用户名: 密码: 验证码:
金属配合物分子磁性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,分子磁学发展迅猛,已成为一个新兴的前沿研究领域,在本论文中,我们选取了三种分子磁性材料,对其磁学性质分别进行了研究。主要内容有:(1).研究了对氨基苯甲酸阴离子桥联的双核铜配合物Cu_2(2,2’-bpy)_2(4,4’-bpy)_2L_2的磁学性质,分别采用全电子基组SV/TZVP、和价电子基组LanL2DZ,运用混合密度泛函B3LYP并结合Noodleman提出的对称性破损理论计算其磁偶合作用常数J值,结果分别为J=-34.51cm~(-1)、J=-61.81cm(-1),与实验值J=-40.63cm~(-1)比较接近,然后,我们分别对端基配体和桥联配体采用简化模型,并运用上述方法和理论计算各简化模型的J值,所计算的J值与全分子的J值相差不大。考虑到计算量及研究目的,在上面的模型中选取了较简单的分子模型5,来研究其磁构效关系,分子的反铁磁性随桥联角O-C-O夹角θ的增大而增强,在θ大于118.623度时,分子的反铁磁性随三重态铜上自旋密度的减小而增强,但当θ小于118.623度,分子反铁磁性随三重态铜上自旋密度的减小反而减小,在文中,我们解释了这种现象。另外,我们还揭示了J三重态两个成单电子所在的分子轨道能量差的平方(ε_1-ε_2)~2之间的变化关系。(2).研究了目前比较热门的氰根桥联金属配合物的磁学性质,采用上述方法和理论分别计算了氰根桥联配合物(V~(Ⅳ)O[Cr~(Ⅲ)(CN)_6]_(2/3)10/3H_2O、氰根桥联配合物[Mo_2(CN)_(11)]~5的磁偶合作用常数J,所计算的J值分别为J=-42.36cm~1、J=-111.46cm~1,与实验值J=-48cm~1、J=-113cm~1比较接近。然后,分别对这两种配合物自旋密度分布加以分析,两种配合物中金属离子上的成单电子几乎是定域的,其自旋极化占主导作用。考虑到氰根桥联配合物的重要作用,在今后的研究中,我们将继续深入研究各种氰根桥联配合物的磁学性质。
In the past several decades, molecular magnetism has been developing so fast and has become a newly arisen front study realm. In this thesis, we selected three kinds of molecular magnetism materials and studied their magnetism, respectively. The key contents: (1). We computed and studied the materials about the p-aminobenzoic-bridged binuclear copper compound. Adopting the whole basis sets "SV/ TZVP" and the valence basis set "LanL2DZ", we computed its' magnetic exchange coupling constant J values by combining mixed Density Functional Theory B3LYP and Broken symmetry Approach put forward by Noodleman. The J values are equal to -34.51cm-1 and -61.81cm-1, respectively. The experimental Jvalue is equal to -40.63 cm-1. Their differences are small. Immediately after, we used the simplification models which were obtained by replacing the bridging ligand and the bottom ligand using some simple ligand and computed the J values using above method and theory. Their J values are near to the whole molecule J value. In consideration of the calculation measures and the purpose of study, we selected the simple molecule model 5 in the above models and studied the relation between magnetism and structure. The molecular antiferromagnetism increases with the increasing of the bridging angle O-C-O(o). When 0>118.623 degrees, the molecular antiferromagnetism increases with the decreasing of the spin density on the Cu in its triplet state. But when0
引文
[1] McConnel H.M.J. Chem. Phys., 1963,39:1910
    [2] Wickman H.H., Trozzolo A.M., Willians H.J., et al. Phys. Rev., 1967, 155:567
    [3] Alivisatos A.P., Barbara P.F., Castelman A.W., et. al. Adv. Maters., 1998, 10:1297
    [4] (a). Noodleman L. J. Chem. Phys., 1981, 74: 5737.(b) Noodleman L., Davidson E.R. Chem. Phys., 1986, 109: 131. (c) Noodleman L., Case DA. Adv. Inorg. Chem., 1992, 38: 423.
    [5] (a) Ito A., Suenaga M., Ono K.J. J.Chem. Phys., 1968; 48:3597. (b) Entley W.R., Girolami G.S. Science., 1995; 268:397. (c) Mallah T., Thiebaut S., Verdaguer M., Veillet P., Science., 1993; 262:1554. (d) Sato O., Iyoda T., FuJishima A., Hashimoto K. Science., 1996; 272:704
    [6] (a) Ferlay S., Mallah T., Ouahes R., Veinet P., Verdaguer M. Nature., 1995, 378:701. (b) Hatlevik O., Buschnann W.E., Zhang J., et al., Adv. Mater., 1999, 11:914. (c) Holmes S.M., Girolami G.S.J. Am. Chem. Soc., 1999, 121:5593
    [7] (a) Entley W.R., Girolami G.S. Science., 1995, 268:397. (b) Mallah T., Thiebaut S., Verdaguer M, Veillet P., Science., 1993, 262:1554. (c) Verdaguer M. Science., 1996, 272:698. (d) Ferlay S., Mallah T., Ouahes R., Veillet P., Verdaguer M. Nature., 1995, 378:701
    [8] Shores M.P., Sokol J.J., Long J.R. J. Am. Chem. Soc., 2002, 124:2279
    [9] Desplanches C., Ruiz E., et al. J. Am. Chem. Soc., 2002, 124:5197
    [10] Tercero J., Diaz C., Ribas J., et al. Inorg. Chem., 2002, 41:6780
    [11] (a) Fuczek F., Solomon E.I. Inorg. Chem., 1993, 32:2850. (b) Fuczek F., Solomon E.I.J. Am. Chem. Soc., 1994, 116:6916

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700