系列氰化物与活泼自由基反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰化物(如HCN,CH_3CN,C_2H_5CN,CF_3CN,CH_2CHCN等)是一类重要的挥发性有机物,其释放到大气中,会对人类和环境造成危害,因此研究它们在大气中的转化和吸收显得尤为重要,其中主要的吸收途径是它们与活泼自由基(如OH,Cl,F,O等)的反应,但是这些反应非常复杂而且反应速度很快,反应过程中会产生很多自由基和分子,为实验研究带来了困难。因此本文从理论角度出发,应用现有的量子化学理论和方法,详细地研究了一系列氰化物与活泼自由基的反应机理,并计算了反应速率常数,对反应过程进行理论预测。
     多通道气相反应的微观机理和速率常数的计算一直是化学反应动力学研究的难点,因此我们在这方面进行了探索和尝试,获得的主要成果如下:
     1.应用量子化学方法研究了H与C_2H_5CN的反应机理和动力学性质。通过B3LYP/6-311+G(d,p)和B3LYP/6-311+G(2d,2p)方法得到反应涉及的中间体及过渡态的几何结构,在B3LYP/6-311+G(2d,2p)的几何构型基础上,应用G3和BMC-CCSD方法得到各物种的高水平能量,并在G3//B3LYP6-311+G(2d,2p)水平上得到反应精确的势能面。反应涉及四种反应机理,即氢提取,C-加成/消除,N-加成/消除和取代。对于反应的动力学行为,应用过渡态和多通道RRKM理论进行研究,得到了反应在温度为200-3000K的速率常数。计算表明在整个温度区间,C-加成/消除通道为主要的反应路径。在低温区间,最初加成物C2H5CHN的去活化过程是主要的;在高温区间,产物C_2H_5+HCN是主要的。
     2.应用G3(MP2)//B3LYP/6-311+G(d,p)方法给出了氧原子与CH_3CN反应的单重态和三重态势能面。在三重态势能面上,发现六种反应机理,即直接氢提取,C-加成/消除,N-加成/消除,取代,插入和氢迁移。应用过渡态理论和多通道RRKM理论来研究总速率常数和分支速率常数随温度及压力的变化情况。结果表明在三重态势能面上直接氢提取和C-加成/消除是主要的反应路径,主要的产物是CH_3+NCO和CH_2CN+OH。在大气压力下,Ar和N_2作为碰撞气体,温度低于700K时,IM1(CH_3C(O)N)的碰撞失活是主要的;而在800-1500K,由C-加成/消除机理生成的CH_3+NCO产物是主要的;在高温(如燃烧温度)由直接氢提取机理生成的CH_2CN+OH是主要的产物。更重要的是,计算的速率常数与实验测定的速率常数相符合。同时也计算了三重态反应的同位素效应,结果表明同位素效应并不显著。在单重态势能面上,反应机理与三重态反应有很大不同,氧原子会很容易插入到CH_3CN的C-H或者C-C键生成中间体s-IM8(HOCH_2CN)和s-IM5(CH_3OCN)或者加成到CH3CN中-CN基团的碳原子上生成中间体s-IM1(CH_3C(O)N),这些过程均是无垒过程。
     3.在氧原子与CH_3CN反应的基础上,我们应用量子化学方法研究了O(3~P和1~D)与CF_3CN的反应机理和动力学行为。在QCISD(T)/6-311+G(2df)//B3LYP/6-311+G(d)水平上获得单重态和三重态势能面。在三重态势能面上,存在六种反应机理,即直接氟提取,C-加成/消除,N-加成/消除,取代,插入和氟迁移。结果表明主要的反应机理是C-加成/消除,中间体的去活化产物CF_3C(O)N以及中间体的分解产物CF_3+NCO占主要。应用RRKM理论对C-加成/消除通道的速率常数进行了计算,并与实验值进行了比较。而对于单重态势能面,插入机理为主要的反应机理,氧原子能够经过无垒过程插入到CF_3CN的C-F及C-C键中,生成FOCF_2CN和CF_3OCN;也能加成到CF_3CN的-CN基团的碳原子和氮原子上,生成中间体CF_3C(O)N和CF_3CNO。同时对中间体的分解和异构化过程进行了详细研究。
     4.丙烯腈的主要吸收途径是与羟基的反应。基于此,我们应用量子化学方法研究了该反应的详细机理和动力学性质。CH_2=CHCN是不饱和化合物,CH_2=CHCN与OH的反应如同OH与CH_2=CH_2及CH_2=CHCH_3的反应,会生成前期复合物。本文中采用BHandHLYP和M05-2X方法进行几何构型优化,BMC-CCSD方法获得能量信息。反应机理表明OH能够通过低能垒过程加成到C=C双键及-CN基团的碳原子上,生成中间体1-IM1(HOCH_2CHCN),2-IM1(CH_2HOCHCN),和3-IM1(CH_2CHCOHN),同时会发生直接氢提取反应机理。应用RRKM理论来研究速率常数随温度和压力的变化情况,计算值与实验值相符合。在一个大气压下,N_2作为碰撞气体,温度为200-1200K时,1-IM1(OHCH_2CHCN)是主要的产物,而在高温区间(1200-3000K),由直接氢提取生成的产物CH_2CCN和CHCHCN及H_2O是主要的。
Cyanides (such as hydrogen cyanide, methyl cyanide, ethyl cyanide,Cyanotrifluoromethane, acrylonitrile and so on) are one of the most important classes ofvolatile organic compounds (VOCs). They are harmful for human and environment when theyrelease into atmosphere. Thus it is especially important for cyanides to be translated andabsorbed. The dominant absorption way is the reactions with radicals (e.g., OH, Cl, F, O).Experimentally these reactions are hard to research because they are very complex and fast,and could also produce many free radicals and molecules. Therefore, in our paper, quantumchemistry theories and methods are employed to research reaction mechanism and kinetics ofcyanides with active free radicals, and these results would provide some theoretical prospect.
     During the investigation of reaction dynamics, the difficulty is reaction mechanism andkinetics of multi-channel gas phase reactions. In our paper, the efforts are made to explore andinvestigate these aspects. The results in the thesis are summaried as follows:
     1. The reaction of H radical with C_2H_5CN had been studied using various quantumchemistry methods. The geometries were optimized at the B3LYP/6-311+G(d,p) andB3LYP/6-311++G(2d,2p) levels. The single-point energies were calculated using G3andBMC-CCSD methods based on B3LYP/6-311++G(2d,2p) geometries. The potential energysurface was obtained at the G3//B3LYP6-311+G(2d,2p) level. Four mechanisms wereinvestigated, namely, hydrogen abstraction, C-addition/elimination, N-addition/eliminationand substitution. The kinetics of this reaction were studied using the transition state theory(TST) and multichannel RRKM methodologies over a wide temperature range of200-3000K.The calculated results indicated that C-addition/elimination channel was the most feasibleover the whole temperature range. The deactivation of initial adduct C_2H_5CHN was dominantat lower temperature; while C_2H_5+HCN was the dominant product at higher temperature.
     2. The low-lying triplet and singlet potential energy surfaces of the O(~3P)+CH_3CNreaction had been studied at the G3(MP2)//B3LYP/6-311+G(d,p) level. On the triplet surface,six kinds of pathways were revealed, namely, direct hydrogen abstraction,C-addition/elimination, N-addition/elimination, substitution, insertion and H-migration.Multichannel RRKM theory and transition state theory were employed to calculate the overalland individual rate constants over a wide range of temperatures and pressures. It waspredicted that the direct hydrogen abstraction and C-addition/elimination on triplet potentialenergy surface were dominant pathways. Major predicted end-products included CH_3+NCOand CH_2CN+OH. At atmospheric pressure with Ar and N_2as bath gases, CH3C(O)N (IM1)formed by collisional stabilization was dominated at T<700K, whereas CH3+NCO producedby C-addition/elimination pathway were the major products at the temperatures between800and1500K; the direct hydrogen abstraction leading to CH_2CN+OH played an important roleat higher temperatures in hydrocarbon combustion chemistry and flames, with estimatedcontribution of64%at2000K. Furthermore, the calculated rate constants were in good agreement with available experimental data over the temperature range300-600K. Thekinetic isotope effect (KIE) had also been calculated for the triplet O(~3P)+CH_3CN reaction,and it isn’t important. It was indicated that the singlet reaction exhibited a marked differencefrom the triplet reaction. On the singlet surface, the atomic oxygen could easily insert intoC─H or C─C bonds of CH_3CN, forming the insertion intermediates s-IM8(HOCH_2CN) ands-IM5(CH_3OCN) or added to the carbon atom of-CN group in CH3CN, forming the additionintermediate s-IM1(CH3C(O)N); both approaches were found to be barrierless.3. Along with the investigation of O(~3P) with CH3CN reaction, the quantum chemicalmethods had been employed to investigate the mechanism and kinetics of O(3P and1D) withCF3CN reaction. The singlet and triplet potential energy surfaces had been obtained at theQCISD(T)/6-311+G(2df)//B3LYP/6-311+G(d) level. On the triplet surface, six kinds ofpathways were revealed, namely, direct fluorine abstraction, C-addition/elimination,N-addition/elimination, substitution, insertion and F-migration. The results showed that thereaction should occur mainly through C-addition/elimination mechanism involving thechemically activated CF_3C(O)N*intermediate and the major products are CF_3and NCO. Therate constants for C-addition/elimination channel of O(~3P) with CF_3CN reaction had beendetermined by using RRKM statistical rate theory and compared with the experimental data.On the singlet surface, the insertion mechanism was important. The atomic oxygen couldeasily insert into C─F or C─C bond of CF_3CN, forming the insertion intermediates FOCF2CNand CF_3OCN. And O(1D) could add to the carbon or nitrogen atom of-CN group in CF_3CN,forming the addition intermediates CF_3C(O)N and CF_3CNO; both approaches were found tobe barrierless. The decomposition and isomerization of some intermediates were alsoperformed.4. The reaction of OH with CH_2CHCN was revealed to be one of the most significantloss processes of acrylonitrile. Therefore, mechanism and kinetics of the reaction ofacrylonitrile (CH2CHCN) with hydroxyl (OH) had been investigated. CH2CHCN belongsto unsaturated compound, and the reaction of OH with CH_2CHCN is as the same as the OHwith CH_2=CH_2and CH_2=CHCH_3reactions, the pre-reactive complex would be formed.BHandHLYP and M05-2X methods were employed to obtain initial geometries. The reactionmechanism conformed that OH addition to C=C double bond or C atom of-CN group formedthe chemically activated adducts,1-IM1(HOCH_2CHCN),2-IM1(CH_2HOCHCN), and3-IM1(CH_2CHCOHN) via low barriers, and direct hydrogen abstraction paths may alsooccur. Temperature-and pressure-dependent rate constants had been evaluated using RRKMtheory. The calculated rate constants were in good agreement with the experimental data. Atatmospheric pressure with N_2as bath gas,1-IM1(OHCH_2CHCN) formed by collisionalstabilization was the major product in the temperature range of200-1200K. The productionof CH_2CCN and CHCHCN via hydrogen abstraction became dominant at high temperatures(1200-3000K).
引文
[1]曾谨言.量子力学[M].科学出版社,2000年01月第三版,p1-25.
    [2]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].科学出版社,2009.
    [3]王仲成,朱永官.环境科学国际合作的理论机制研究[J].生态学报,2010,30(7):1946-1954.
    [4]戴树桂.环境化学[M].高等教育出版社,2006. p28-156
    [5]唐孝炎.大气环境化学[M].高等教育出版社,2006.
    [6]裘祖文.电子自旋共振波谱[M].科学出版社,1980.
    [7]徐广智,何光龙.瞬态自由基的二维化学诱导动态电子自旋极化(2D-CIDEP)[J].波谱学杂志,1997,14(1):1-6
    [8]洪新.光解自由基化学诱导动态电子极化的自由基对极化机理研究[R].安徽师范大学硕士学位论文.2006.
    [9]Fockenberg C, Hall G E, Preses, J M, et al. Kinetics and Product Study of the Reaction of CH3Radicals withO(3~P) Atoms Using Time Resolved Time-of-Flight Spectrometry[J]. J Phys Chem A,1999,103(29):5722-5731.
    [10]Blitz M A, McKee K W, Pilling M J, et al. Experimental Rate Measurements for NS+NO, O_2and NO_2, andElectronic Structure Calculations of the Reaction Paths for NS+NO_2[J]. J Phys Chem A,2002,106(36):8406-8410.
    [11]Carr S A, Glowacki D R, Liang C-H, et al. Experimental and modeling studies of the pressure andtemperature dependences of the kinetics and the oh yields in the acetyl+O2reaction[J]. J Phys ChemA,2011,115(6):1069-1085.
    [12]Glowacki D R, Pilling M J. Unimolecular reactions of peroxy radicals in atmospheric chemistry andcombustion[J]. Chem Phys Chem,2010,11(18):3836-3843.
    [13]Vanhaelemeersch S, Hoeymissen J V, Vermeylen D, et al. SiF2as a primary desorption product of Si etchingby F atoms. Interpretation of laser-induced fluorescence spectra; rate constant of the gas phase SiF2+F reaction[J].J Appl Phys,1991,70(7):3892-3898.
    [14]Carl S A, Sun Q, Peeters J. Laser-Induced Fluorescence of Nascent CH from Ultraviolet Photodissociation ofHCCO and the Absolute Rate Coefficient of the HCCO+O_2reaction over the range T=298-839K[J]. J ChemPhys,2001,114(23):10332-10341.
    [15]Schoon N, Amelynck C, Vereecken L, et al. selected ion flow tube study of the reactions of H_3O~+, NO~+andO2+with some monoterpene oxidation products[J]. Int J Mass Spectrom,2004,239(1):7-16.
    [16]Vranckx S, Peeters J, Carl S A. Kinetics of O(1~D)+H_2O and O(1~D)+H_2: Absolute rate coefficients and O(3P)yields between227and453K[J]. Phys Chem Chem Phys,2010,12(32):9213-9221.
    [17]Peeters J, Müller J-F. HOxradical regeneration in isoprene oxidation via peroxy radical isomerisations. II:experimental evidence and global impact[J]. Phys Chem Chem Phys,2010,12(42):14227-14235.
    [18]Lü R, Rao Y, Zhang W K et al. Phase measurement in nonlinear optics of molecules at air/water interface withfemtosecond laser pulses[J]. Proceedings of the SPIE Conference on Nonlinear Spectroscopy[J],2002,No.4812-4815: p115-124.
    [19]Zhang Z, Zheng D S, Guo Y, et al. Water penetration/accommodation and phase behaviour of the neutrallangmuir monolayer at the air/water interface probed with sum frequency generation vibrational spectroscopy(SFG-VS)[J]. Phys Chem Chem Phys,2009,11(6):991-1002.
    [20]Qiu M H, Ren Z F, Che L, et al. Observation of Feshbach Resonances in the F+H2HF+H Reaction[J].Science,2006,311(5766):1440-1443.
    [21]Xiao C L, Xu X, Liu S, et al. Experimental and theoretical differential cross sections for a four-atom reaction:HD+OH H_2O+D[J]. Science,2011,333(6041):440-442.
    [22]Eyring H, Gershinowitz H, Sun C E. The absolute rate of homogeneous atomic reactions[J]. J Chem Phys,1935,12(3):786-796.
    [23]Xu S C, Irle S, Lin M C. Quantum chemical prediction of reaction pathways and rate constants for reactionsof NO and NO_2with monovacancy defects on graphite (0001) surfaces[J]. J Phys Chem C,2010,114(18):8375-8382.
    [24]Zhu R S, Lin M C. Ab Initio Chemical Kinetics for Reactions of ClO with Cl_2O_2isomers[J]. J Chem Phys,2011,134(5):054307-1-054307-6.
    [25]Raghunath P, Lin M C. Ab Initio Chemical Kinetics for SiH3Reactions with Si_xH_(2x+2)(x=1-4)[J]. J PhysChem A,2010,114(51):13353-13361.
    [26]Zhu R S, Lin M C. Ab Initio Chemical Kinetic Study on the Reactions of ClO with C_2H_2and C_2H_4[J]. J PhysChem A,2010,114(51):13395-13401.
    [27]Maeda S, Ohno K, Morokuma K J. A theoretical study on the photodissociation of acetone: insight into theslow intersystem crossing and exploration of nonadiabatic pathways to the ground state[J]. J Phys ChemLett,2010,1(12):1841-1845.
    [28]Maeda S, Komagawa S, Uchiyama M, et al. Finding Reaction Pathways for Multicomponent Reactions: ThePasserini Reaction Is a Four-Component Reaction[J]. Angew Chem Int Ed,2011,50(3):644-649.
    [29]Buszek R J, Francisco J S. The Gas-Phase Decomposition of CF3OH with Water: A Radical-CatalyzedMechanism[J]. J Phys Chem A,2009,113(18):5333-5341.
    [30]Yu H G, Francisco J S. Theoretical Study of the Reaction of CH3with HOCO Radicals[J]. J Phys ChemA,2009,113(16):3844-3849.
    [31]Lin L, Nguyen M T, Theoretical study of CO oxidation on small gold cluster anions: role of the carbonateadducts[J]. Chem Phys Lett,2010,498(1-3):120-124.
    [32]Lin L, Claes P, H ltzl T, et al. The structure of Au6Y+in the gas phase[J]. Phys Chem Chem Phys,2010,12(42):13907-13913.
    [33]Hansen N, Klippenstein S J, Westmoreland P R, et al. A combined ab initio and photoionization massspectrometric study of polyynes in fuel-rich flames[J]. Phys Chem Chem Phys,2008,10(3):366-374.
    [34]Knepp M, Meloni G, Jusinski L E, et al. Theory, Measurements, and Modeling of OH and HO2Formation inthe Reaction of Cyclohexyl Radicals with O2[J]. Phys Chem Chem Phys,2007,9(31):4315-4331.
    [35]Jasper W, Klippenstein S J, Harding L B, et al. Kinetics of the Reaction of Methyl Radical with HydroxylRadical and Methanol Decomposition[J]. J Phys Chem A,2007,111(19):3932-3950.
    [36]Shama S, Green W H. Computed rate coefficients and product yields for c-C_5H_5+CH_3--products[J]. J PhysChem A,2009,113(31):8871-8882.
    [37]Goldsmith C F, Ismail H, Abel P R, et al. Pressure and Temperature Dependence of the Reaction of VinylRadical with Alkenes: Measured Rates and Predicted Product Distributions for Vinyl+propene[J]. ProcCombust Inst,2009,32(1):139-148.
    [38]Wang J, Ding Y H, Zhang S W, et al. Theoretical study on the methyl radical with chlorinated methyl radicalsCH_3-nCl_n(n=1,2,3) and CCl2[J]. J Comput Chem,2007,28(5):865-876
    [39]Xiao B, Zhao J X, Ding, Y H, et al. Theoretical studies of chemisorption of NO_2molecules on SiCnanotube[J]. Surf Sci,2010,604(21-22):1882-1888.
    [40]Zhao J X, Ding Y H, Cai Q H, et al. Theoretical studies of the magnetism of the first-row adatom on thesilicon carbide (SiC) nanotube[J]. J Phys Chem C,2010,114(9):3825-3829.
    [41]Wang Y, Liu J Y, Li Z S, et al. Theoretical study and rate constant calculation for reaction of CF3CH2OH withOH[J]. J Comput Chem,2007,28(4):802-810.
    [42]Cui F C, Pan X L, Liu W, et al. Elucidation of the methyl transfer mechanism catalyzed bychalcone O-methyltransferase: A density functional study[J]. J Comput Chem,2011,32(14):3068-3074.
    [43]Wu N N, He C Z, Duan X M, et al. Theoretical mechanistic study on the reaction of CN radical withHNCN[J]. J Comput Chem,2011,32(7):1449-1455.
    [44]Hou H, Wang B S. Ab initio study of the reaction of propionyl(C_2H_5CO) radical with oxygen(O_2)[J]. J ChemPhys,2007,127(5):054306-1-054306-9.
    [45]Song X L, Li J C Hou H, et al. Extensive theoretical studies of a new energetic material:Tetrazino-tetrazine-tetraoxide (TTTO)[J]. J Comput Chem,2009,30(12):1816-1820.
    [46]Xin Y N, Zhao M, Li Z S, et al. Theoretical investigation of the reaction of imidogen with fulminic acid[J]. JChem Theory Comput,2009,5(8):2021-2029.
    [47]Li J, Hou H, Wang B. Ab initio molecular dynamics study of the electronic structure of superoxide radicalanion in solution[J]. J Phys Chem A,2009,113(5):800-804.
    [48]Li J C, Song X L, Peng Z, et al. Computational Study of the Reaction of CH2(X3B1) with CH_3OH[J]. J PhysChem A,2008,112(48):12492-12497.
    [49]Ferna′ndez-Ramos A, Miller J A, Klippenstein S J, et al. Modeling the Kinetics of Bimolecular Reactions[J].Chem Rev,2006,106(11):4518-4584.
    [50]Miller J A, Klippenstein S J, Robertson S H, et al. Detailed balance in multiple-well chemical reactions[J].Phys Chem Chem Phys,2009,11(8):1128-1137.
    [51]Buchowiecki M, Vaní ek J. Direct evaluation of the temperature dependence of the rate constant based on thequantum instanton approximation[J]. J Chem Phys,2010,132(19):194106-1-194106-10.
    [52]Klippenstein S J. Implementation of RRKM theory for highly flexible transition states with a bond length asthe reaction coordinate[J]. Chem Phys Lett,1990,170(1):71-77.
    [53]Klippenstein S J, Allen W D.Variable Reaction Coordinate Direct RRKM Theory[J]. Ber Bunsenges PhysChem,1997,101(3):423-437.
    [54]Bonnet L, Rayez J C. Kinematic rotations in RRKM theory[J]. Chem Phys Lett,2001,338(4-6):385-388.
    [55]Troe J. Predictive Possibilities of unimolecular rate theory[J]. J Phys Chem,1979,83(1):114-126.
    [56]Sztaray, B, Bodi A, Baer T, Modeling unimolecular reactions in photoelectron photoion coincidenceexperiments[J]. J Mass Spectrom,2010,45(11):1233-1245.
    [57]Silva da G, Bozzelli J W. Kinetic modeling of the benzyl+HO_2reaction[J]. Proc Combust Inst,2009,32(1):287-294.
    [58]Somnitz H, Zellner R. Theoretical studies of unimolecular reactions of C_2-C5alkoxyl Radicals Part. RRKMdynamical calculations[J]. Phys Chem Chem Phys,2000,2(9):1907-1918.
    [59]Gannon K L, Blitz M A, Liang C H, et al. Temperature Dependent Kinetics (195-798K) and H Atom Yields(298-498K) from Reactions of1~CH_2with Acetylene, Ethene, and Propene[J]. J Phys Chem A,2010,114(35):9413-9424.
    [60]Jasper A W, Klippenstein S J, Harding L B, et al. Kinetics of the Reaction of Methyl Radical with HydroxylRadical and Methanol Decomposition[J]. J Phys Chem A,2007,111(19):3932-3950.
    [1]Frisch M J, Pople J A, Binkley J S. Self-consistent molecular orbital methods25. Supplementary functions forGaussian basis sets[J]. J Chem Phys,1984,80(7):3265-3269.
    [2]Curtiss L A, Redfern P C, Raghavachari K. Assessment of Gaussian-3and density-functional theories on theG3/05test set of experimental energies[J]. J Chem Phys,2005,123(12):124107.
    [3]Wilson A K, Woon D E, Peterson K A, et al. Gaussian basis sets for use in correlated molecular calculations. IX.The atoms gallium through krypton[J]. J Chem Phys,1999,110(16):7667-7676.
    [4]Lynch B J, Zhao Y, Truhlar D G. Effectiveness of Diffuse Basis Functions for Calculating Relative Energies byDensity Functional Theory[J]. J Phys Chem A,2003,107(9):1384-1388.
    [5]Fast P L, Sanchez M L, Truhlar D G. Multi-coefficient Gaussian-3method for calculating potential energysurfaces[J]. Chem Phys Lett,1999,306(5-6):407-410.
    [6]Curtiss L A, Raghavachari K, Redfern P C, et al. Gaussian-3.G3. theory for molecules containing first andsecond-row atoms[J]. J Chem Phys,1998,109(18):7764-7776.
    [7]Curtiss L A, Redfern P C, Raghavachari K, et al. Gaussian-3theory using reduced M ller-Plesset order[J]. JChem Phys,1999,110(10):4703-4709.
    [8]Lynch B J, Zhao Y, Truhlar D G. The6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSDMulticoefficient Correlation Methods[J]. J Phys Chem A,2005,109(8):1643-1649.
    [9]Pople J A, Head-Gordon M, Fox D J, et al. Gaussian-1theory: A general procedure for prediction of molecularenergies[J]. J Chem Phys,1989,90(10):5622-5629.
    [10]Curtiss L A, Raghavachari K, Trucks G W, et al. Gaussian-2theory for molecular energies of first-andsecond-row compounds[J]. J Chem Phys,1991,94(11):7221-7230.
    [11]Curtiss L A, Raghavachari K, Pople J A. Gaussian-2theory using reduced M ller-Plesset orders[J]. J ChemPhys,1993,98(2):1293-1298.
    [12]Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of Gaussian-2and density functional theories forthe computation of enthalpies of formation[J]. J Chem Phys,1997,106(3):1063-1079.
    [13]Bauschlicher C W, Partridge H. Extension of Gaussian-2(G2) theory to bromine-and iodine-containingmolecules: Use of effective core potentials[J]. J Chem Phys,1995,103(5):1788-1885.
    [14]Baboul A G, Curtiss L A, Redfern P C, et al. Gaussian-3theory using density functional geometries andzero-point energies[J]. J Chem Phys,1999,110(16):7650-7657.
    [15]Curtiss L A, Redfern P C, Raghavachari K. Gaussian-4Theory[J]. J Chem Phys,2007,126(8):084108-1-084108-12.
    [16]Curtiss L A, Redfern P C, Raghavachari K.Gaussian-4Theory using reduced order perturbation theory [J]. JChem Phys,2007,127(12):124105.
    [17]Chan B, Deng J, Radom L. G4(MP2)-6X: A cost-effective improvement to G4(MP2)[J]. J Chem TheoryComput,2011,7(1):112-120.
    [18]Xu K, Xu Z F, Lin M C. Theoretical study on the kinetics and mechanism for the reaction of FCO with NO[J].J Phys Chem A,2006,110(21):6718-6723.
    [19]Wang H, Li J C, Song X L. Computational study of the reaction of chlorinated vinyl radical with molecularoxygen(C2Cl3+O2)[J]. J Phys Chem A,2006,110(34):10336-10344.
    [20]Wang B S, Hou H, Gu Y S. Ab initio/density functional theory and multichannel RRKM calculations for theCH3O+CO reaction[J]. J Phys Chem A,1999,103(40):8021-8029.
    [21]Mebel A M, Diau E W G, Lin M C, et al. Ab initio and RRKM calculations for multichannel rate constants ofthe C_2H_3+O_2reaction[J]. J Am Chem Soc,1996,118(40):9759-9771.
    [22]Pan Y R, Tang Y Z, Wang R S. A DFT and ab initio study on the mechanisms of atmospheric CH_2NH+O(~3P)reaction[J]. Comput Theory Chem,2011,965(2-3):298-304.
    [23]Fast P L, Truhlar D G. MC-QCISD: Multi-Coefficient Correlation Method Based on Quadratic ConfigurationInteraction with Single and Double Excitations[J]. J Phys Chem A,2000,104(26):6111-6116.
    [24]Wang Y, Liu J Y, Li Z S, et al. Direct Dynamics Study on Hydrogen Abstraction Reaction of CF_3CF_2CH_2OHwith OH Radical[J]. J Phys Chem A,2006,110(17):5853-5859.
    [25]Wang Y, Liu J Y, Yang L, et al. Direct Dynamics Studies on Hydrogen Abstration Reactions of CH_3CHFCH_3and CH3CH2CH2F with OH Radicals[J]. J Phys Chem A,2007,111(32):7761-7770.
    [26]Wang F, Sun H, Sun J Y, et al. Mechanistic and kinetic study of CH2O+O3reaction[J]. J Phys Chem A,2010,114(10):3516-3522.
    [27]Wang L, Li Y J, He H Q, et al. Hydrogen abstraction reactions of OH radicals with CH_3CH_2CH_2Cl andCH_3CHClCH_3: A mechanistic and kinetic study[J]. J Comput Chem,2012,33(1):66-75.
    [28]Zhao Y, Truhlar D G. Assessment of model chemistries for noncovalent interactions[J]. J Chem TheoryComput,2006,2(4):1009-1018.
    [29]Moore J W, Pearson R G. Kinetics and Mechannism,3rd Ed[M]. Wiley, New York.1980.
    [30]Miller W H. Quantum mechanical transition state theory and a new semiclassical model for reaction rateconstants[J]. J Chem Phys,1974,61(5):1823-1834.
    [31]Eyring H. The Activated Complex in Chemical Reactions[J]. J Chem Phys,1935,3(2):107-115.
    [32]Evans M G, Polanyi M. Some applications of the transition state method to the calculation of reactionvelocities, especially in solution[J]. Trans Faraday Soc,1935,31(0):875-894.
    [33]Garrett B C, Truhlar D G. Variational Transition State Theory.Primary Kinetic Isotope Effects for AtomTransfer Reactions[J]. J Am Chem Soc,1980,102(8):2559-2570.
    [34]Garrett B C, Truhlar D G. Generalized transition state theory. Classical mechanical theory and applications tocollinear reactions of hydrogen molecules[J]. J Phys Chem,1979,83(8):1052-1079.
    [35]Garrett B C, Truhlar D G. Criterion of minimum state density in the transition state theory of bimolecularreactions[J]. J Chem Phys,1979,70(4):1593-1598.
    [36]Wigner E. The transition state method[J]. Trans Faraday Soc,1938,34:29-41.
    [37]Truhlar D G, Kuppermann A. Exact tunneling calculations[J]. J Am Chem Soc,1971,93(8):1840-1851.
    [38]Garrett B C, Truhlar D G, Grev R S, et al. Improved treatment of threshold contributions in variationaltransition-state theory[J]. J Phys Chem,1980,84(13):1730-1748.
    [39]Liu Y-P, Lynch G C, Truong T N, et al. Molecular Modeling of the Kinetic Isotope Effect for the
    [1,5]-Sigmatropic Rearrangement of cis-1,3-Pentadiene[J]. J Am Chem Soc,1993,115(6):2408-2415.
    [40]Garrett B C, Joseph T, Truong T N, et al. Application of the Large-Curvature Tunneling Approximation toPolyatomic Molecules: Abstraction of H or D by Methyl Radical[J]. Chem Phys,1989,136(2):271-293.
    [41]Liu Y-P, Lu D-H, Gonzalez-Lafont A, et al. Direct Dynamics Calculation of the Kinetic Isotope Effect for anOrganic Hydrogen-Transfer Reaction, Including Corner-Cutting Tunneling in21Dimensions[J]. J Am Chem Soc,1993,115(17):7806-7817.
    [42]Fernandez-Ramos A, Truhlar D G. Improved Algorithm for Corner Cutting Calculations[J]. J Chem Phys,2001,114(4):1491-1496.
    [43]Johnston H S, Heicklen J. Tunnelling corrections for unsymmetrical eckart potential energy barriers[J]. J PhysChem,1962,66(3):532-533.
    [44]Eckart C. The Penetration of a Potential Barrier by Electrons[J]. Phys Rev.1930,35(11):1303-1309.
    [45]Wang B, Hou H, Gu Y. Ab Initio/Density Functional Theory and Multichannel RRKM Calculations for theCH3O+CO Reaction[J]. J Phys Chem A,1999,103(40):8021-8029
    [46]Diau E W, Lin M C, Melius C F. A theoretical study of the CH_3+C_2H_2reaction[J]. J Chem Phys,1994,101(5):3923-3927.
    [47]Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogen reaction.Temperature-and pressure-dependence studies and transition state theoryanalysis[J]. J Phys Chem,1983,87(20):3933-3942.
    [48]Troe J. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation[J]. JChem Phys,1977,66(11):4745-4757.
    [49]Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogen reaction.Temperature-and pressure-dependence studies and transition-state-theory analysis[J]. J Phys Chem,1983,87(20):3933-3942.
    [50]Lin M C, He Y, Melius C F. Theoretical aspects of product formation from the cyanato radical+nitric oxidereaction[J]. J Phys Chem,1993,97(36):9124-9128.
    [1] Duley W W, Williams D A. Interstellar Chemistry [M], Academic Press, New York,1984.
    [2] Turner B E. Recent progress in astrochemistry[J]. Space Sci Rev,1989,51:235-337.
    [3] Shlager H, Arnold F. Balloon-borne fragment ion mass spectrometry studies of stratospheric positiveions: Unambiguous detection of H+(CH3CN)1(H2O)m-clusters[J]. Planet Space Sci,1985,33(11):1363-1366.
    [4] Arijs E, Brasseur G. Acetonitrile in the stratosphere and implications for positive ion composition[J]. JGeophys Res,1986,91(D3):4003-4016.
    [5] Hynes A J, Wine P H. Kinetics and mechanism of the reaction of hydroxyl radicals with acetonitrileunder atmospheric conditions[J]. J Phys Chem,1991,95(3):1232-1240.
    [6] Budge S, Roscoe J M. The reactions of O(3~P) with acetonitrile and propionitrile[J]. Can J Chem,1995,73:666-674.
    [7] Nizamov B, Leone S R. Kinetics of C2H Reactions with Hydrocarbons and Nitriles in the104296KTemperature Range[J]. J Phys Chem A,2004,108(10):1746-1752.
    [8] Tyndall G S, Orlando J J, Wallington T J. et al. Kinetics of the Reactions of Acetonitrile with Chlorineand Fluorine Atoms[J]. J Phys Chem,1996,100(2):660-668.
    [9] Lifshitz A, Tamburu C. Thermal decomposition of acetonitrile. Kinetic modeling[J]. Int J Chem Kinet,1998,30(5):341-347.
    [10] Wang B S, Hou H, Gu Y S. Theoretical Study of the Reaction of Atomic Hydrogen with Acetonitrile[J].J Phys Chem A,2001,105(1):156-164.
    [11] Sun J Y, Tang Y Z, Sun H, et al. Mechanistic and kinetic study of the OH+C_2H_5CN reaction[J].Chem Phys Lett,2008,463(4-6):315-321.
    [12] Sun J Y, Tang Y Z, Sun H et al. Theoretical study and rate constant calculation for the O(3~P)+C2H5CN reaction[J]. Mol Phys,2008,106(11):1379-1387.
    [13] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian: Pittsburgh, PA,2003.
    [14] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90(4):2154-2161.
    [15] Gonzalez C, Schlegel H B. Reaction path following in mass-weighted internal coordinates[J]. J PhysChem,1990,94(14):5523-5527.
    [16] Curtiss L A, Redfern P C, Raghavachari K, et al. Gaussian-3theory using reduced M ller-Plessetorder[J]. J Chem Phys,1999,110(10):4703-4709.
    [17] Lynch B J, Zhao Y, Truhlar D G. The6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSDMulticoefficient Correlation Methods[J]. J Phys Chem A,2005,109(8):1643-1649.
    [18] Lide, D. R. CRC Handbook of Chemistry and Physics[M],74th ed.; CRC: Boca Raton, FL,1993.
    [19] Cerceau F F, Raulin R, Gautier D. Infrared spectra of gaseous mononitriles: application to atmosphereof Titan[J]. Icarus,1985,62(2):207-220.
    [20] Afeefy H Y, Liebman J F, Stein S E. In NIST Chemistry WebBook, NIST Standard ReferenceDatabase; http://webbook.nist.gov.
    [21] Smith I W M. Kinetics and Dynamics of Elementary Gas Reactions[M]. Butterworth, London,1980, p118.
    [22] Holbrook K A, Pilling M J, Robertson S H. Unimolecular Reactions[M]; J. Wiley: Chichester, U.K,1996.
    [23] Johnston H S, Heicklen J. Tunnelling corrections for unsymmetrical eckart potential energy barriers[J].J Phys Chem,1962,66(3):532-533.
    [24] Hou H, Wang B S. Ab initio study of the reaction of propionyl (C_2H_5CO) radical with oxygen (O_2)[J].J Chem Phys,2007,127(5):054306.
    [25] Wang BS, Hou H, Gu Y S. Theoretical Investigation of the Reaction of O(3~P) with CH2Cl[J]. J PhysChem A,1999,103(13):2060-2065.
    [26] Wang B S, Hou H, Gu Y S. Ab initio potential energy surface for the reaction of O(3P) with CH2F[J].Chem Phys Lett,1999,304(3-4):278-284.
    [27] Pechukas, P. Statistical Approximations in Collision Theory, In Dynamics of Molecular Collisions[M];Plenum Press: New York,1976.
    [28] Stein S E, Rabinovitch B S. Accurate evaluation of internal energy level sums and densities includinganharmonic oscillators and hindered rotors[J]. J Chem Phys1973,58(6):2438-2445.
    [29] Astholz D C, Troe J, Wieters W. Unimolecular processes in vibrationally highly excitedcycloheptatrienes. I. Thermal isomerization in shock waves[J]. J Chem Phys,1979,70(11):5107-5116.
    [30] Troe J. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the masterequation[J]. J Chem Phys,1977,66(11):4745-4757.
    [31] Troe J. Predictive possibilities of unimolecular rate theory[J]. J Phys Chem,1979,83(1):114-126.
    [32] Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogen reaction.Temperature-and pressure-dependence studies and transition-state-theory analysis[J]. J Phys Chem,1983,87(20):3933-3942.
    [33] Wang B S, Hou H, Gu Y S. Ab Initio/Density Functional Theory and Multichannel RRKMCalculations for the CH3O+CO Reaction[J]. J Phys Chem A,1999,103(40):8021-8029.
    [34] Hou H, Li A X, Hu H Y, et al. Mechanistic and kinetic study of the CH3CO+O2reaction[J]. J ChemPhys,2005,122(22):224304.
    [1] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. ProgEnergy Combust Sci,1989,15(4):287-338.
    [2] Melius C F. Proc. of the25th JANAF Combustion Meeting; CPIA Publ,498,1988; Vol. II, p155.
    [3] Miller J A, Branch M C, McLean W J, et al.20th International Symposium on Combustion; TheCombustion Institute: Pittsburgh,1984; p673.
    [4] Haynes B S. The oxidation of hydrogen cyanide in fuel-rich flames[J]. Combust Flame,1977,28:113-121.
    [5] Schuchmann H P, Laidler K J, et al. Nitrogen compounds other than NO in automobile exhaust gas[J]. JAir Pollut Control Assoc,1972,22(1):52-53.
    [6] Bezard B, Marten A, Paubert G. Detection of acetonitrile on Titan[J]. Bull Am Astron Soc,1993,25:1100.
    [7] Hamm S, Warneck P. The interhemispheric distribution and the budget of acetonitrile in thetroposphere[J]. J Geophys Res,1990,95(D12):20593-20606.
    [8] Bonanno R J, Timmons R B, Stief L J, et al. The kinetics and mechanisms of the reactions of O(3~P)atoms with CH_3CN and CF_3CN[J]. J Chem Phys,1977,66(1):92-98.
    [9] Budge S, Roscoe J M. The reactions of O(3~P) with acetonitrile and propionitrile[J]. Can J Chem,1995,73:666-674.
    [10] Mallard W G, Westley F, Herron J T, et al. Chemical Kinetics Database, Version7.0; NIST:Gaithersburg, MD,2000.
    [11] Kreher C, Theinl R, Gericke K-H, et al. Reaction dynamics of O(1~D) with HCN(000v3)[J]. J ChemPhys,1995,103(20):8901-8909.
    [12] Kono M, Matsumi Y,et al. Reaction kinetics of O(1~D) with CF_3CN[J]. Phys Chem Chem Phys,2000,2(24):5578-5583.
    [13] Wang B S, HouH, Gu Y S. Theoretical Study of the Reaction of Atomic Hydrogen with Acetonitrile[J].J Phys Chem A,2001,105(1):156-164.
    [14] Li Q S, Wang C Y. Direct dynamic study on the hydrogen abstraction reaction CH_3CN+OH→CH2CN+H2O[J]. J Comput Chem,2004,25(2):251-257.
    [15] Li Q S, Wang C Y. A Theoretical Study on the Two Reactions of Acetonitrile with Atomic Chlorineand Bromine[J]. J Phys Chem A,2002,106(38):8883-8890.
    [16] Sun J Y, Tang Y Z, Sun H et al. Theoretical study and rate constant calculation for the O(3~P)+C_2H_5CN reaction[J]. Mol Phys,2008,106(11):1379-1387.
    [17] Sun J Y, Tang Y Z, Sun H, et al. Theoretical study of the reaction of ethynyl radical withacetonitrile[J]. Theor Chem Acc,2008,121(1-2):33-41.
    [18] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian: Pittsburgh, PA,2003.
    [19] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys,1993,98(7):5648-5652.
    [20] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into afunctional of the electron density[J]. Phys Rev B,1988,37(2):785-789.
    [21] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90(4):2154-2161; Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523-5527.
    [22] Baboul A G, Curtiss L A, Redfern P C, et al. Gaussian-3theory using density functional geometries andzero-point energies[J]. J Chem Phys,1999,110(16):7650-7657.
    [23] Lynch B J, Zhao Y, Truhlar D G. The6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSDMulticoefficient Correlation Methods[J]. J Phys Chem A2005,109(8):1643-1649.
    [24] Lee T J, Taylor P R. A diagnostic for determining the quality of single-reference electron correlationmethods[J]. Int J Quantum Chem,1989,36(S23):199-207.
    [25] Peiró-García J, Nebot-Gil I. Ab Initio Study on the Mechanism of the Atmospheric ReactionOH+O_3→HO_2+O_2[J]. Chem Phys Chem,2003,4(8):843-847.
    [26] Peiró-García J, Nebot-Gil I. Ab initio study of the mechanism of the atmospheric reaction: NO2+O_3→NO_3+O_2[J]. J Comput Chem,2003,24(13):1657-1663.
    [27] Rienstra-Kiracofe J C, Allen W D, Schaefer Ш H F. The C_2H_5+O_2Reaction Mechanism: High-Levelab Initio Characterizations[J]. J Phys Chem A,2000,104(44):9823-9840.
    [28] Holbrook K A, Pilling M J, Robertson S H. Unimolecular Reactions[M]; J. Wiley: Chichester, U.K,1996.
    [29] NIST Computational Chemistry Comparison and Benchmark Database. http://srdata.nist.gov/cccbdb/.
    [30] Demaison J, Durbrulle A, Boucher D, et al. Microwave spectra, centrifugal distortion constants, and rzstructure of acetonitrile and its isotopic species[J]. J Mol Spectrosc,1979,76(1-3):1-16.
    [31] Lide D R. CRC HandBook of Chemistry and Physics,3rd ed. CRC, Boca Raton, FL,1992.
    [32] Sumiyoshi Y, Tanaka K, Tanaka T. Time‐resolved infrared diode laser spectroscopy of the ν5band ofthe cyanomethyl radical (H_2CCN)[J]. J Chem Phys,1996,104(5):1839-1845.
    [33] Pan Y R, Tang Y Z, Sun J Y, et al. The theoretical study on mechanisms for NCO with CH3reaction[J].Mol Phys,2008,106(7):921-927.
    [34] Pasinszki T, Westwood N P C. Gas-Phase Spectroscopy of the Unstable Acetonitrile N-OxideMolecule, CH_3CNO[J]. J Phys Chem A,200,105(8):1244-1253.
    [35] Sun Y C, Wang I T, Nguyen T L, et al. A Combined Quantum Chemistry and RRKM CalculationPredicts the O(1~D)+C_2H_6Reaction Can Produce Water Molecule in a Collision-Free Crossed MolecularBeam Environment[J]. J Phys Chem A,2003,107(36):6986-6994.
    [36] Shu J N, Lin J J, Lee Y T, et al. A Crossed Molecular Beam Study of the O(1D)+C3H8Reaction:Multiple Reaction Pathways[J]. J Am Chem Soc,2001,123(2):322-330.
    [37] Vranckx S, Peeters J, Carl S. A temperature dependence kinetic study of O(1D)+CH4: overall ratecoefficient and product yields[J]. Phys Chem Chem Phys,2008,10(37):5714-5722.
    [38] Mielke Z, Hawkins M, Andrews L. Matrix reactions of oxygen atoms with methyl cyanide: infraredspectra of hydroxyacetonitrile and acetonitrile N-oxide[J]. J Phys Chem,1989,93(2):558-564.
    [39] Chase M W, Davies Jr C A, Downey J R, et al. J Phys Chem Ref Data,1985,14(suppl.no.1):1211.
    [40] Matsumi Y, Tonokura K, Inagaki Y, et al. Isotopic branching ratios and translational energy release ofhydrogen and deuterium atoms in reaction of oxygen (1~D) atoms with alkanes and alkyl chlorides[J]. J PhysChem,1993,97(26):6816-6821.
    [41] Tian Y, Wei W M, Tian Z M, et al. Ab initio/density functional theory and multichannel RRKM studyfor the ClO+CH_2O reaction[J]. J Phys Chem A,2006,110(38):11145-11150.
    [42] Berman M R, Lin M C. Kinetics and mechanism of the methylidyne+molecular nitrogen reaction.Temperature-and pressure-dependence studies and transition-state-theory analysis[J]. J. Phys Chem,1983,87(20):3933-3942.
    [43] Wang B S, Hou H, Gu Y S. Ab initio potential energy surface for the reaction of O(3~P) with CH_2F[J].Chem Phys Lett,1999,304(3-4):278-284.
    [44] Stein S E, Rabinovitch B S. Accurate evaluation of internal energy level sums and densities includinganharmonic oscillators and hindered rotors[J]. J Chem Phys,1973,58(6):2438-2445.
    [45] Astholz D C, Troe J, Wieters W. Unimolecular processes in vibrationally highly excitedcycloheptatrienes. I. Thermal isomerization in shock waves[J]. J Chem Phys,1979,70(11):5107-5116.
    [46] Troe J. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the masterequation[J]. J Chem Phys,1977,66(11):4745-4757.
    [47] Troe J. Predictive possibilities of unimolecular rate theory[J]. J Phys Chem,1979,83(1):114-126.
    [48] Tardy D C, Rabinovitch B S. Intermolecular vibrational energy transfer in thermal unimolecularsystems[J]. Chem Rev,1977,77(3):369-408.
    [49] Smith I W M. Kinetics and Dynamics of Elementary Gas Reactions[M]. Butterworth, London,1980, p.118.
    [50] Johnston H S, Heicklen J. Tunnelling corrections for unsymmetrical eckart potential energy barriers[J].J Phys Chem,1962,66,532-533.
    [51] Eckart C. The Penetration of a Potential Barrier by Electrons[J]. Phys Rev,1930,35(11):1303-1309.
    [52] Truhlar D G, Isaacson A D, Garrett B C. Generalized Transition State Theory, Theory of ChemicalReaction Dynamics[M]. Vol.4, CRC, BocaRaton, FL,1985, Chap.2, pp.65–137.
    [53] Lu D H, Maurice D, Truhlar D G. What is the effect of variational optimization of the transition stateon.alpha.-deuterium secondary kinetic isotope effects? A prototype: CD3H+H.dblarw. CD_3+H_2[J]. J AmChem Soc,1990,112(17):6206-6214.
    [54] Liu Y P, Lu D H, Gonzalez-Lafont A, et al. Direct dynamics calculation of the kinetic isotope effectfor an organic hydrogen-transfer reaction, including corner-cutting tunneling in21dimensions[J]. J AmChem Soc,1993,115(17):7806-7817.
    [55] Liu Y P, Lynch G C, Troung T N, et al. Molecular modeling of the kinetic isotope effect for the
    [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene[J]. J Am Chem Soc,1993,115(6):2408-2415.
    [1] Dunlea E J, Ravishankara A R. Kinetic studies of the reactions of O(1~D) with several atmosphericmolecules[J]. Phys Chem Chem Phys,2004,6(9):2152-2161.
    [2] Warneck P. Chemistry of the Natural Atmosphere[M], Academic Press, San Diego, CA,1988.
    [3] Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry[J]. ProgEnergy Combust Sci,2008,34(1):1-46.
    [4] Haynes B S. The oxidation of hydrogen cyanide in fuel-rich flames[J]. Combust Flame,1977,28:113-121.
    [5] Karlsson H L. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passengervehicles[J]. Sci Total Environ,2004,334–335:125-132.
    [6] Kleinbohl A, Toon G C, Sen B, et al. On the stratospheric chemistry of hydrogen cyanide[J]. GeophysRes Lett,2006,33(no. L11806):5.
    [7] Sun J Y, Tang Y Z, Jia X J, et al. Theoretical study for the reaction of CH3CN with O(3~P)[J]. J ChemPhys,2010,132(6):064301.
    [8] Carpenter B K, Goldstein N, Kam A, et al. Dynamics of O(1~D) reactions with bifunctional substrates:HCN[J]. J Chem Phys,1984,81(4):1785-1793.
    [9] Kreher C, Theinl R, Gericke K-H, et al. Reaction dynamics of O(1~D) with HCN(000v3)[J]. J ChemPhys,1995,103(20):8901-8909.
    [10] Orient O J, Chutjian A, Martus K E, et al. Observation of CN A→X and B→X emissions in gas-phasecollisions of fast O(3P) atoms with HCN[J]. Phys Rev A,1993,48(1):427-431.
    [11] Ravishankara A R, Solomon S, Turnipseed A A, et al. Atmospheric Lifetimes of Long-LivedHalogenated Species[J]. Science,1993,259(no.5092):194-199.
    [12] Takahashi K, Wada R, Matsumi Y, et al. Product Branching Ratios for O(3P) Atom and ClO RadicalFormation in the Reactions of O(1D) with Chlorinated Compounds[J]. J Phys Chem,1996,100(24):10145-10149.
    [13] Bonanno R J, Timmons R B, Stief L J, et al. The kinetics and mechanisms of the reactions of O(3~P)atoms with CH3CN and CF_3CN[J]. J Chem Phys,1977,66(1):92-98.
    [14] Kono M, Matsumi Y,et al. Reaction kinetics of O(1D) with CF3CN[J]. Phys Chem Chem Phys,2000,2(24):5578-5583.
    [15] Holbrook K A, Pilling M J, Robertson S H. Unimolecular Reactions[M]; J. Wiley: Chichester, U.K,1996.
    [16] Perry R A, Siebers D L. Rapid reduction of nitrogen oxides in exhaust gas streams[J]. Nature,1986,324,657-658.
    [17] Miller J A, Bowman C T. Kinetic modeling of the reduction of nitric oxide in combustion products byisocyanic acid[J]. Int J Chem Kinet,1991,23(4):289-313.
    [18] Wategaonkar S, Setser DW. The fluorine atom+isocyanic acid reaction system: a flow reactor sourcefor isocyanate radical(~X2.PI.) and nitrogen monofluoride(X3.SIGMA.-)[J]. J Phys Chem,1993,97(39):10028-10034.
    [19] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian: Pittsburgh, PA,2003.
    [20] Werner H–J, Knowles P J. A second order multiconfiguration SCF procedure with optimumconvergence[J]. J Chem Phys,1985,82(11):5053-5063.
    [21] Knowles P J, Werner H-J. An efficient second-order MC SCF method for long configurationexpansions[J]. Chem Phys Lett,1985,115(3):259-267.
    [22] Sun Y C, Wang I T, Nguyen T L, et al. A Combined Quantum Chemistry and RRKM CalculationPredicts the O(1~D)+C_2H_6Reaction Can Produce Water Molecule in a Collision-Free Crossed MolecularBeam Environment[J]. J Phys Chem A,2003,107(36):6986-6994.
    [23] NIST Computational Chemistry Comparison and Benchmark Database. http://srdata.nist.gov/cccbdb/
    [24] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following. J Chem Phys,1989,90(4):2154-2161; Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523-5527.
    [25] Lynch B J, Zhao Y, Truhlar D G. The6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSDMulticoefficient Correlation Methods[J]. J Phys Chem A,2005,109(8):1643-1649.
    [26] Baboul A G, Curtiss L A, Redfern P C, et al. Gaussian-3theory using density functional geometries andzero-point energies[J]. J Chem Phys,1999,110(16):7650-7657.
    [27] Lee T J, Taylor P R. A diagnostic for determining the quality of single-reference electron correlationmethods[J]. Int J Quantum Chem,1989,36(S23):199-207.
    [28] Tang Y Z, Wang R S, Wang B S. Theoretical Study on Mechanisms and Kinetics of NCCO+O2Reaction[J]. J Phys Chem A,2008,112(23):5295-5299.
    [29] Hou H, Li A X, Hu H Y, et al. Mechanistic and kinetic study of the CH_3CO+O_2reaction[J]. J ChemPhys,2005,122(22):224304.
    [30] Hou H, Wang B S. Ab initio study of the reaction of propionyl (C_2H_5CO) radical with oxygen (O_2)[J].J Chem Phys,2007,127(5):054306.
    [31] Xin Y N, Zhao M, Li Z S, et al. Theoretical Investigation of the Reaction of Imidogen with FulminicAcid[J]. J Chem Theory Comput,2009,5(8):2021-2029.
    [32] Hammond G S. A Correlation of Reaction Rates[J]. J Am Chem Soc,1955,77(2):334-338.
    [33] D. R. Lide, CRC Handbook of Chemistry and Physics[M],74th ed.; CRC: Boca Raton, FL,1993.
    [34] Havasi B, Pasinszki T, Nicholas P C W. Gas-Phase Infrared and ab Initio Study of the UnstableCF_3CNO Molecule and Its Stable Furoxan Ring Dimer[J]. J Phys Chem A,2005,109(17):3864-3874.
    [35] Shu J N, Lin J J, Lee Y T, et al. A Crossed Molecular Beam Study of the O(1~D)+C_3H_8Reaction: Multiple Reaction Pathways[J]. J Am Chem Soc,2001,123(2):322-330.
    [36] Vranckx S, Peeters J, Carl S. A temperature dependence kinetic study of O(1~D)+CH4: overall ratecoefficient and product yields[J]. Phys Chem Chem Phys,2008,10(37):5714-5722.
    [37] Mielke Z, Hawkins M, Andrews L. Matrix reactions of oxygen atoms with methyl cyanide: infraredspectra of hydroxyacetonitrile and acetonitrile N-oxide[J]. J Phys Chem,1989,93(2):558-564.
    [38] Donovan R J, Husain D. Recent advances in the chemistry of electronically excited atoms[J]. ChemRev,1970,70(4):489-516.
    [39] Pechukas P. In Dynamics of Molecular Collisions[M]; Plenum Press: New York,1976.
    [40] Gilbert R G, Smith S C. Theory of Unimolecular and Recombination Reactions[M]. Oxford:Blackwell Scientific,1990.
    [41] Stein S E, Rabinovitch B S. Accurate evaluation of internal energy level sums and densities includinganharmonic oscillators and hindered rotors[M]. J Chem Phys,1973,58(6):2438-2445.
    [42] Astholz D C, Troe J, Wieters W. Unimolecular processes in vibrationally highly excitedcycloheptatrienes. I. Thermal isomerization in shock waves[J]. J Chem Phys,1979,70(11):5107-5116.
    [43] Troe J. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the masterequation[J]. J Chem Phys,1977,66(11):4745-4757.
    [44] Troe J. Predictive possibilities of unimolecular rate theory[J]. J Phys Chem,1979,83(1):114-126.
    [45] Tardy D C, Rabinovitch B S. Intermolecular vibrational energy transfer in thermal unimolecularsystems[J]. Chem Rev,1977,77(3):369-408.
    [46] Zhang J, Sun X M, Cai Z T, et al. Mechanisms and Kinetics of Reactions of the O(1~D,3~P)+CF_3ClSystem[J]. Chem Res Chin Univ,2006,22(5):663-664.
    [47] Tully J C. Collision complex model for spin forbidden reactions: Quenching of O(1D) by N2[J]. JChem Phys,1974,61(1):61-68.
    [48] Tachikawa H, Hamabayashi T, Yoshida H. Electronic-to-Vibrational and-Rotational Energy Transferin the O(1~D)+N_2Quenching Reaction: Ab Initio MO and Surface-Hopping Trajectory Studies[J]. J PhysChem,1995,99(45):16630-16635.
    [49] Matsumi Y, Chowdhury A M S. Translational relaxation and electronic quenching of hot O(1~D) bycollisions with N2[J]. J Chem Phys,1996,104(18):7036-7044.
    [1] Anderson R A, Watson A A, Harland W A. Fire deaths in the Glasgow area II: The role of carbonmonoxide[J]. Med Sci Law.1981,21(4):288-294.
    [2] Costain C C, Stoicheff B P. Microwave Spectrum, Molecular Structure of Vinyl Cyanide and aSummary of CC, CH Bond Lengths in Simple Molecules[J]. J Chem Phys,1959,30(3):777-782.
    [3] Mullen P A, Orloff M K. The electronic spectrum of acrylonitrile[J]. Theor Chim Acta,1971,23(3):278-284.
    [4] Wilhelm M J, Nikow M, Letendre L, et al. Photodissociation of vinyl cyanide at193nm: Nascentproduct distributions of the molecular elimination channels[J]. J Chem Phys,2009,130(4):044307.
    [5] Du W N, Luo C, Li Z S. The photodissociation mechanisms of acrylonitrile:Ab initio calculations onreaction channels and surface intersections[J]. J Chem Phys,2008,129(17):174309.
    [6] Derecskei-Kovacs A, North S W. The unimolecular dissociation of vinylcyanide: A theoreticalinvestigation of a complex multichannel reaction[J]. J Chem Phys,1999,110(6):2862-2871.
    [7] Homayoon Z, Vázquez S A, Rodríguez-Fernández R, et al. Ab Initio and RRKM Study of theHCN/HNC Elimination Channels from Vinyl Cyanide[J]. J Phys Chem A,2011,115(6):979-985.
    [8] Levy II H. Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted[J]. Science,1971,173(no.3992):141-143.
    [9] Atkinson R, J Phys Chem Ref Data,1989, Monograph1,191.
    [10] Harris G W, Kleindienst T E, Pitts Jr J N. Rate constants for the reaction of OH radicals with CH_3CN,C_2H_5CN and CH_2CH-CN in the temperature range298–424K[J]. Chem Phys Lett,1981,80(3):479-483.
    [11] Grosjean D, Williams П E L. Environmental persistence of organic compounds estimated fromstructure-reactivity and linear free-energy relationships. Unsaturated aliphatics[J]. Atmos Environ,1992,26(8):1395-1405.
    [12] Teruel M A, Blanco M B, Luque G R. Atmospheric fate of acrylic acid and acrylonitrile: Rateconstants with Cl atoms and OH radicals in the gas phase[J]. Atmos Environ,2007,41(27):5769-5777.
    [13] Frisch M J, Trucks G W, Schlegel H B et al. Gaussian: Pittsburgh, PA,2003.
    [14] Becke A D. A new mixing of Hartree–Fock and local density‐f unctional theories[J]. J Chem Phys,1993,98(2):1372-1377.
    [15] Lee C, Yang W, Par R G. Development of the Colle-Salvetti correlation-energy formula into afunctional of the electron density[J]. Phys Rev B,1988,37(2):785-789.
    [16] Zhao Y, Schultz N E, Truhlar D G. Design of Density Functionals by Combining the Method ofConstraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, andNoncovalent Interactions[J]. J Chem Theory Comput,2006,2(2):364-382.
    [17] M ller C, Plesset M S. Note on an approximation treatment for many-electron systems[J]. Phys Rev,1934,46(7):618-622
    [18] Head-Gordon M, Pople J A, Frisch M J. MP2energy evaluation by direct methods[J]. Chem Phys Lett,1988,153(6):503-506.
    [19] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys,1993,98(7):5648-5652.
    [20] Vega-Rodriguez A, Alvarez-Idaboy J R. Quantum chemistry and TST study of the mechanisms andbranching ratios for the reactions of OH with unsaturated aldehydes[J]. Phys Chem Chem Phys,2009,11(35):7649-7658.
    [21] Galano A. Mechanism of OH Radical Reactions with HCN and CH3CN: OH Regeneration in thePresence of O_2[J]. J Phys Chem A,2007,111(23):5086-5091.
    [22] Alvarez-Idaboy J R, Galano A, Bravo-Pe′rez G, et al. Rate Constant Dependence on the Size ofAldehydes in the NO_3+Aldehydes Reaction. An Explanation via Quantum Chemical Calculations andCTST[J]. J Am Chem Soc,2001,123(34):8387-8395.
    [23] Sastry G N, Bally T, Hrouda V,et al. The C4H6+Potential Energy Surface.1. The Ring-OpeningReaction of Cyclobutene Radical Cation and Related Rearrangements[J]. J Am Chem Soc,1998,120(36):9323-9334.
    [24] Galano A, Alvarez-Idaboy J R, Bravo-Perez G, et al. Gas phase reactions of C1–C4alcohols with theOH radical: A quantum mechanical approach[J]. Phys Chem Chem Phys,2002,4(19):4648-4662.
    [25] Ding W J, Fang D C. Theoretical Studies on Cycloaddition Reactions between Keteniminium Cationsand Olefins[J]. J Org Chem,2001,66(20):6673-6678.
    [26] Galano A, Cruz-Torres A, Alvarez-Idaboy J R. Isopropylcyclopropane+OH Gas Phase Reaction: AQuantum Chemistry+CVT/SCT Approach[J]. J Phys Chem A,2006,110(5):1917-1924.
    [27] Alvarez-Idaboy J R, Cruz-Torres A, Galano A, et al. Structure Reactivity Relationship in Ketones+OH Reactions: A Quantum Mechanical and TST Approach[J]. J Phys Chem A,2004,108(14):2740-2749.
    [28] Galano A. Theoretical Study on the Reaction of Tropospheric Interest: Hydroxyacetone+OH.Mechanism and Kinetics. J Phys Chem A,2006,110(29):9153-9160.
    [29] Francisco-Ma′rquez M, Alvarez-Idaboy J R, Galano A, et al. Theoretical study of the initial reactionbetween OH and isoprene in tropospheric conditions[J]. Phys Chem Chem Phys,2003,5(7):1392-1399.
    [30] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90(4):2154-2161; Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523-5527.
    [31] Lynch B J, Zhao Y, Truhlar D G. The6-31B(d) Basis Set and the BMC-QCISD and BMC-CCSDMulticoefficient Correlation Methods[J]. J Phys Chem A,2005,109(8):1643-1649.
    [32] Sun J Y, Tang Y Z, Sun H, et al. Theoretical and kinetic study of the H+C_2H_5CN reaction[J]. JComput Chem,2010,31(6):1126-1134.
    [33] Sun J Y, Tang Y Z, Jia X J, et al. Theoretical study for the reaction of CH_3CN with O(3~P)[J]. J ChemPhys,2010,132(6):064301.
    [34] Sun J Y, Tang Y Z, Sun H, et al. Mechanistic and kinetic study of the OH+C_2H_5CN reaction[J]. ChemPhys Lett,2008,463(4-6):315-321.
    [35] Lee T J, Taylor P R. A diagnostic for determining the quality of single-reference electron correlationmethods[J]. Int J Quantum Chem,1989,36(S23):199-207.
    [36] Holbrook K A, Pilling M J, Robertson S H. Unimolecular Reactions[M]. J. Wiley: Chichester, U.K,1996.
    [37] Hou H, Wang B S, Gu Y S. Ab Initio Mechanism and Multichannel RRKM TST Rate Constant for theReaction of Cl(2~P) with CH_2CO (Ketene)[J]. J Phys Chem A,2000,104(2):320-328.
    [38] Hou H, Wang B S. Ab initio study of the reaction of propionyl (C_2H_5CO) radical with oxygen (O2)[J].J Chem Phys,2007,127(5):054306.
    [39] Tang Y Z, Wang R S, Wang B S. Theoretical Study on Mechanisms and Kinetics of NCCO+O2Reaction[J]. J Phys Chem A,2008,112(23):5295-5299.
    [40] Singleton D L, Cvetanovic R J. Temperature dependence of the reaction of oxygen atoms witholefins[J]. J Am Chem Soc,1976,98(22):6812-6819.
    [41] Sosa C, Schlegel H B. Calculated barrier heights for OH+C_2H_2and OH+C_2H_4using unrestrictedMoeller-Plesset perturbation theory with spin annihilation[J]. J Am Chem Soc,1987,109(14):4193-4198.
    [42] Senosiain J P, Klippenstein S J, Miller J A. Reaction of Ethylene with Hydroxyl Radicals: ATheoretical Study[J]. J Phys Chem A,2006,110(21):6960-6970.
    [43] Zhu R S, Park J, Lin M C. Ab initio kinetic study on the low-energy paths of the HO+C_2H_4reaction[J]. Chem Phys Lett,2005,408(1-3):25-30.
    [44] Zhou C W, Li Z R, Li X Y. Kinetics and Mechanism for Formation of Enols in Reaction of HydroxideRadical with Propene[J]. J Phys Chem A,2009,113(11):2372-2382.
    [45] Zhang W C, Du B N, Feng C J. Theoretical investigation on mechanism for OH-initiated oxidation ofCH_2=C(CH_3)CH_2OH[J]. Theor Chem Acc,2010,125(1-2):45-55.
    [46] Du B N, Feng C J, Zhang W C, et al. Theoretical study on the mechanism for the reaction of OH withCH_2=CHCH_2CH_2OH[J]. Chem Phys,2010,367(1):52-61.
    [47] Olivella S, Solé A. Mechanisms for the Reactions of Hydroxyl Radicals with Acrolein: A TheoreticalStudy[J]. J Chem Theory Comput,2008,4(6):941-950.
    [48] Scheiner S, Kar T. Analysis of the Reactivities of Protein C H Bonds to H Atom Abstraction by OHRadical[J]. J Am Chem Soc,2010,132(46):16450.
    [49] NIST Computational Chemistry Comparison and Benchmark Database. http://srdata.nist.gov/cccbdb/
    [50] Rau′l Alvarez-Idaboy J, Diaz-Acosta I, Vivier-Bunge A. Energetics of mechanism of OH-propenereaction at low pressures in inert atmosphere[J]. J Comput Chem,1998,19(8):811-819.
    [51] Francisco-Ma′rquez M, Rau′l Alvarez-Idaboy J, Galano A. On the role of s-cis conformers in thereaction of dienes with OH radicals[J]. Phys Chem Chem Phys,2004,6(9):2237-2244.
    [52] Uc V H, Garc′a-Cruz I, Herna′ndez-Laguna A, et al. New Channels in the Reaction Mechanism ofthe Atmospheric Oxidation of Toluene[J]. J Phys Chem A,2000,104(33):7847-7855.
    [53] Alvarez-Idaboy J R, Mora-Diez N, Vivier-Bunge A. A Quantum Chemical and Classical TransitionState Theory Explanation of Negative Activation Energies in OH Addition To Substituted Ethenes[J]. J AmChem Soc,2000,122(15):3715-3720.
    [54] Alvarez-Idaboy J R, Mora-Diez N, Boyd R J, et al. On the Importance of Prereactive Complexes inMolecule Radical Reactions: Hydrogen Abstraction from Aldehydes by OH[J]. J Am Chem Soc,2001,123(9):2018-2024.
    [55] Tokmakov I V, Lin M C. Kinetics and Mechanism of the OH+C_6H_6Reaction: A Detailed Analysiswith First-Principles Calculations[J]. J Phys Chem A,2002,106(46):11309-11326.
    [56] Klippenstein S J. Implementation of RRKM theory for highly flexible transition states with a bondlength as the reaction coordinate[J]. Chem Phys Lett,1990,170(1):71-77.
    [57] Wardlaw D M, Marcus R A. On the Statistical Theory of Unimolecular Processes[J]. Adv Chem Phys,1988,70(part1):231-263.
    [58] Robertson S, Wagner A F, Wardlaw D M. Flexible Transition State Theory for a Variable ReactionCoordinate: Analytical Expressions and an Application[J]. J Phys Chem A,2002,106(11):2598-2613.
    [59] Robertson S, Wagner A F, Wardlaw D M. Flexible transition state theory for a variable reactioncoordinate: Derivation of canonical and microcanonical forms[J]. J Chem Phys,2000,113(7):2648-2661.
    [60] Johnston H S, Heicklen J. Tunnelling corrections for unsymmetrical eckart potential energy barriers[J].J Phys Chem,1962,66(3):532-533.
    [61] Eckart C. The Penetration of a Potential Barrier by Electrons[J]. Phys Rev,1930,35(11):1303-1309.
    [62] Baasandorj M, Knight G, Papadimitriou V C, et al. Rate Coefficients for the Gas-Phase Reaction of theHydroxyl Radical with CH_2═CHF and CH_2═CF_2[J]. J Phys Chem A,2010,114(13):4619-4633.
    [63] Zhu L, Bozzelli J W, Ho W P. Reaction of OH Radical with C_2H_3Cl: Rate Constant and ReactionPathway Analysis[J]. J Phys Chem A,1999,103(39):7800-7810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700