用户名: 密码: 验证码:
立体选择性萃取分离菊酸对映体及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单一光学异构体手性农药以其高效、高选择性和高安全性成为近年来研究开发的重要发展方向。拟除虫菊酯是一种重要的手性农药,合成该农药的关键问题是要从外消旋菊酸获得单一光学异构体菊酸。本文用酒石酸酯对2,2-二甲基-3-(2-甲基丙稀基)环丙烷羧酸(反式第一菊酸)、2,2-二氯-3-(2-甲基丙稀基)环丙烷羧酸(顺式、反式二氯菊酸)、2,2-二甲基-3-(2-氯—3,3,3-三氟-1-丙烯基)环丙烷羧酸(三氟氯菊酸)、3-甲基-2-(4-氯苯基)丁酸(氰戊菊酸)对映体成功地进行了手性识别萃取拆分。进而创造性地提出了双相(O/W)识别手性萃取对菊酸对映体进行手性拆分,显著地提高了分离能力。为采用手性萃取分离制备单一光学异构体菊酸提供了新的理论依据和技术基础。
     选用新的手性柱奎宁生物碱CHIRALPAK QN-AX (150x4.6mmID),建立了一种反相流动相HPLC法分析五种菊酸对映体的分析方法,实现了对五种对映体的基线分离,分离度大,稳定性好,适用范围广,为菊酸对映体的手性分析提供了新的方法。
     合成了一系列手性分离萃取剂酒石酸酯,考察了醇酸摩尔比、带水剂用量、催化剂种类和用量对合成收率的影响,得到了最佳的实验条件。以合成L-酒石酸异丁酯为例,其最佳实验条件:醇酸摩尔比为3:1,在投料15 gL-酒石酸与22.24g异丁醇的情况下,催化剂为1.0g对甲苯磺酸、带水剂为60mL甲苯,酯化反应收率可达99.5%。
     研究了酒石酸酯类化合物作为手性萃取剂对五种菊酸对映体的萃取分配行为,考察了影响因素,确定了最佳萃取条件,获得了萃取规律。①D型和L型酒石酸酯都能成功地将上述五种菊酸对映体进行手性萃取分离,分离因子可达1.25到1.50之间。②酒石酸酯烷基长度越大,分离因子α值越大;烷基空间位阻变大(有支链或有环状结构),分离因子α值也较大。③提高萃取剂浓度,分配系数k值相应提高,但分离因子α值先提高,达到一定峰值后又呈下降趋势。较为适宜的萃取剂浓度在0.20-0.30 mol·L-1之间。④提高水相pH值,分配系数k值呈下降趋势,分离因子α值也呈下降趋势,水相pH值以2.50-5.50为宜。⑤适宜溶剂为1,2-二氯乙烷和氯仿。
     在水相和有机相中分别加入疏水性酒石酸酯和水溶性环糊精衍生物构成双相(O/W)识别手性萃取体系,首次将它们用于菊酸对映体的手性分离,该方面研究未见他人文献报道。L-酒石酸异丁酯对反式第一菊酸S对映体和氰戊菊酸S对映体的识别能力大于对它们的R对映体的识别能力,而D-酒石酸异丁酯则刚好相反。羟丙基β-环糊精HP-β-CD对这两种菊酸对映体的手性识别作用与L-酒石酸异丁酯对它们的手性识别作用是一致的,是互相叠加的。因而采用合适的双相手性萃取剂极大地提高了分离能力。加入HP-β-CD后,分离因子α值可由单相萃取时的1.30、1.20提高到双相萃取时的1.70、1.80。随着L-酒石酸异丁酯浓度的增大,k值和α值均有增大;随着HP-β-CD的浓度的增大,k值和α值先增大后减少;随着pH值增大,k值和α值都降低;L-酒石酸酯烷基长度和位阻大小对k值和α值有较大影响。最佳双相体系和萃取条件以分离氰戊菊酸为例:0.30 mol·L-1L-酒石酸异丁酯,用1,2-二氯乙烷作溶剂,4.0mmol·L-1 HP-β-CD,20%的甲醇水溶液,pH为4.0左右,分离因子可达到1.80。
     酒石酸酯分子存在两个手性碳原子,有特殊的立体结构,有多个作用点,这些作用点与拆分对象菊酸对映体之间将会产生不同的分子间作用力,因而具有手性识别功能。β-环糊精(β-CD)的“外亲水,内疏水”的特殊环形立体结构,能与菊酸对映体分子形成包合物,且两对映体包合物稳定性存在差异从而具有手性识别功能。
Single optical isomers of chiral pesticides have become an important field of research and development because of its high efficiency, high selectivity and high security. Pyrethroid is an important chiral pesticide, and the key to synthesize these pyrethroids is to obtain single optical isomers chrysanthemic acid from the itermediates of pyrethroid. A series of tartrates have been synthesized in this dissertation, and used as chiral extractants for separation of five racemic chrysanthemic acid enantiomers. Based on these, a new method, biphasic recognition chiral extraction, has been presented to separate two kinds of chrysanthemic acid enantiomers and the separation ability was improved significantly. The dissertation has provided new theory and technical basis for preparation of high-efficient but low toxicity pesticides.
     By using CHIRALPAK QN-AX, HPLC was established to analyze trans-chrysanthemic acid, cis-and trans-permethrinic acid, lambda-cyhalothric acid and fenvaleric acid, and the baseline separations of five enantiomers were achieved.
     A series of tartrates have been synthesized in this dissertation, and the factors affecting the yield of synthesis has been investigated. The best experimental conditions have been gained. Taking the synthesis of L-tartaric acid iso-butyl as an example, the best experimental conditions are that the molar rate of alcohol (22.24 g) and L-tartaric acid (15 g) is 3:1, with catalyst tosylate of 1.0 g and toluene of 60 ml.
     The dissertation has studied the distribution behavior of five chrysanthemic acid enantiomers with tartrate esters as chiral extractants and investigated the factors affecting the extraction performance.1) Both D-and L-tartaric acid ester can be used as chiral extractants to separate the five kinds of chrysanthemum acid enantiomers, and the seperation factor can reach at 1.25-1.5.2) Tartaric acid ester alkyl length and its steric have a certain impact on the separation factors. The larger alkyl length and alkyl steric (with branched-chain or ring structure) are, the larger separation factors are; 3) Extractant concentrations also has a greater impact on extraction performance. With the increase of extracant concentrations, the partition coefficients increase, but the separation factors first increase then decrease after up to the peak. The appropriate extractant concentrations are between 0.20-0.30 mol·L-1; 4) The partition coefficientsand the separation factors decrease with the increase of pH value. The best value of pH is between 2.50-5.50; 5) 1, 2-dichloroethane solution and chloroform will be the proper solvents.
     Biphasic recognition chiral extraction system has been constructed, in which two kinds of extractant with opposite recognition direction (hydrophobic D-/L-tartaric acid esters and water-soluble cyclodextrin derivatives) are added in the organic phase and water phase, respectively. This system is used to separate of two kinds of chrysanthemic acid enantiomers.β-CD derivatives have stronger recognition abilities for S-chrysanthemic acid than those for R-chrysanthemic acid, while L-tartrate derivatives have reversed recognition abilities. Thus the use of appropriate two-phase chiral extractant greatly enhances separation ability. Adding HP-β-CD, the separation factor value can be enhanced from 1.30 and 1.20 for the single-phase to 1.70 of 1.80 for two-phase extraction. Extraction conditions also have an impact on k and a. Take the separation of cyanide-chrysanthemic-acid as an example, the best separation factor is 1.80 under conditions that the concentrations of L-iso-butyl tartrate and HP-β-CD are 0.30 mol·L-1 and 4.0 mmol·L-1, respectively, with 1,2-dichloroethane as solvent containing 20% methanol solution at pH 4.0.
     Tartaric acid ester molecule has two chiral carbon atoms, special three-dimensional structure and multiple action spots which have different intermolecular forces with chrysanthemum acid enantiomers, thus it has the function of chiral recognition. The special three-dimensional ring structure-"hydrophilic outside, hydrophobic inside" ofβ-cyclodextrin (β-CD) can form inclusion complex with chrysanthemic acid, and the inclusion complex stability of the two enantiomers is different and thus it has the ability of chiral recognition.
引文
[1]Wolfgang B, Michael L, Wolfgang L. Direct high-performance liquid chromatographic method for enantioselective and diastereoselective determination of selected pyrethroic acids. J.Chromatogr A,2004,1035:37-46
    [2]Jung S S, Dongmok W, Hyoyoung L, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature,2000,404: 982-986
    [3]Yoshinori Nishii, Nobuo Maruyama, Kazunori Wakasugi, Yoo Tanabe. Synthesis and stereostructure-activity relationship of three asymmetric center pyrethroids: 2-methyl-3-phenylcyclopropyl-methyl 3-phenoxybenzyl ether and cyanohydrin ester. Bioorganic & Medicinal Chemistry 2001,9:33-39
    [4]Rosa H H, Pilar C F. Chromatographic separation of chlothalidone enantiomers using β-cyclodextrins as chiral additives. J. Chromatogr B,2000,740:169-177
    [5]Abolfazl S M, Robert T F. Pharmacokinetics of metoprolol enantiomers following single and multiple administration of racemate in rat. Internal. J. Pharm, 2002,2:97-102
    [6]Michael J. Single enantiomer drugs:new strategies and directions. Chemistry & Industry,1996,5 (20):374-378
    [7]Miriam L. Membranes make chiral separations simpler. Manufacturing Chemist, 1995,10:25-32
    [8]Sylvie L, Didier V, Alain V W, et al. SMB enantioseparation:process development, modeling, and operating conditions. AIChE J.,2000,46(2):247-256
    [9]Crosby J. Synthesis of optically active compounds:a large scale perspective. Tetrahedron,1991,47:4789-4846
    [10]Sheldon R A. Industrial synthesis of potically active compounds. Chemistry & Industry,1990,3:212-217
    [11]Yamada S, Hongo C, Ryuzo Y. Preparation of D-p-hydroxyphenylglycine: Optical resolution of DL-p-hydroxyphenylglycine with d-3-bromocamphor-8-sulf-omic acid. Agric. BioChem.,1979,43(2):395-396
    [12]Gao Y, Hanson R M, Klunder J M, et al. Catalytic asymmetric epoxidation and kinetic resolution:modified procedures including in situ derivatization. J. Am. Chem. Soc,1987,109:5765-5780
    [13]Steen S, Marco B, Karl A J. Asymmertic construction of quaternary stereocenters by direct organocatalytic amination of a-substituteda-cyanoacetates and P-dicarbonyl compounds. J. Am. Chem. Soc.,2004,126: 8120-8121
    [14]Gimenez F, Pennie R A, Crevoisier C. Stereoselective pharmacokinetics of mefloquine in healty caucasinans after multiple does J. Pharm. Sci.,1994, 83(6):824-827
    [15]James E R. Chiral Separations. AIChE J.,2001,47(1):2-5
    [16]杨晓弟,马小玲,方俊.手性药物的化学拆分—形成和分离非对映体拆分法.阜阳师范学院学报(自然科学版),1994,22(2):24-29
    [17]邓金根,迟永祥,朱槿,等.化学拆分的新方法研究.合成化学,1999,7(4):340-345
    [18]Cliff R B, Christopher J, Endy Y J M, et al. Kinetic resolution of chiral a-olefins using optically active ansa-zirconocene polymerization catalysts. J. Am. Chem. Soc.,2004,126:8216-8231
    [19]Ayse H O, Pinar C, Levent Y. Chiral separation of racemic benzoin via enzyme enhanced ultrafiltration. Desalination,2006,200:464-465
    [20]El Gihani, Moharem T, Williams, et al. Dynamic kinetic resolution. Curr. Opin. Chem.Biol.,1999,3(1):11-15
    [21]Allen J V, Williams J M J:Dynamic kinetic resolution with enzyme and palladium combinations. Tetrahedron Lett,1996,37:1859-1862
    [22]Zaks A, Klibanov A M. Enzymatic catalysis in organic media at 100℃. Science, 1984,224:1249-1262
    [23]Margolin A L, Klibanov A M. Peptid synthesis catalyzed by lipase in anhydrous organic solvents. J.Am,chem.soc.,1987,109(12):3802-3814
    [24]Kirchner G, Scollar M P, Klicanov A M. Resolution of racemic mixture vialipse catalysis in organic solvents. J. Am. Chem. Soc.,1986,107:7072-7083
    [25]孙德帅,刘馨,张晓东,等.有机相中手性药物的酶促拆分研究进展.青岛大学学报,2001,16(3):54-58
    [26]庄英萍,许建和,张嗣良.手性药物的酶促拆分研究近况.中国药物杂志,1998,33(4):197-205
    [27]黄蓓,陈欢林.选择性扩散和选择性吸附手性拆分膜及其应用.功能高分子学报,2002,15:480-485
    [28]Vankelecom I F J, Grobet P, Yoshikawa M, et al. Membranes based on poly (γ-methyl-1-glutamate):synthesis, characterization and use in chiral separations. J Membr Sci.,2001,186:153-163
    [29]Eijiro M, Tatsuo M, Fukiko K, et al. Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex. J. Am. Chem. Soc.,2005,21:4674-4679
    [30]Keurentjes J T F, Nabuurs L J W M, Vegter E A. Liquid membrane technology for the separation of racemic mixtures. J. Membrane Sci.,1996,113:354-360
    [31]Henning M K, Jeanette L, Klaas K, et al. Enrichment of chlorthalidone enantiomers by an aqueous bulk liquid membrane containing β-cyclodextrin. J. Membrane Sci.,2000,167:33-45.
    [32]Hassan H R, Joseph B S. Optically active polyeletrolyte multilayers as membranes for chiral separations. J. Am. Chem. Soc.,2003,125:6602-6603
    [33]Masakazu Y, Kanako M, Toshiko K, et al. Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups. European Polymer,2006,42:2532-2539
    [34]唐课文,周春山,蒋新宇.支载液膜双有机相萃取分离氧氟沙星外消旋体.中国科学,2002,32(6):491-496
    [35]Lee N H, Frank C W. Separation of chiral molecules using polypeptide-modified poly (vinylidene fluoride) membranes. Polymer,2002,43 (23):6255-6262
    [36]Muzaffar K, Balaji V, D Sreenivas R, et al. Chiral separation of Frovatriptan isomers by HPLC using amylose based chiral stationary phase. J. Chromatogr. B.,2007,846:119-123
    [37]Xiong X, Willy R G B, Hassan Y A E. Impact of amines as co-modifiers on the enantioseparation of various amino acid derivatives on a tert-butyl arbamoylated quinine-based chiral stationary phase. Talanta,2007,71: 573-581
    [38]Yan H Y, K H R. Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography. Analytica Chimica Acta., 2007,584:160-165
    [39]Zhou S S, Ouyang J, Willy R G B, et al. Chiral separation of four f luoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector. J. Chromatogr. A.,2006,1130: 296-301
    [40]关福玉.手性药物HPLC分析的一些进展.国外医学药学分册,1994,21(4):199-204
    [41]马剑茵.手性药物的色谱分离方法.中国医药工业杂志,2002,33(4):199-202
    [42]Vladimir P, Stjepan M, Krunoslav K. Uber die Enantiomer entrennung durch verteilung zwischen fussigen Phasen. Helv. Chim. Acta,1983,66(225): 2279-2284
    [43]Vladimir P, Stjepan M, Uber die Stereoselektivitat der 9,9-spirobifluoren-kronenathergegen-aminoalkoholen.Helv. Chim. Acta.,1983,66(224): 2274-2278
    [44]Vladimir P, Martin E. Lipophilic tartaric acid esters as enantioselective ionophores. Angew. Chem. Int. Ed.,1989,28:1147-1152
    [45]岑仲浙,蔡水洪.手性溶剂萃取麻黄碱差向异构体.化工学报,2000,51(3):418-420
    [46]Toshifumi T, Rikizo H, Takenori T. Enantioselective solvent extraction of neutral DL-Amino acids in two-phase systems containing N-n-alkyl-L-proline derivative and Copper (Ⅱ) ion. Anal. Chem.,1984,56:1152-1155
    [47]Ding H B, Carr P W, Cussler E L. Racemic leucine separation by hollow-fiber extraction. AIChE J.,1992,38 (10):1493-1498
    [48]Jerome L, Catherine G G, Sonya T H, et al. Efficient enantioselective extraction tris (diimine) ruthenium (Ⅱ) complexs by chiral lipophilic trisphat anions. Angew. Chem. Int. Ed.,2000,39 (20):3695-3697
    [49]Jurgen K, Charles A H. Modelling multiple chemical equilibria in chiral partition systems. Chem. Eng. Sci.,2001,56:5853-5864
    [50]唐课文,周春山.疏水性L-酒石酸酯萃取分离氧氟沙星对映体.化工学报,2003,54(12):1729-1732
    [51]唐课文,周春山.L-酒石酸酯立体选择性萃取分离扁桃酸对映体.应用化学,2003,20(11):1108-1110
    [52]唐课文,周春山.疏水L-酒石酸酯立体选择性萃取分离氯噻酮对映体.分析化学,2004,32(1):63-66
    [53]Inagaki M, Hiratake J, Nishioka T, Oda J, Lipase-catalyzed kinetic resolution with in situ racemization:one-pot synthesis of optically active cyanohydrin acetates from aldehydes. J. Am. Chem. Soc.,1991,113 (24):9360-9361
    [54]Vries T, Wynberg H, Echten van E, et al. The family approach to the resolution of racemates. Angew. Chem. Int. Ed.,1998,37(17):2349-2354
    [55]Slraathof A J, Rakels J L. Van Tel J B A, et al. Improvement of lipase-catalyzed kinetic resolution by tandem transesterification. Enzyme Microbial. Technol.,1995,17:623-628
    [56]M Elliott, N F Jane. Synthetic pyrethroids-A new class of insecticide. J. Chem. Soc.Rev,1978,473-505.
    [57]薛斌.杀虫剂及中间体的热化学研究:[博士学位论文].吉林:吉林大学,2007
    [59]大野信夫.家庭用杀虫剂かろ农业杀虫剂へ[J].化学,1992,47(4):263-264.
    [60]Keiichiro N, Hiroshi O. Effects of organosilicon pyrethroid2like insecticides on nerve preparations of American cockroaches and crayfish. Pest Manag Sci, 2001,57:509-513
    [61]徐逸楣.光学活性农药开发的现状与展望.农药译丛,1998,20(1):6-16
    [62]陈万义,薛振祥,王能武.新农药研究与开发.北京:化学工业出版社,1995:178-209
    [63]Milton S, Schechter, Nathan G, et al. Constituents of Pyrethrum Flowers. XXIII. Cinerolone and the Synthesis of Related Cyclopentenolones. J. Am. Chem. Soc, 1949,71(9):3165-3173
    [64]Kato T, Ueda K, Fujimoto K. New insecticidally active chrysanthemates. Agric.Biol.Chem,1964,28:914-921
    [65]Fujimoto K, Itaya N, Okuno Y, et al. New insecticidal pyrethroid ester.Agric.Biol.Chem,1973,37:2681-2695
    [66]Elliott M, Farnham A W, Janes N F, et al. A Photostable pyrethroid. Nature,1973, 246:169-170
    [67]Elliott M, Farnham A W, Janes N F, et al. Synthetic insecticide with a new order of activity. Nature,1974,248:710-711
    [68]Yoshioka H.Development of fervalerate,a new and uniqe synthetic pyrethroid containing the phenylisovaleric acid moiety. Rev Plant Prot Res,1978,11: 39-51
    [69]Hendrick C A, Garcia B A, Staal G B, et al.2-Anilino-3-methylbutyrates and 2-(isoindolin-2-yl)-3-methylbutyrates, two novel groups of synthetic pyrethroid esters not containing a cyclopropane ring. Pestic.Sci,1980,11:224-241
    [70]刘天麟,谢建华.肟醚(酯)类农药的发展及其构型与生物活性关系.农药译丛,2006,18(4):22-27
    [71]黄润秋,孙建宇,马军安等.取代苯甲醛肟二氯菊酸酯的合成及生物活性研究.应用化学,1998,15(1):9-12
    [72]Kiyoshi N, Satoshi N, Tsuneo I, et al.2-arylpropylaether-oder-thioaether-derivate, verfahren zu ihrer herstellung und solche derivate enthaltende insektizide und akarizide. ger.offen, DE3117510,1982-02-04
    [73]柳爱平.非羧酸酯类拟除虫菊酯研究进展.湖南化工,2000,30(5):4-7
    [74]杨桂春,程时远,.陈祖兴等.新型非酯型拟除虫菊酯的合成.应用化学,2001,8:678-680
    [75]丁智慧,刘吉开,丁靖垲等.拟除虫菊酯的研究进展,云南化工.2001,28(2):22-24
    [76]唐除痴,成俊然,李广仁,等.用奎宁拆分顺式菊酸.高等学校化学学报,1988,9(11):1193-1195
    [77]钟民,陈良.顺式(±)菊酸动力学拆分研究.华东师范学大学(自然科学版),1995,3:55-60
    [78]曹瑾,张一宾,秦裕基.拟除虫菊酯的重要中间体—二氯菊酸手性体的分离、拆分.技术进步,2000,10:23-25
    [79]王鸣华.拟除虫菊酯化学.北京:中国农业科学技术出版社,2004
    [80]闫秀琴,王耀生.天然除虫菊在卫生杀虫剂中的应用.中华卫生杀虫药械,2004,10(6):388-389
    [81]王鸣华,蒋木庚,杨春龙.新型旋光性农药的研究与展望.化学世界,2001,12:666-668
    [82]蒋木庚,刑月华,王鸣华.高效立体选择性戊菊酯和氰戊菊酯的合成.南京农业大学学报,1990,13(4):110-116
    [83]Hiroyuki N, Daiyo T, Sinji K, et al. Optical resolution of 2-(4-Substituted pheny)-3-methylbutanoic acid with diethylamine by preferential crystallization. Agric.Biol.Chem,1986,50(3):675-680
    [84]林东恩,蔡玉壁,蔡干.菊酸构型的转化及消旋反式菊酸的光学拆分.华东理工大学学报(自然科学版),1999,27(3):100-105
    [85]Yoneyoshi Y, Kudo J, Nishioka T. Optically active secondary amine compound; process for producing optically active secondary amine compound and process for producing optically active carboxylic acid by using said compound.Eur. Pat.Appl.EP:508307,1992-10-14
    [86]Nishizawa M, Shimizu M, Ohkawa H, et al. Stereoselective production of (+)-trans-chrysanthemic acid by a microbial esterase:cloning, nucleotide sequence, and overexpression of the esterase gene of arthrobacter globiformis in escherichia coli. Appl. Environ. Microbiol.2005,61(9):3208-3215.
    [87]Krief A. Synthesis of pyrethroic acid from natural products and from isomeric compounds:Strategy and practice. Pestic Sci.1994,41(3):237-257
    [88]Schatz P F. Synthesis of chrysanthemic acid. J Chem Educ,1978,55:468-47
    [89]E I Rassi Z. Capillary electrophoresis of pesticides. Electrophoresis,1999,18: 2465-2481
    [90]Karcher A, El Rassi Z. Capillary electrophoresis and electrochromatography of pesticides and metabolites. Electrophoresis,1999,20:3280-3296.
    [91]Miyako E, Maruyama T, Kamiya N, et al. Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex. J. Am. Chem. Soc,2004,126(28):8622-8623
    [92]Hassan H R. Joseph B S. Optically active polyelectrolyte multilayers as membranes for chiral separations. J. Am. Chem. Soc,2003,125:6602-6603
    [93]Cliff B, Christopher J L, Endy Y J M, et al. Kinetic Resolution of Chiral α-Olefins Using Optically Active ansa-Zirconocene Polymerization Catalysts J. Am. Chem. Soc,2004,126(26):8216-8231
    [94]Bin Tan, GuangSheng Luo, Xuan Qi, et al. Enantioselective extraction of D,L-tryptophan by a new chiral selector:Complex formation with di(2-ethylhexyl)phosphoric acid and O,O'-dibenzoyl-(2R,3R)-tartaric acid. Separation and Purification Technology,2006,49:186-191
    [95]Bin Tan, GuangSheng Luo, Xuan Qi, et al. Enantioseparation of amino acids by co-extractants with di(2-ethylhexyl)phosphoric acid and tartaric acid derivatives. Tetrahedron:Asymmetry,2006,17:883-891
    [96]Bin Tan, GuangSheng Luo, Xuan Qi, et al. Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336 Separation and Purification Technology,2007,53:330-336
    [97]Xin Wang, Yue Liu, Chi Bun Ching. Kinetic and equilibrium study of enantioseparation of propranolol in preparative scale chromatography. Separ and Purif. Technol,2005,50:204-211
    [98]Manuel C, Ana M C, Pablo G, et al. Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron:Asymmetry,2005,16:2673-2679
    [99]Masato M, Kinuyo I, Masatomo N, et al. A novel separation technique of diastereomeric esters of pyridylethanols by extraction:formal total synthesis of PNU-142721, HIV-1 reverse transcriptase inhibitor. Tetrahedron,2004,60: 3311-3317
    [100]Jerome L, Catherine G G, Sonya T H, et al. Efficient enantioselective extraction tris(diimine)ruthenium(Ⅱ) complexs by chiral lipophilic trisphat anions. Angew. Chem,2000,39(20):3695-3697
    [101]Smith C.. Pyrethroid pesticides-product profiles(DS 59). PJB Publication. Springer, Berlin,1990
    [102]Myung Ho Hyun, Jong Sung, Wonjae Lee. Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J. Chromatography A,1998,822:155-161
    [103]侯士聪,王敏,周志强.拟除虫菊酯类农药在高压液相色谱手性固定相上的分离研究进展.农药,2001,40(12):7-11
    [104]Naobumi Oi, Masayuki Nagase, Yoko Inda, et al. High-performance liquid chromatographic separation of enantiomers on (1R,3R)-trans-chrysanthemic acid and its amide derivatives bonded to silica gel. J. Chromatogr,1983,259: 487-493
    [105]Naobumi Oi, Hajimu kitahara, Fumiko Aok, et al. Direct separation of carboxylic acid enantiomers by high-performance liquid chromatographic with amide and urea derivatives bonded to silica gel as chiral stationary phases. J. Chromatogr.A,1995,689:195-201
    [106]陈立仁.液相色谱手性分离.北京:中国科学出版社,2006:171-172
    [107]You Cheng LIU, Xin Zhu LI, Jing LI. Liquid Chromatographic Resolution of Racemic 2-Phenyl-1,1-cyclopropanedicarbonitrileand its Analogues on Chiral Stationary Phase. Chinese Chemical Letters,2000,11(4):353-356
    [108]Smith R J, Taylor D R, Wilkins S M. Enantiomer separations by supercritical fluid chromatography on a chiral stationary phase physically anchored to porous graphitic carbon. J. Chromatography A,1996,697:587-590
    [109]Bowman N S, McCloud G T, Schweitzer G K. Partial resolution of some organic racemates by by solvent extraction[J]. J. Am. Chem. Soc.,1968,6(12): 3848-3852
    [110]Rui M C V, Carlos A M A, Joao G G, et al. Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separ and Purif. Tecnol.,2007, 53:224-234
    [111]唐课文,周春山.疏水性相转移手性溶剂萃取分离叔丁喘宁对映体.分析化学,2004,32(3):278-282
    [112]唐课文,陈国斌,易健民,等.基于手性配体交换反应立体选择性萃取分离氧氟沙星对映体.化学学报,2004,62(17):1621-1625
    [113]唐课文,陈国斌,周春山.手性配体立体选择性萃取分离扁桃酸对映体.无机化学学报,2004,3:339-344
    [114]唐课文,周春山,蒋新宇.支载液膜双有机相萃取分离氧氟沙星外消旋体.中国科学(B),2002,32(6):491-496
    [115]周丹.酒石酸酯对α-环己基扁桃酸和酮洛芬对映体的萃取拆分研究:[硕士学位论文].长沙:中南大学,2002
    [116]Heldin E, Lindner K J, Pettersson C, et al. Tartaric acid derivatives as chiral selectors in liquid chromatography. Chromatographia,1991,32(10):407-416
    [117]Keurentijes J T F, Nabuurs L J W M, Vegter E A. Liquid membrance technology for the separation of racemic mixtures. J. Membrane Sci.,1996, 113:354-360
    [118]胡小铭.β-环糊精结构与应用.九江师专学报,1997,16(5):25-27
    [119]尤长城.基于环糊精的分子多重识别研究:[博士学位论文].南京:南开大学,2001.
    [120]阎建辉,盛盈,黄可龙,唐课文,易健民.手性溶剂萃取分离布洛芬对映体[J].化工学报2007,58(3):679-684.
    [121]Feitsma KG, Bosman J, Drenth BFH, et al. A study of the separation of enantiomers of somearomatic carboxylicacid by high-performance liquid chromatography [J]. Journal of Chromatography,1985,335:59-68.
    [122]王晓东,姚金水,魏明星等.手性识别及氨基酸类手性固定相的研究进展[J].有机化学,2006,26(7):912-921.
    [123]Graciela M. Escandadr Spectroscopic study of sadlicylatde-cyclodextrin systems in the presence and absence of alcohols [J]. Spectrochimica. Acta. A., 1999,55:1743-1752.
    [124]唐波,刘阳,王洪鉴等.环糊精用于分子识别分析的新进展[J].分析科学学报,2000,16(4):345-352.
    [125]颜承龙,上官云凤,吴采樱等.气相色谱固定相研究进展[J].化学通报,1998,(11):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700