base of warming-up, the change regular patterns of sulfur, arsenic and carbon in the samples with temperature change are studied, in order that qualified concentrates cyanided easily are achieved. The reaction mechanics of gold concentrates in the microwave oven are inferred by measuring reaction process.The main results are as follows.
     1) Microwave reactor of rectangle with three power sources is designed and made with originality innovation by using cross polarization mode according to frequency and wavelength of rectangle.lt mkes electromagnetic field distribute more homogeneous and rational in the microwave cavity, erase electromagnetic field distribute irrational phenomenon in the refitted microwave oven.There are pre-heating equipment and the gas recoveried set out of microwave oven, and protective gas may be given inside the microwave, so the samples in it don't react with oxygen.
     2) With thermodynamic theory, electromagnetic field theory, chemical reaction theory and dynamics theory, what microwave can improve and strengthen chemical reaction is discussed and analysed.
     3) The protective gases are given in the course of the tests, they may control sulfur and arsenic in the gold concentrate not to react with oxygen of in the air, without producing harmful gases and poison materials, so it is favorable to protect environment and ecosystem.
     4) The warming-up speeds of gold concentrates in the microwave field are different between the change of the microwave powers and sample quantities. The warming-up speeds of gold concentrates lower with increasing sample quantities when microwave powers are rated; but the speeds run-up with microwave power raised, both of them have diffrrent zone of warming-up.
     5) The gold concentrates may be pre-heated and warmed up with outer heating set, so the residual heat of microwave reaction may be used to heat samples in the industry.The way of traditional heating combination with microwave heating makes the sulfur and arsenic in the gold concentrates percent dislodging higher, and react more promptly and thoroughly. The way of microwave heating may lower the reaction temperature.
     6) The data of sulfur, arsenic and carbon content change are gained in microwave heating tests, then the curves are fitted by using these data, and reaction models can be obtained.Because the chemical reactions can be aroused in different temperature zone, there are different reaction models at different temperature with the same samples.
     7) After the samples are handled in microwave oven, the tests show that the gold leaching rate of concentrates handled by microwave is higher than that of not handled by microwave with the same gold concentrate, especially the gold concentrate bearing arsenic and carbon, its leaching rate increase 164.98 percent.The dosage of sodium cyanide is lowered very much, and the dosage account for 33.33 percent and 31.25 percent that of not handled by microwave separately.This approves that microwave pretreatment refractory gold concentrate is feasible.
     8) The reaction courses of gold concentrates bearing sulfur and bearing arsenic and carbon are determined by a series of studies of magnetic, microwave, gravity treatment and chmicaltests.
     The reaction courses of gold concentrate bearing sulfur are that pyrite is changed into pyrrhotite and sulfur when the temperature is 270-430℃and the pyrrhotite changed into iron and sulfur when 430-650℃. The reaction courses of gold concentrate bearing arsenic and carbon are that arsenopyrite is changed into iron sulfide and arsenic when the temperature is 200-320℃, and pyrite changed into pyrrhotite and sulfur when 270-430℃, the iron sulfide changed into iron and sulfur when 400-650℃, the pyrrhotite changed into iron and sulfur when 430-650℃and the carbon reacts with oxygen in the air into carbon dioxide when 640-700℃.
     The research has guiding significance on developing and using refractory gold resources high efficiently.
引文
1. 聂树人,索有瑞.难选冶金矿石浸金[M],北京:地质出版社,1997
    2.郑存江.含砷难浸金矿的研究及应用[J],陕西地质,2003(1):88-98
    3.徐天允,徐正春主编.金的氰化与冶炼[M],沈阳黄金学院,1991
    4. 马巧瑕主编.黄金回收600问[M],科学技术文献出版社,1992:288-299
    5. 王力军,刘春谦.难处理金矿石预处理技术综述[J],黄金,2000(1):38-45
    6.D.德希内斯等.在氰化物介质中金和硫化矿物的相互作用[J],国外金属矿选矿,2003(8):32-39
    7.黄振卿.简明黄金实用手册[M],东北师范大学出版社,1989:267-396
    8. 山东省黄金工业志[M],济南出版社,1990:173-244
    9.罗家珂,黄金提取与环境保护[J].矿冶,2000,9(1):92-98
    10.黄礼煌,陆林娣等.硫脲一步法提金的展望[J],首届全国金银选矿学术会议论文集,1983:12-18
    11.李桂春,卢寿慈.非氰化提金技术的发展[J],中国矿业,2003,12(3):1-5
    12.阮德水,李卫萍.金的化学[J],高等函授学报(自然科学版),2000,2(1):25-29
    13.黄强译.革新的硫脲浸出金工艺[J],国外黄金参考,1999(1-2):17-22
    14.黄强译.用硫脲浸出法回收金的工艺处理含金矿石的完整流程[J],国外黄金参考,2000(11-12):38-42
    15.黄孔宣译.硫脲浸金新工艺[J],国外黄金参考,1994(8):5-6
    16.姜效军,徐洪波等.某高硫砷金精矿提取方法比较[J],有色金属(冶炼部分),2002(4):34-36
    17.彭铁辉.Fe3+—硫脲水溶液浸出金最佳pH值的计算[J],黄金,1989(5):39-41
    18.邱延省,罗仙平等.磁场强化硫脲浸金试验研究[J],黄金,1999(9):32-34
    19.张钦发,田忠诚.贫细微含金褐铁矿石硫脲法浸金研究[J],黄金,1998,19(6):32-35
    20. Groenwald T. The dissolution of gold in acidic solutions of thiourea[J].Hydrometallurgy,1976.1 (3):277-290
    21.胡岳华,郭观发,邱冠周等.硫脲浸金机理的电化学研究[J].黄金科学技术,1995,3(2):43-48
    22.周红.难浸金矿石的硫脲浸取法[J].冶金分析,1997,17(2):46-47
    23.姜涛,许时,陈荩.硫代硫酸盐提金理论研究—浸金的化学及热力学原理[J].黄金,1992,13(2):31-34
    24.张文阁,李玉玲.从多金属硫化物金精矿中氨性硫代硫酸盐法提出金银的研究[J],中国黄金学会首届学术年会论文集,1990:417-421
    25. Abbrllrree C,张丽霞.用于金湿法冶金的硫代硫酸盐浸出[J].湿法冶金,1996,(3):36-41
    26. Zipperian D.Golld and silver extraction by ammoniacal thiosulfate leaching from a rhyolite ore[J].Hydrometallurgy,1988,19 (3):361-375
    27.姜涛,许时,陈荩等.硫代硫酸盐提金理论研究—金溶解动力学[J].黄金,1992,13(1):35-38
    28.龚乾,胡洁雪,曹昌林.硫酸根存在下硫代硫酸氨溶液浸出硫化金精矿中金的动力学研究[J].中国有色金属学报,1994,4(1):16-20
    29.姜涛,许时,陈荩等.硫代硫酸盐提金理论研究—金的阳极溶解[J].黄金,1991,12(9):41-45
    30.姜涛,许时,陈荩等.硫代硫酸盐提金理论研究—阴极过程及浸金机理[J].黄金,1991,12(10):32-37
    31.周国华,李焕然,容庆新.室温下用氨性硫代硫酸盐从含铜金矿中浸出金[J].矿产综合利用,1999,(5):15-18
    32.张一鸣.硫代硫酸钠法提金新工艺工业试验研究[J].新疆有色金属,1994,(4):21-26
    33.姜涛.含铜精矿提金工艺及其理论研究[D].长沙中南工业大学,1990.
    34.黎铉海.机械活化强化含砷金精矿浸出的工艺及机理研究[D],长沙中南工业大学,2002
    35.孙家寿.化学提金技术[J],湖南有色金属,1994(6):354-359
    36.李汝雄,邝生鲁.硫代硫酸盐法添加氯化钠、十二烷基磺酸钠浸取金矿[J].化工冶金,1998,19(1):77
    37.张兴仁译.研制与实施生态安全的无氰提金工艺[J],国外黄金参考,2000(11):59-64
    38.阿不里米提.强化硫代硫酸盐浸金研究[J],黄金,1999,20(1):39-41
    39.张云,李鸿富.硫代硫酸铵法从焙烧后的某含铜硫金精矿中回收金[J],黄金,1999,20(7):32-34
    40. Yang Zhongmin, Yang Chunfeng.Leaching gold from refret alory gold ore bearing Arsenic by thiosulfate process[J], Journal of Yunnan University,1997,19 (5):508-514
    41. Robert S.Shoemaker precions metals[A].Kudryk D A, Corrigan D A, Liang W W. Mining Extraction and processing [C]. The metallurgical Society of AIME,1984,3-10
    42.李民权,关玉蓉.氯化提金技术机理研究[J],黄金,2003,(2):35-37
    43.孙戬 金银冶金[M].北京:冶金工业出版社,1986
    44. Yen W T, Pindred R A, Lam M P. Hypochlorite Leaching of Gold Ore[A].Advances in Gold and Silver Processing [C], Colorado:Society for Mining, Metallurgy and Exploration.1990:67-74
    45. Yen W T, Pindred R A.Pressure Oxidation of Refractory Gold Ore with Sodium Hypochlorite [J].Precious Matals.1989, (6):335-343
    46. Demopoulos G P, Papangelakis V G.难处理金矿的酸法加压氧化[A].赵捷,乔繁盛.黄金冶金[C].北京:原子能出版社,1988,448-460
    47.方兆珩,谢慧琴,马其等,次氯酸钠溶液浸取细微金矿的研究[J].中国有色金属学报,1994,3(5):9-13
    48.李皓值,氯碱浸金新工艺[J].中国有色金属学报,1996,6(增刊2):223-225
    49.范斌.金的非氰化浸出研究[I][J].湿法冶金,2000,19(2):27-29
    50.周以富,高振敏.次氯酸钠高碱高盐氧化分解贵州某难处理金矿载金硫化矿的研究[J].黄金科学技术,2000,8(3):36-42
    51.王淀佐,毛暗章,邱冠周等.FeAsS、FeS2、Au的NaClO-NaOH体系热力学分析与金的—步浸出[J],有色金属,1998,50(1):40-44
    52.毛暗章.高砷硫难处理金精矿浸金新工艺与理论研究[D],长沙中南工业大学,1997
    53.李德良,黄念东等.无害化一步提取工艺处理含砷难处理金矿的研究[J],稀有金属,2001,25(2):94-97
    54.杨中民,王光灿等.含砷难浸金矿的硫氰酸盐法提金[J],云南化工,1997(2):24-27
    55.张兴仁译.使用碘—碘化物溶液浸出含金矿石[J],国外黄金参考,2000,(11-12):49-54
    56.张兴仁译.金和含金矿石的氨浸[J],国外黄金参考,2000(12):42-49
    57.郁能文,张箭.石硫合剂(LSSS)法浸金的电化学研究[J],黄金,1998,19(2):34-35
    58.黄强译.用碱性硫化物浸出和含氮物质加压氧化预处理难浸金精矿[J],国外黄金参考,1999,(2):45-53
    59.印万忠.黄金年评[J],黄金,2002,(3):24-31
    60.郭长阁.含金硫化矿物的氧化预处理[J],国外金属矿选矿,1996(3):12-15
    61.孙春宝,魏德洲.国内外难处理金矿资源的开发利用[J],国外金属矿选矿,1996(3):3-5
    62.柯家骏,李希明等.含砷碳质金矿处理方法研究[J],黄金科学技术,1995,3(2):38-42
    63.鲍利军,吴国元.高砷硫金矿的预处理[J],贵金属,2003,24(3):61-66
    64.吴仙花,张桂珍等.难浸金矿石焙烧固硫、砷剂的研究[J],黄金,2001(8):27-29
    65.袁朝新,王云.含砷、锑、碳难处理金精矿焙烧氰化提金工艺研究[J],有色金属(冶炼部分),2003,(3):32-34
    66.袁朝新,王云,李云.含砷、汞金矿提金工艺展望[J],有色金属(冶炼部分),2003,(4):32-34
    67.郭月琴,张辉民等.某炭质金矿预处理—炭浸新工艺的研究[J],黄金科学技术,2002,10(1):23-26
    68.苏建华,王继红.含砷含碳金精矿简而有效的预处理方法[J],黄金,2002,23(9):38-39
    69.肖松文,刘建军,梁经东.难浸金矿焙烧处理的新进展[J],黄金,1995,16(4):31-35
    70.李路明.含碳砷金精矿焙烧浸出工艺的研究[J],新疆有色金属,2003,14-15
    71.邹珀.黄金洞金矿砷金精矿回转窑焙烧脱砷工艺生产实践[J],黄金,1995,16(1):44-47
    72.陈聪,姚香.难处理金矿石预处理方法简述[J],黄金科学技术,2004,12(4):27-30
    73.张兴仁.难处理金矿提金工艺新进展[J],矿产综合利用,1996(1):34-41
    74.章晋叔.难选冶金矿石处理工艺现状及进展[J],金属矿山,2004,增刊,20-24
    75.崔礼生,韩跃新.难选冶金矿石预处理现状[J],金属矿山,2005,(7):6-9
    76.崔礼生,韩跃新.微波技术在选矿中的应用[J],金属矿山,2006,(4):29-32
    77.熊大民.高砷金矿预先脱砷及后续工艺试验研究[D],成都:四川大学,2004
    78.崔礼生,韩跃新.难以氰化金矿石预处理现状[J],有色冶金,2005,(7):13-16
    79.莫伟.广西贵港高砷浮选金精矿氰化浸金试验研究[D],南宁:广西大学,2003,4
    80.乔红光.广西贵港高砷浮选金精矿微波预处理氰化浸金试验研究[D],南宁:广西大学,2005,6
    81.周丽,文书明,李华伟.难浸金矿预处理技术及其应用[J],国外金属矿选矿,2004,3:11-14
    82.周一康.难处理金矿石预处理方法研究进展及对策建议[J],黄金选冶新技术新设备交流会议论文集,福建紫金:1999,19-24
    83.夏光祥,涂桃枝.加压氧化法预处理含砷难冶金矿的研究[J],黄金,1995,16(3):23-26
    84.孙鹏,黄怀国等.某难选冶金矿石压热氧化预处理工艺的碱性介质研究[J],黄金,2002,23(12):25-28
    85.周衡,具兹范,秦晓鹏.高压釜内闪速氰化提金工艺研究[J],黄金,1995,16(12):35-37
    86.逯艳军,聂风莲.加压氰化浸出法提取金和银的工艺研究[J],黄金地质,2003,9(4):72-75
    87.杨天足,斌万达等.难处理金矿石加石灰焙烧焙砂的多硫化物浸出[J],黄金,1995,16(10):29-32
    88.孟宇群,吴敏杰等.难浸金矿常温常压强化碱浸预处理新工艺[J],有色金属,2003(1):44-47
    89.李琦,蔡淑霞等.某难浸金精矿预处理新工艺试验研究[J],黄金,2001,22(6):28-33
    90.孟宇群,吴敏杰等.某含砷难浸金精矿常温常压强化碱浸预处理试验研究[J],黄金,2002,23(6):25-31
    91.S.N.罗索夫斯基.难处理金砷硫化物金矿的碱浸[J],国外金属矿选矿,1996,(7):50-51
    92.W.Rudolfs.Soil Sci.,1922,14,135
    93.A.R.Colmer.Science.1947,105,253
    94. A. Pinches, In Leaching and Reduction in Hydrometallury[J], A. R. Burkined., IMM, London, 1975,28
    95.张广积,方兆珩.生物氧化浸矿机理和动力学[J],国外金属矿选矿,2000(6):17-20
    96.P.C.范阿斯维根.用生物氧化法改进难选金矿石的处理[J],国外金属矿选矿,2000(6):10-16
    97.魏以和,钟康年,王军.生物技术在矿物工程中的应用[J],国外金属矿选矿,1996(1):1-11
    98.杨风,徐祥斌等.含碳高砷型难浸金精矿细菌氧化试验研究[J],黄金,2003,24(4):37-39
    99.熊英,柏全金等.黄铁矿包裹型难浸金精矿的细菌预氧化工艺研究[J],黄金,2003,24(11):32-36
    100.李宏煦,王淀佐,阮仁满.硫化矿细菌浸出过程的电化学及其研究进展[J],有色金属,2003, 55(1):81-85
    101.杨松荣,邱冠周,胡岳华.硫化矿生物氧化机理的探讨[J],有色金属,2003,55(3):80-83
    102.李绍卿,刘刚,孙斌,左可胜.高砷高硫金矿石或金精矿氰化浸金工艺[J],黄金,2002,23(5):29-31
    103.姜效军,徐洪波,王涛.某高硫砷金精矿提取方法比较[J],有色金属(冶炼部分),2002,(4):34-36
    104.廖梦霞,邓天龙.硫化矿生物湿法冶金技术现状与展望[J],四川有色金属,2003,3:33-35
    105.方兆珩,夏光祥.高砷难处理金矿的提金工艺研究[J],黄金科学技术,2004(2):35-40
    106.周丽,文书明,李华伟.难浸金矿预处理技术及其应用[J],国外金属矿选矿,2004,(3):11-14
    107.赵中伟,赵天从,李洪桂.固体机械力化学,湖南有色金属,1995,11(2):44-48
    108.K.E.Haque,难处理金精矿的微波辐射预处理[M],黄金冶金,北京:原子能出版社,1988年,438-447
    109.谷晋川,刘亚川等,难选冶金矿微波预处理研究[J],有色金属,2003,55(2):61-6
    110.谷晋川,杨强,难选冶金矿微波工艺研究[J],地球学报,1998,19,增刊:141-147
    111.谷晋川,难选冶金矿微波预处理研究[J],湿法冶金,1998,(3):50-52
    112.魏明安,张锐敏,微波处理难浸微细粒金矿石包裹金的试验研究[J],矿冶,2001,10(1):74-77
    113.刘全军,唐容,微波预处理含碳微细粒金矿石的试验研究[M],第四届全国青年选矿学术会议论文集,昆明,云南科技出版社,1996,77-82
    114.魏莉,贾微.难浸金矿石预处理新工艺—微波焙烧[J],黄金,2003,(12):29-31
    115.杨大锦,左以专.高硫高砷金精矿电化学氧化机理研究[J],黄金,2000,21(11):27-30
    116.Linge H G Elet alrolytic process for refractory arsenopyritic gold ore[J]. Minerals Engineering, 1995,18 (11):1127-1331
    117.Arslan Fatma. Elet alro-oxidation of pyrite in sodium chloride solutions[J], Hydrometallurgy, 1997,46:157-169
    118.Yang Zhongmin, Yang Chunfen, Wang Guangcan.Leaching gold from refret alory gold ore bearing Arsenic by thiosulfate process[J],云南大学学报(自然科学版),1997,19(5):508-514
    119.Linge H G, Welham N J. Minerals Engineering,1997,10 (6):557-566
    120.张兴仁,傅文章.世界提金工艺技术现状与新进展,国外金属矿选矿,1996(3):6-11
    121.吴国元.高砷金精矿真空脱砷的工艺及动力学的研究[D],昆明贵金属研究所硕士论文,1990,8。
    122.吴国元,陈景.高砷硫化金矿真空脱砷工艺考察[J],贵金属,1993,14(3):7-14
    123.吴国元,陈景.高砷金精矿真空脱砷的动力学研究[J],黄金,1993,14(10):44-47
    124.唐颖译,难处理含砷精矿中金的回收,有色冶炼,2003,(2):86-89
    125.龙炳清.中南工大博士论文[D],长沙:中南工业大学,1988
    126.S.A.施尤伊.微波在矿业中的应用[J],矿业工程,2003,1(6):14-18
    127.K.E.哈克.矿物处理过程中的微波能量[J],国外金属矿选矿,2000,(1):18-27
    128.微波碎矿节能降耗[J],科学时报,2003,(10):25
    129.S.A.施尤伊.微波在矿业中的应用[J],矿业工程,2003,12(6):14-18
    130.S.T. Hall and J.A. Finch, New use of microwave[J], Minerals and Metallurgical Processing, November 1984,179
    131.刘全军,熊燕琴.微波在铁矿石选择性磨细中的应用机理研究[J],云南冶金,1997,6(3):25-28
    132.岳铁兵等.微波助磨作用浅析[J],中国非金属矿工业导刊,2003增刊:89-90
    133.Marland.S, Han.B, etc.Effet al of microwave radiation on coal grindability, Fuel,2000,79 (11):1283-1288
    134.范先锋,Rowson.N.A..微波能在钛铁矿选矿中的应用[J],国外金属矿选矿,1999,(2):2-7
    135.Kingman.S.W, Rowson.N.A..Effet als of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian illmenite ore[J].Magnetic and Elet alrical separation,1999,9 (3):131-148
    136.Fan.X.F., Rowson.N. A.Fundamented investigation of microwave pretreatment on the flotation of massive ilmenite ores[J].Developments in Chemical Engineering and Mineral Processing, 2000,8(1):167-182
    137.I.S. Jacobs, P.D.Zavitsnos, Microwave handling of mineral[J], J.Applied Physics,1982,53 (3):2730-2735
    138.金钦汉主编,微波化学[M],北京:科学出版社,1999
    139.丁伟安,硫化铜精矿的微波辐射三氯化铁浸出[J],湿法冶金,1996(1):53-56
    140.彭金辉,刘纯鹏,微波场中矿物及其化合物的升温特性[J],中国有色金属学报,1997,9:50-52
    141.Weian, D. Leaching behaviour of complex sulphide concentrate with ferric chloride by microwave irradiation[J], Rare metals,1997,16 (2):152-155
    142.Antonucci, V. Sulphllric acid leaching of (?)halcopyrite concentrate assisted by application of microwave energy[J], Proc. Of the copper 95-core 95, Int. Conf.1995, vol.111, Santiago, Chile
    143.苏永庆,刘纯鹏.微波加热下硫酸浸出黄铜矿动力学[J],有色金属,2000,52,(1):62-68
    144.Peng Jinhui, Liu Chunpeng. Leaching of ilmenite with sulfuric acid by microwave irradiation[J], Proccedings of the TMS fall meeting, Proceedings of the 1997-126th TMS Annualmeeting, Sep.1997:14-18
    145.Kelly, R., Rowson, N.. Microwave reduction of oxidized ilmenite concentrates[J], Minerals Engineering,1995,8 (11):1427-1438
    146.周晓东,洪品杰.微波辐照—盐酸浸出制备高钛渣的探索[J],云南冶金,1997,26(3):34-38
    147.周晓东.微波辐照—盐酸浸出制备酸溶性高钛渣的探索[J],云南冶金,1995,(6):35-40
    148.Joret, L. Effet al of microwaves on the rate of dissolution of metal oxides(Co3O4 and CeO2) in nitric acid[J], Hydrometallurgy,1997,45 (1-2):1-12
    149.华一新等.微波加热低品位氧化镍矿石的FeCl3氯化[J],有色金属,2000,52(1):59-61
    150.N.Standish and H.Worner, Microwave handling of iron ore powder[J], J. Microwave Power and Elet alromagnetic Energy,1990,25(3):177-180
    151.华一新,徐养粮,梁建华,软锰矿在微波场中的反应机理研究[J],云南冶金,1997,3: 22-24
    152.Standish, N.Worner, Microwave application in the reduction of metal oxides with carbon[J], Iron and steel maker,1991,18 (5):59-61
    153.酒井均,利用微波能碳热还原各种氧化矿和碳酸盐矿[J],资源と素材,1993,109(8):645-650
    154.马宠,寇建军.含铂钯铜镍精矿湿法冶金处理新工艺[J],矿产综合利用,1999,(5):47-48
    155.谢扩军.微波预处理包裹型复合铂钯矿技术,专利申请号:99114716.2
    156.Kruesi.W.H, etc.25th Annual conference of Metallurgists.CIM,1986:127-134
    157.Tao Dongping, Liu Chunpeng红砷镍矿的微波处理[J],Met.Sci.Technol.,1992,8 (2): 115
    158.彭金辉,刘纯鹏.微波辐照下PbS和PbO的升温速率及其反应动力学[J],中国有色金属学报,1993,3(1):25-27
    159.Chunpeng L., Zhuze, Z.et al.A novel combined process for obtaining high grade Ni-Cu matte from Ni-Cu sulfide concentrate diret ally[J], TMS and CIM,1993,1063-1080
    160.Chunpeng L.et al.The physicochemical properties of nikel bearing pyrrhotite and kinetics of elemental sulphur produced under controlled oxygen potential in the microwave field[J], Proc. Of TMS EPD SYMP,1993, Denver
    161.彭金辉,刘纯鹏.微波辐照下镍黄铁矿空气氧化动力学[J],昆明工学院学报,1993,18(2):64-67
    162.Kocakusak.S., et al., Metallurgical processes for early twenty-first century TMS,1994:456-459
    163.孙来几.微波技术及其在脱水中的应用研究[J],西北大学学报(自然科学),1995,25(3):274-276
    164.武文化等.微波干燥和焙烧球团[J],北京科技大学学报,1994,(2):118-121
    165.Chatteriee.I., Misra.M.Elet alromagnetic and thermal modeling of microwave drying of fine coal, Minerals and Metallurgical processing,1991,8 (2):110-114
    166.Avraamides.J., Miovski.P.Thermal reactivation of carbon used in the recovery of gold from cyanide pulps and solutions[J], Research and Development in Extractive Metallurgy,1987: 234-239
    167.Bradshaw, S.et al.Prelimininary economic assessment of microwave regeneration of activated carbon for the carbon in plup process[J], Microwave power and elet alromagnetic energy,1997, 32 (3):131-134
    168.王家强,洪品杰,戴树珊.微波用于载金活性炭的洗脱[J],现代化工,1994,(6):26-27
    169.Hua Yixin.Acta Metallurgical Sinica,1997,10 (6):1
    170.陈克巧,徐勇.矿物及化合物微波化学理论与应用研究进展述评[J],云南冶金,1998,27(4):32-36
    171.陶东平,刘纯鹏.碱式碳酸镍在微波辐照下的热分解动力学[J],有色金属,1992,44(4):49
    172.朱祖泽等.在5KVA微波炉中焙烧碳酸镍[J],有色金属(冶炼部分),1993,(3):27-30
    173.张达欣,于爱民,金钦汉.微波—碳还原法处理二氧化硫的研究[J],微波学报,1998,14(4):341-346
    174.张达欣,于爱民,金钦汉.微波—碳还原法处理—氧化氮的研究[J],高等学校化学学报,1997,18(8):1271-1274
    175.Harkness, J.et al.Plasma-chemical waste-treatment process for hydrogen sulphide[J],29th Microwave Power Mymposium, Chicago,1994
    176.Xia, D.K.et al.Microwave caustic leaching of elet alric furnace dust[J], Minerals Engineering, 2000,13 (1):79-94
    177.翁斯灏等.微波辐照增强原煤磁分离脱硫机理探讨[J],燃料化学学报,1992,20(4):368-373
    178.王杰等.煤微波法脱硫过程中铁—硫化合物的变化[J],华东化工学院学报,1990,2:23-26
    179.Carter, Michael, et al.Practical guidelines for microwave drying of soils[J], Canadian geotechnical Journal,1986,23 (4):598-601
    180.Wang, J.Y.etal.Microwave heating charactertics of selet aled foundry sands and bentonite[J], Process Mineralogy 1995,307
    181.Laforre, Victor.eatl.Microwave measurements of the water content of bentonite[J], USA,578-582
    182.Warrier, K.G.et al.Microwave drying of beohmite sol intercalated smet alites[J], Jounal of Materials science,1994,29(13):3415-3418
    183.Feldman, N.Ya.et al.Calcination of expandable materials in microwave field, Zh.Prikl.Khim, 1998,71 (10):1603-1607
    184.Piotrovski, A.Use of microwave for expansion of Vermiculite.Szklo ceram.1998,49(1):17-18
    185.刘新锦,蔡君,黄铁钢,第一届全国微波化学学术讨论会论文集,长春,1996:24
    186.汤建伟,钟本和等,微波作用下促进磷矿分解反应的研究[J].化工矿物与加工,2001,(5): 13-17.
    187.Rao, R.B.Novel approach for the benefication of ferruginous bauxite by microwave heating.Minerals&metallurgical Processing,1996,13(3):103-106
    188.郭先健,王淀佐,丁伟安,微波作用下一水硬铝石型铝土矿溶出[J].有色金属,1995,47(4):55-57
    189.回瑞发,徐玉书等,微波作用下硅藻土中氧化物析出量的实验研究[J].吉林大学自然科学学报,1994,(3):71-74.
    190.PR Kruesi, et al., US Patent,4324582,1982, Apr.13
    191.Carter, Michael, Bentley. Practical guidelines for microwave drying of soils, Canadian Geotechnical Journal,1986,23 (4):598-601
    192.Hwang, J.Y, Kramer, McDowell. Microwave heating characteristics of selet aled foundry sands and bentonites[J], Process Mineralogy,1995 Mineral, Metals, Mateials, So,307
    193.Warrier, K., etal. Microwave drying of beohmite sol intercalated smet alites[J], Journal of Materials science,1994,29 (13):3415-3418
    194.刘新锦,蔡君,黄铁钢.第一届全国微波化学学术讨论会论文集,长春,1996:2-4
    195.张颖等,活性炭再生技术的发展[J],化学世界,2001,(8):441-444
    196.蒋文举等,微波处理对活性炭孔隙结构的影响[J],粉末化学与工业,2004,(3):21-24
    197.江霞等,微波改性活性炭的吸附性能[J],环境污染治理技术与设备,2004,(1):43-46
    198.严平等,真空微波低温干燥技术探讨[J],能源研究与信息,2003,(4):242-246
    199.范兴祥等,微波辐射干燥单水氢氧化锂的研究[J],轻金属,2003,(6):19-21
    200.董吉溪,张文民,用微波加热制备纳米磷酸钻球粒[J],化学通报,1995,(11):32-33
    201.戴长虹等,ALN纳米微粉的微波合成[J],物理化学学报,1996,11:1049-1051
    202.韩铠,微波消解的应用[J],国外分析仪器,1994,(3):26-28
    203.杨方编译,微波溶样及分析[J],国外分析仪器,1996,(2):34-37
    204.H.M.Kingston and L.B.Jassie, Microwave analysis of assay[J], Anal.Chem.,1986,58:2534-2538
    205.罗方若等,微波制样的应用[J],理化检验—化学分册,2004,(1):59-62
    206.李飞.砷的应用及前景[J],有色金属工业,2003,1:70-71
    207彭容秋.砷及其用途[J],化学教学,1998,3:9-10
    208.刘泽玲.砷与社会[J],化学教学,1994,8:1-4
    209.王克坚.砷制剂在畜禽生产中的应用[J],家畜生态,2004,2:41-43
    210.姚元芝.砷及其化合物[J],化学教学,1999,4:24-25
    211.王常惠,杨建强.砷的生物功能及营养作用[J],中国饲料,2001,18:24-26
    212.常宏岗.不溶性硫的生产和应用[J],石油炼制与化工,1994,25:24-27
    213.李正西.不溶性硫磺[J],磷酸设计与粉体工程,2001,1:15-20
    214.李正西.不溶性硫磺[J],磷酸设计与粉体工程,2001,2:17-22
    215.王志霞等.不溶性硫磺的生产和发展现状[J],现代化工,2004,2:19-22
    216.李正西.不溶性硫磺的生产和市场现状[J],化肥设计,2002,40:26-29
    217.殷树青.硫磺深加工产品的开发及应用[J],精细石油化工,2003,11:16-20
    218.刘正平,孙宝国.含硫食用香料的合成及应用[J],中国食品添加剂,2003,6:82-85
    219.郝守进,茹炳根.金属硫蛋白及其在食品工业应用研究进展[J],食品与发酵工业,2002,8:62-67
    220.吴大猷量子力学(乙部)[M],北京:科学出版社,1983
    221.毕德显.电磁场理论[M],北京:电子工业出版社,1996
    222.王志符等.电磁振荡电磁波和辐射[M],北京:人民出版社,1981.12
    223.王先冲.电磁场理论和应用[M],北京:科学出版社,1981.12
    224.彭金辉,杨显万.微波能技术新应用[M],昆明:云南科技出版社,1997
    225.张兆镗,钟若青编译.微波加热技术基础[M],北京:电子工业出版社,1996.10
    226.汤建伟.微波电磁场对磷矿酸解液固反应影响的研究[D],成都:四川大学,2003
    227.白新鹏等.改进微波装置辅助提取猕猴桃化合物的研究[J],农业工程学报,2006,8:188-193
    228.杜国宏.一种新型微波化学反应器的研究[D],成都:四川大学,2004,5
    229.Barlow Stephen and Marder Seth R. Single-mode microwave synthesis in organic materials chemistry[J], Advanced Functional Materials,2003,13 (7):517-518
    230.Buchta R., Boling G, and Sigaurd D..Microwave heating for VLSI processing, Conference Proceedings-European Microwave Conference,1992,1 (22):34-36
    231.White Mikel J., et al.Finite-difference time-domain simulation of microwave sintering in a variable-frequency multimode cavity, Microwave Processing of Materials,1996,487-492
    232.Travelling-wave type microwave chemical reactor with slot wave guide, CN1250685
    233.High-efficiency microwave radical reactor, JP2002136864
    234.Microwave applicator and plasma reactor using the same, EP0564359
    235.Batch microwave reactor, US5932075
    236.一种常压微波放电在氮氧化合物脱除中的应用,CN-00110497
    237.行波式槽波导微波化学反应装置,CN-99114426
    238.多功能工业用微波能加热反应装置,CN96207039
    239.Raner Kevin D., et al. New microwave reactor for batchwise organic synthesis, Journal of Organic Chemistry,1995,60 (8):2456
    240.陈启平.开口式微波加热器的研究[J],现代电子技术,2006,7:121-123
    241.彭辉俊等.嵌入式系统在微波电源中的应用[J],自动化与仪表,2005,4:49-52
    242.www.CEM.com, www.personalchemistry.com, www.milestone.com
    243.A plasma reactor with multiple microwave sources, TW521539
    244.Mueller A, et al.Diret al power coupling into a waveguide cavity plasma source, Surface and Coating Technology [J], Sep.1999:116-119
    245.Bernhard J.T., et al. Dielet alric slab-loaded resonant cavity for applications requiring enhanced field uniformity[J], IEEE Trans.MTT.,1996,44 (3):457-460
    246.Lee Ki-Yong, et al. Microwave sintering of alumina using for single-cavity modes[J], Journal of Materials Synthesis and Processing,199,7 (3):159-166
    247.Yand H.W.et al. Temperature profile in a cylindrical model food during pulsed microwave heating[J], Journal of food science,2001,66:998-1004
    248.谷晋川.微波强化硅藻土矿提纯机理研究[D],成都:四川大学,2003
    249.黄昆编著.固体物理学[M],北京:人民教育出版社,1979.1
    250.何福成,朱正和编.结构化学[M],北京:人民教育出版社,1979.1
    251.华南工学院无机化学教研组.无机化学[M],北京:人民教育出版社,1979.1
    252.华一新等,矿物及化合物在微波场中的升温速率[J],有色金属学报,1996,3:22-24
    253.Ford.J.D, et al. High temperature chemical processing via microwave adsorption[J], Microwave power,1967,2 (2):61-64
    254.Haque, K, E. Microwave energy for mineral treatment processes-a brief review[J], Miner process,1999,57 (1):1-24
    255.Kingman, et al. Microwave treatment of minerals-a review[J], Minerals Engineering,1998, 11 (11):1081-1087
    256.Chen, T, T, et al. The relative transparency of minerals to microwave radiation[J], Can. Metall, Quart.,1984,23(1):349-351
    257.Peng Jinhui. Characteristics of temperature increase of titanium minerals and compounds by microwave irradiation[J], Proceedings of the TMS Fall Meeting, Proceedings of the 1997 126th TMS Annual Meeting,1997, Sep.14-18
    258.Hua Yinxin, Liu Chunpeng. Transactions of Nfsoc,1996,6(1):35-46
    259.段爱红等.金属氧化物吸收微波辐射的能力与其结构的关系[J],云南化工,1998,2:24-28
    260.段爱红.晶体的缺陷结构与物质吸收微波的能力[J],云南师范大学学报,1998,18(3):32-36
    261.戴树珊等.微波加热技术在有机合成和材料制备等方面的应用进展[J],云南化工,1998,(2):7-10
    262.丁培墉等编著.物理化学[M],北京:冶金工业出版社,1979.7
    263.P.A.Olubambi,et al.Hydromentallurgy, Influence of microwave heating on the processing and dissolution behavior of low-grade complex sulphide ores[J],2007,6:1-9
    264.T.Uslu, et al.Effect of microwave heating on magnetic separation of pyrite[J], Colloids and Surfaces,2003,9:161-167
    265.B.Nanthallumar, et al.Microwave pretreatment of a double refractory gold ore.Minerals Engineering[J],2007,9 (20):1109-1119
    266.王常任主编.磁电选矿[M],北京:冶金工业出版社,1986.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700