环境刺激响应性聚醚氨酯的设计合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境响应性聚合物是一类能够感知外界并对外界环境的细小变化做出响应,产生相应的物理结构和化学性质变化甚至突变的高分子。研究者根据病灶部位微环境的特征,设计出具有不同环境响应性聚合物作为药物载体实现病灶部位的定点放药。在早期的研究中,大多数以单一刺激响应性的聚合物为研究对象。但是在实际应用中,外界环境的变化是多样化的,因此多重刺激响应性的聚合物受到越来越多的关注。聚氨酯具有较好的生物、血液相容性,在生物医学领域具有广泛应用前景,但是到目前为止环境响应性的聚氨酯特别是多重响应性的聚氨酯作为药物载体的研究还不是很充分。本文综述了环境响应性聚合物的发展或生物可降解聚氨酯作为药物载体的研究进展,在此基础上设计了一种简单的路线,合成了多种具有单一或者多重刺激响应性的聚醚氨酯。聚合物的刺激响应性行为通过透光率、动态光散射以及透射电镜表征。并以憎水的抗癌药物阿霉素为模型,研究了聚醚氨酯载药纳米粒子在体外和肿瘤细胞内的释放行为及抑制肿瘤细胞的能力。
     (1)用简单的一锅法合成了温度响应性的聚醚氨酯。以聚乙二醇二异氰酸酯和脂肪族的二醇为原料,以二月桂酸二丁基锡为催化剂合成了具有亲疏水链段交替结构的温度响应性聚醚氨酯。通过调节聚合物中亲水链段或者疏水链段的长度,可以精确地控制聚氨酯的相转变温度。新型聚氨酯具有优异的生物相容性和生物可降解性,用这种聚醚氨酯作为药物载体可以包封疏水药物,且通过控制环境的温度,可以实现药物的可控释放。
     (2)用简单的一锅法合成了具有温度、pH双重响应性的聚醚氨酯。以聚乙二醇二异氰酸酯和N-甲基二乙醇胺为原料,以二月桂酸二丁基锡为催化剂合成了具有交替结构的聚醚氨酯。通过调节聚合物中亲水链段聚乙二醇的长度,可以调控聚氨酯的相转变温度。这种两亲性的聚醚氨酯可以在水溶液中自组装形成纳米粒子,并可以作为药物载体包封疏水的抗癌药物。通过控制环境的刺激或者选择具有不同相转变温度的聚醚氨酯作为药物载体,可以精确地控制药物的释放量以及抑制肿瘤的能力。
     (3)用简单的一锅法合成了温度、还原双重响应性的聚醚氨酯。以聚乙二醇二异氰酸酯和二硫代二乙二醇为原料或者以聚乙二醇、六亚甲基二异氰酸酯和二硫代二乙二醇为原料,以二月桂酸二丁基锡为催化剂合成了具有不同结构的聚醚氨酯,且温度响应性控制着还原响应性的发生。通过调节聚合物中亲水链段长度或者亲疏水链段的比例,可以精确地控制聚氨酯的相转变温度。新型的聚氨酯具有优异的生物相容性,并且在还原条件下,聚合物链段中的二硫键可以立即被切断,导致聚醚氨酯纳米粒子解离,快速完全地释放出包封的抗癌药物。
     (4)用简单的一锅法合成了温度、pH和还原多重响应性的聚醚氨酯。以聚乙府管醇二异氰酸酯、N-甲基二乙醇胺和二硫代二乙二醇为原料或者以聚乙二醇、六亚甲基二异氰酸酯、N-甲基二乙醇胺和二硫代二乙二醇为原料,以二月桂酸二丁基锡为催化剂合成了具有不同结构的聚醚氨酯。聚合物的相转变温度可以通过调节聚合物中亲水链段长度或者亲疏水链段的比例来精确调控。通过研究聚醚氨酯载药纳米粒子在不同条件下的释药行为,发现通过调协外界的多重刺激,可以有效地调节药物的释放速率。同时,模拟肿瘤部位的微环境,通过调节外界环境的温度,有可能实现肿瘤部位的按需给药。
Stimuli-responsive polymers are able to undergo relatively large and abrupt, physical or chemical changes in response to small external changes in the environmental conditions. They are of fundamental importance in biomedical areas and have been extensively developed for drug delivery systems considering the special microenvironment in many pathological sites. During the past two decades, there have been numerous reports on stimuli-sensitive polymeric systems. But a majority of them deal with response to single stimulus. In nature, however, the change in behavior of a macromolecule (proteins and nucleic acids) is often a result of its response to a combination of environmental changes other than a single factor. To mimic this feature, formulation of materials which can sense specific changes and respond to multiple stimuli in a predictable manner would be of great interest. Polyurethanes are one of the most widely used biomaterials in medical applications due to their excellent biocompatibility, biodegradation, mechanical and processing properties. In the recent years, some kinds of biodegradable polyurethanes have been developed for drug delivery systems. Nevertheless, very little attention has been paid to the stimuli-responsive polyurethane especially multi-responsive polyurethane nanoparticles as drug delivery systems. In this thesis, we summarize the recent advances in design and development of stimuli-responsive polymers and polyurethanes as drug delivery systems. Based on previous studies, several kinds of single stimuli or multi-stimuli responsive polyurethanes were designed and synthesized using a facile one-pot method. The whole process for the responsive behaviours of the poly(ether urethane) nanoparticles is confirmed by light transmission, dynamic light scattering, nuclear magnetic resonance and transmission electron microscopy. The potential use of these polymers for flexible control of drug release in vivo and vitro is also explored, using doxorubicin (DOX) as the model drug.
     (1) A series of temperature-responsive poly(ether urethane)s with alternative hydrophilic/hydrophobic segments was synthesized using a facile one-pot approach, from PEG-diisocyanates and aliphatic diols. Nanoparticles prepared by self-assembly of the resulting copolymers showed sharp temperature-responsive phase transition. The phase transition temperature could be easily modulated by the length of hydrophilic or hydrophobic segments of the polymer. In the presence of these obtained poly(ether-urethane)s, doxorubicin (DOX) could be dispersed into aqueous solution. The ratio of DOX release from the polymeric particles increased sharply above the phase transition temperature, while the release was suppressed below the phase transition temperature. A controlled drug release can be achieved by changing the environmental temperature. The easy-prepared polymeric nanoparticles, with features of biocompatibility, biodegradability, and tail-made temperature responsiveness, are a kind of promising carriers for temperature-controllable drug release.
     (2) A series of linear temperature-and pH-responsive poly(ether urethane)s was synthesized using a facile one-pot method from PEG-diisocyanates of different molecular weight and N-methyldiethanolamine containing ternary amino moieties. In aqueous solution, the amphiphilic copolymers could be self-assembled into nanoparticles, which showed temperature and pH dually responsive characters. The phase transition temperature (Tp) of the nanoparticles could be modulated by changing the molecular weight of PEG segments. The encapsulation and release of doxorubicine (DOX) were investigated using the obtained polymeric nanoparticles as carriers. The system showed a temperature-triggered pH-dependent drug release. The viability of liver hepatocellular cells (HepG2cells) treated with the DOX-loaded polymeric nanoparticles was observed using microscopy. The results demonstrated that the therapeutic activity and the DOX distribution could be precisely controlled by the novel dually responsive system.
     (3) A series of temperature-and redox-responsive poly(ether urethane)s have been achieved using a facile one-pot approach. The amphiphilic poly(ether urethane)s were comprised of2,2'-dithiodiethanol, hydrophobic hexamethylene diisocyanate and hydrophilic Poly(ethylene glycol)(PEG) segments. In aqueous solution, the amphiphilic copolymers could be self-assembled into their nanoparticles, which showed temperature and redox dually responsive characters. The phase transition temperature (Tp) of the prepared poly(ether urethane)s in aqueous solution could be easily controlled by changing the length of PEG segment or the ratio of PEG to2,2'-dithiodiethanol and Tp could be used to trigger the redox-degradable behavior. The Doxorubicin (DOX)-loaded poly(ether urethane) nanoparticles were prepared in order to investigate their stimuli-responsive release. Drug release profiles showed that a transient or slow release was obtained when a temperature or redox stimulus was applied by itself. A long-term accelerated drug release could be obtained through the redox-responsive degradation at a higher temperature above Tp. This polymeric carrier system provides an opportunity to fine-tune release kinetics resulting in a desired release profile through the synergistic effect of these two stimuli.
     (4) A series of multi-responsive degradable poly(ether urethane)s have been achieved using a facile one-pot method. The multi-segmented poly(ether urethane)s were synthesized through a simple one-pot condensation polymerization of poly (ethylene glycol),2,2'-dithiodiethanol, N-methyldiethanolamine and hexamethylene diisocyanate. The obtained amphiphilic copolymers could be self-assembled into their nanoparticles in aqueous solution, which were responsive respectively to temperature, pH and redox potential with tailored phase transition temperature. The nanoparticles possessed the encapsulation of hydrophobic drugs and showed a temperature-triggered accelerated and complete drug release profile. These results presented the polymeric nanoparticles as effective multi-responsive degradable nanocarriers to achieve on-off drug release.
引文
[1]Sood, N.; Nagpal, S.; Nanda, S.; Bhardwaj, A.; Mehta, A., An Overview on Stimuli Responsive Hydrogels As Drug Delivery System. J. Control. Release 2013, doi: 10.1016/j.jconrel.2013.02.023.
    [2]Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013,34, 3647-3657.
    [3]Yang, J., Stimuli-responsive drug delivery systems. Adv. Drug Deliver. Rev.2012,64, 965-966.
    [4]Shim, M. S.; Kwon, Y. J., Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliver. Rev.2012,64,1046-1059.
    [5]Perez, R. A.; Won, J.-E.; Knowles, J. C.; Kim, H.-W., Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliver. Rev.2012,65,471-496.
    [6]He, C.; Zhuang, X.; Tang, Z.; Tian, H.; Chen, X., Stimuli-Sensitive Synthetic Polypeptide-Based Materials for Drug and Gene Delivery. Advanced Healthcare Materials 2012,1,48-78.
    [7]Fleige, E.; Quadir, M. A.; Haag, R., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds:Concepts and applications. Adv. Drug Deliver. Rev. 2012,64,866-884.
    [8]Mendes, P. M., Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev.2008,37, 2512-2529.
    [9]Roy, D.; Brooks, W. L. A.; Sumerlin, B. S., New directions in thermoresponsive polymers. Chem. Soc. Rev.2013, DOI:10.1039/C3CS35499G.
    [10]Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B., Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev.2012,41,4860-4883.
    [11]Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliver. Rev.2012,64,154-162.
    [12]Park, M. H.; Joo, M. K.; Choi, B. G.; Jeong, B., Biodegradable Thermogels. Ace. Chem. Res. 2011,45,424-433.
    [13]Felber, A. E.; Dufresne, M.-H.; Leroux, J.-C., pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliver. Rev.2012,64,979-992.
    [14]Sui, X.; Feng, X.; Hempenius, M. A.; Vancso, G. J., Redox active gels:synthesis, structures and applications. Journal of Materials Chemistry B 2013,1,1658-1672.
    [15]Son, S.; Namgung, R.; Kim, J.; Singha, K.; Kim, W. J., Bioreducible Polymers for Gene Silencing and Delivery. Acc. Chem. Res.2011,45,1100-1112.
    [16]Habault, D.; Zhang, H.; Zhao, Y., Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev.2013, doi:10.1039/C3CS35489J.
    [17]Gohy, J.-F.; Zhao, Y., Photo-responsive block copolymer micelles:design and behavior. Chem. Soc. Rev.2013, doi:10.1039/C3CS35469E.
    [18]Tomatsu, I.; Peng, K.; Kros, A., Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliver. Rev.2011,63,1257-1266.
    [19]Hu, J.; Zhang, G.; Liu, S., Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev.2012,41,5933-5949.
    [20]de la Rica, R.; Aili, D.; Stevens, M. M., Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliver. Rev.2012,64,967-978.
    [21]Wu, Q.; Wang, L.; Yu, H.; Wang, J.; Chen, Z., Organization of Glucose-Responsive Systems and Their Properties. Chem. Rev.2011,111,7855-7875.
    [22]He, C; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release 2008,127,189-207.
    [23]Reese, C. E.; Mikhonin, A. V.; Kamenjicki, M.; Tikhonov, A.; Asher, S. A., Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc.2004,126,1493-1496.
    [24]Otsuka, I.; Travelet, C0.; Halila, S.; Fort, S.; Pignot-Paintrand, I.; Narumi, A.; Borsali, R., Thermoresponsive Self-Assemblies of Cyclic and Branched Oligosaccharide-block-poly(N-isopropylacrylamide) Diblock Copolymers into Nanoparticles. Biomacromolecules 2012,13,1458-1465.
    [25]Park, S.; Zhong, M.; Lee, T.; Paik, H.-j.; Matyjaszewski, K., Modification of the Surface of Silicon Wafers with Temperature Responsive Crosslinkable Poly((Oligo Ethylene Oxide) Methacrylate) Based Star Polymers. ACS Applied Materials & Interfaces 2012,4, 5949-5955.
    [26]Chua, G. B. H.; Roth, P. J.; Duong, H. T. T.; Davis, T. P.; Lowe, A. B., Synthesis and Thermoresponsive Solution Properties of Poly[oligo(ethylene glycol) (meth)acrylamide]s: Biocompatible PEG Analogues. Macromolecules 2012,45,1362-1374.
    [27]Ono, Y.; Shikata, T., Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution:A sharp phase transition at the lower critical solution temperature./. Am. Chem. Soc.2006,128,10030-10031.
    [28]Nakayama, M.; Okano, T., Polymer Terminal Group Effects on Properties of Thermoresponsive Polymeric Micelles with Controlled Outer-Shell Chain Lengths. Biomacromolecules 2005,6, 2320-2327.
    [29]Chen, G.; Hoffinan, A. S., Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995,373,49-52.
    [30]Bae, Y. H.; Okano, T.; Kim, S. W., "On-off" thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharmaceut. Res.1991,8,531-537.
    [31]Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y., Modulating the phase transition temperature and thermosensitivity in N-isopropylacrylamide copolymer gels. Journal of biomaterials science. Polymer edition 1994,6,585-598.
    [32]Schilli, C. M.; Zhang, M. F.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.; Muller, A. H. E., A new double-responsive block copolymer synthesized via RAFT polymerization:Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 2004,37,7861-7866.
    [33]Yin, X.; Hoffman, A. S.; Stayton, P. S., Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules 2006,7, 1381-1385.
    [34]Zhang, J.; Chu, L.-Y.; Li, Y.-K.; Lee, Y. M., Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 2007,48,1718-1728.
    [35]Sumaru, K.; Kameda, M.; Kanamori, T.; Shinbo, T., Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran. Macromolecules 2004,37,4949-4955.
    [36]Ying, L.; Kang, E. T.; Neoh, K. G., Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes. Langmuir 2002,18,6416-6423.
    [37]Li, Y.; Lokitz, B. S.; McCormick, C. L., Thermally Responsive Vesicles and Their Structural "Locking" through Polyelectrolyte Complex Formation. Angewandte Chemie International Edition 2006,45,5792-5795.
    [38]Wan, X.; Liu, T.; Liu, S., Synthesis of Amphiphilic Tadpole-Shaped Linear-Cyclic Diblock Copolymers via Ring-Opening Polymerization Directly Initiating from Cyclic Precursors and Their Application as Drug Nanocarriers. Biomacromolecules 2011,12,1146-1154.
    [39]Bromberg, L. E.; Ron, E. S., Temperature-responsive gels and thermogelling polymer matrices for protein andpeptide delivery. Adv. Drug Deliver. Rev.1998,31,197-221.
    [40]Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Bomer, H. G.; Laschewsky, A.; Duschl, C.; Lutz, J. F., Controlled Cell Adhesion on PEG-Based Switchable Surfaces. Angewandte Chemie International Edition 2008,47,5666-5668.
    [41]McDaniel, J. R.; MacEwan, S. R.; Dewhirst, M.; Chilkoti, A., Doxorubicin-conjugated chimeric polypeptide nanoparticles that respond to mild hyperthermia. J. Control. Release 2012,159,362-367.
    [42]Zhang, D.; Lahasky, S. H.; Guo, L.; Lee, C.-U.; Lavan, M., Polypeptoid Materials:Current Status and Future Perspectives. Macromolecules 2012,45,5833-5841.
    [43]Colson, Y. L.; Grinstaff, M. W., Biologically Responsive Polymeric Nanoparticles for Drug Delivery. Adv. Mater.2012,24,3878-3886.
    [44]Guo, X.; Shi, C.; Wang, J.; Di, S.; Zhou, S., pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials 2013,34,4544-4554.
    [45]Zhang, C. Y.; Yang, Y. Q.; Huang, T. X.; Zhao, B.; Guo, X. D.; Wang, J. F.; Zhang, L. J., Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 2012,33,6273-6283.
    [46]Petersen, L. K.; Sackett, C. K.; Narasimhan, B., High-throughput analysis of protein stability in polyanhydride nanoparticles. Acta Biomaterialia 2010,6,3873-3881.
    [47]Chen, W.; Meng, F.; Cheng, R.; Zhong, Z., pH-Sensitive degradable polymersomes for triggered release of anticancer drugs:A comparative study with micelles. J. Control. Release 2010,142,40-46.
    [48]Lee, S.; Saito, K.; Lee, H.-R.; Lee, M. J.; Shibasaki, Y.; Oishi, Y.; Kim, B.-S., Hyperbranched Double Hydrophilic Block Copolymer Micelles of Poly(ethylene oxide) and Polyglycerol for pH-Responsive Drug Delivery. Biomacromolecules 2012,13,1190-1196.
    [49]Wang, X. J.; Wu, G. L.; Lu, C. C.; Zhao, W. P.; Wang, Y. N.; Fan, Y. G.; Gao, H.; Ma, J. B., A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (alpha,beta-aspartic acid) derivative. Eur. J. Pharm. Sci.2012,47, 256-264.
    [50]Lee, S.; Saito, K.; Lee, H.-R.; Lee, M. J.; Shibasaki, Y.; Oishi, Y.; Kim, B.-S., Hyperbranched Double Hydrophilic Block Copolymer Micelles of Poly(ethylene oxide) and Polyglycerol for pH-Responsive Drug Delivery. Biomacromolecules 2012, 13,1190-1196.
    [51]Su, J.; Chen, F.; Cryns, V. L.; Messersmith, P. B., Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells. J. Am. Chem. Soc.2011,133,11850-11853.
    [52]Xin, Y.; Yuan, J., Schiffs base as a stimuli-responsive linker in polymer chemistry. Polymer Chemistry 2012,3,3045-3055.
    [53]Doncom, K. E. B.; Hansell, C. F.; Theato, P.; O' Reilly, R. K., pH-switchable polymer nanostructures for controlled release. Polymer Chemistry 2012,3,3007-3015.
    [54]Ray, J. G.; Naik, S. S.; Hoff, E. A.; Johnson, A. J.; Ly, J. T.; Easterling, C. P.; Patton, D. L. Savin, D. A., Stimuli-Responsive Peptide-Based ABA-Triblock Copolymers:Unique Morphology Transitions WithpH. Macromol. Rapid. Comm.2012,33,819-826.
    [55]Wang, Y.; Du, H.; Gao, L.; Ni, H.; Li, X.; Zhu, W.; Shen, Z., Reductively and hydrolytically dual degradable nanoparticles by "click" crosslinking of a multifunctional diblock copolymer. Polymer Chemistry 2013,4,1657-1663.
    [56]Meng, F.; Hennink, W. E.; Zhong, Z., Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009,30,2180-2198.
    [57]Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z., Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011,152,2-12.
    [58]Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X., Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc.2009,132,442-443.
    [59]Ren, H.; Wu, Y.; Ma, N.; Xu, H.; Zhang, X., Side-chain selenium-containing amphiphilic block copolymers:redox-controlled self-assembly and disassembly. Soft Matter 2012,8, 1460-1466.
    [60]Napoli, A.; Valentini, M.; Tirelli, N.; Muller, M.; Hubbell, J. A., Oxidation-responsive polymeric vesicles. Nat. Mater.2004,3,183-189.
    [61]Eloi, J.-C.; Rider, D. A.; Cambridge, G.; Whittell, G. R.; Winnik, M. A.; Manners, I., Stimulus-Responsive Self-Assembly:Reversible, Redox-Controlled Micellization of Polyferrocenylsilane Diblock Copolymers. J. Am. Chem. Soc.2011,133,8903-8913.
    [62]Sanson, C.; Schatz, C.; Le Meins, J.-F.; Brulet, A.; Soum, A.; Lecommandoux, S., Biocompatible and Biodegradable Poly(trimethylene carbonate)-b-Poly (L-glutamic acid) Polymersomes:Size Control and Stability. Langmuir 2010,26,2751-2760.
    [63]Cambre, J. N.; Sumerlin, B. S., Biomedical applications of boronic acid polymers. Polymer 2011,52,4631-4643.
    [64]Ivanov, A. E.; Galaev, I. Y.; Mattiasson, B., Interaction of sugars, polysaccharides and cells with boronate-containing copolymers:from solution to polymer brushes. J. Mol. Recognit. 2006,19,322-331.
    [65]Yao, Y.; Zhao, L.; Yang, J.; Yang, J., Glucose-Responsive Vehicles Containing Phenylborate Ester for Controlled Insulin Release at Neutral pH. Biomacromolecules 2012,13,1837-1844.
    [66]Kelley, E. G.; Albert, J. N. L.; Sullivan, M. O.; Epps, I. I. I. T. H., Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 2013, doi:10.1039/C3CS35512H.
    [67]Schumers, J.-M.; Fustin, C.-A.; Gohy, J.-F., Light-Responsive Block Copolymers. Macromol. Rapid. Comm.2010,31,1588-1607.
    [68]Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y.-H.; Finn, M. G.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H., Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP:Grafting-Through and Clicking-To. J. Am. Chem. Soc.2011,133, 559-566.
    [69]Klaikherd, A.; Nagamani, C.; Thayumanavan, S., Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J. Am. Chem. Soc.2009,131,4830-4838.
    [70]Han, D.; Tong, X.; Zhao, Y., Block Copolymer Micelles with a Dual-Stimuli-Responsive Core for Fast or Slow Degradation. Langmuir 2012,28,2327-2331.
    [71]Kim, B.; Lam, C. N.; Olsen, B. D., Nanopattemed Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers. Macromolecules 2012,45, 4572-4580.
    [72]Guelcher, S. A., Biodegradable polyurethanes:Synthesis and applications in regenerative medicine. Tissue Engineering Part B-Reviews 2008,14,3-17.
    [73]Boretos, J. W.; Pierce, W. S., Segmented polyurethane:a new elastomer for biomedical applications. Science (New York, N.Y.) 1967,158,1481-1482.
    [74]Mackay, T. G.; Wheatley, D. J.; Bernacca, G. M.; Fisher, A. C.; Hindle, C. S., New polyurethane heart valve prosthesis:design, manufacture and evaluation. Biomaterials 1996, 17,1857-1863.
    [75]Sivak, W. N.; Pollack, I. F.; Petoud, S.; Zamboni, W. C.; Zhang, J.; Beckman, E. J., LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas. Acta Biomaterialia 2008,4,852-862.
    [76]Wang, Z.; Wan, P.; Ding, M.; Yi, X.; Li, J.; Fu, Q.; Tan, H., Synthesis and Micellization of New Biodegradable Phosphorylcholine-Capped Polyurethane. J. Polym. Sci. Part A:Polym. Chem 2011,49,2033-2042.
    [77]Santerre, J. P.; Woodhouse, K.; Laroche, G.; Labow, R. S., Understanding the biodegradation of polyurethanes:From classical implants to tissue engineering materials. Biomaterials 2005, 26,7457-7470.
    [78]Tatai, L.; Moore, T. G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, P. A., Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007,28,5407-5417.
    [79]Wang, W. S.; Ping, P.; Chen, X. S.; Jing, X. B., Polylactide-based polyurethane and its shape-memory behavior. Eur. Polym. J.2006,42,1240-1249.
    [80]Yang, L.; Wei, J.; Yan, L.; Huang, Y.; Jing, X., Synthesis of OH-Group-Containing, Biodegradable Polyurethane and Protein Fixation on Its Surface. Biomacromolecules 2011, 12,2032-2038.
    [81]Reddy, T. T.; Kano, A.; Maruyama, A.; Takahara, A., Synthesis, Characterization and Drug Release of Biocompatible/Biodegradable Non-toxic Poly(urethane urea)s Based on Poly(epsilon-caprolactone)s and Lysine-Based Diisocyanate. J. Biomat. Sci-polym. E.2010, 21,1483-1502.
    [82]Hassan, M. K.; Mauritz, K. A.; Storey, R. F.; Wiggins, J. S., Biodegradable aliphatic thermoplastic polyurethane based on poly(epsilon-caprolactone) and L-lysine diisocyanate. J. Polym. Sci. Part A:Polym. Chem 2006,44,2990-3000.
    [83]Skarja, G. A.; Woodhouse, K. A., In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J. Biomat. Sci-polym. E.2001, 72,851-873.
    [84]Skarja, G. A.; Woodhouse, K. A., Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J. Appl. Polym. Sci. 2000,75,1522-1534.
    [85]Guelcher, S. A.; Gallagher, K. M.; Didier, J. E.; Klinedinst, D. B.; Doctor, J. S.; Goldstein, A. S.; Wilkes, G. L.; Beckman, E. J.; Hollinger, J. O., Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia 2005,1,471-484.
    [86]Huynh, T. T. N.; Padois, K.; Sonvico, F.; Rossi, A.; Zani, F.; Pirot, F.; Doury, J.; Falson, F., Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate. Eur. J. Pharm. Biopharm 2010,74,255-264.
    [87]Ruggri, V.; Francolini, I.; Donelli, G.; Piozzi, A., Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistance. Journal of Biomedical Materials Research Part A 2007,81 A,287-298.
    [88]Jabbari, E.; Khakpour, M., Morphology of and release behavior from porous polyurethane microspheres. Biomaterials 2000,21,2073-2079.
    [89]Shelke, N. B.; Sairam, M.; Halligudi, S. B.; Aminabhavi, T. M., Development of transdermal drug-delivery films with castor-oil-based polyurethanes. J. Appl. Polym. Sci.2007,103, 779-788.
    [90]Tseng, S. j.; Tang, S.-C., Development of poly(amino ester glycol urethane)/siRNA polyplexes for gene silencing. Bioconjugate Chem.2007,18,1383-1390.
    [91]Rojas, I. A.; Slunt, J. B.; Grainger, D. W., Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion. J. Control. Release 2000,63,175-189.
    [92]Simmons, A.; Padsalgikar, A. D.; Ferris, L. M.; Poole-Warren, L. A., Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials 2008,29,2987-2995.
    [93]Gaudin, F.; Sintes-Zydowicz, N., Core-shell biocompatible polyurethane nanocapsules obtained by interfacial step polymerisation in miniemulsion. Colloid Surface. A 2008,331, 133-142.
    [94]Nelson, D. M.; Baraniak, P. R.; Ma, Z.; Guan, J.; Mason, N. S.; Wagner, W. R., Controlled Release of IGF-1 and HGF from a Biodegradable Polyurethane Scaffold. Pharmaceut. Res. 2011,28,1282-1293.
    [95]Allen, T. M.; Cullis, P. R., Drug delivery systems:Entering the mainstream. Science 2004, 303,1818-1822.
    [96]Nishiyama, N.; Kataoka, K., Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Therapeut.2006,112, 630-648.
    [97]Kim, S.; Shi, Y.; Kim, J. Y.; Park, K.; Cheng, J.-X., Overcoming the barriers in micellar drug delivery:loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opinion on Drug Delivery 2010,7,49-62.
    [98]Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm.2011,412, 52-58.
    [99]Tyrrell, Z. L.; Shen, Y.; Radosz, M., Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci.2010,35,1128-1143.
    [100]Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine-Nanotechnology Biology and Medicine 2010,6, 714-729.
    [101]Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J. F. W.; Hennink, W. E., Polymeric Micelles in Anticancer Therapy:Targeting, Imaging and Triggered Release. Pharmaceut. Res.2010,27,2569-2589.
    [102]Mikhail, A. S.; Allen, C., Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels. J. Control. Release 2009,138, 214-223.
    [103]Savic, R.; Luo, L. B.; Eisenberg, A.; Maysinger, D., Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003,300,615-618.
    [104]Oh, J. K., Polylactide (PLA)-based amphiphilic block copolymers:synthesis, self-assembly, and biomedical applications. Soft Matter 2011,7,5096-5108.
    [105]He, G.; Ma, L. L.; Pan, J.; Venkatraman, S., ABA and BAB type triblock copolymers of PEG and PLA:A comparative study of drug release properties and "stealth" particle characteristics. Int. J. Pharm.2007,334,48-55.
    [106]Riley, T.; Heald, C. R.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S.; King, S. M.; Heenan, R. K.; Purkiss, S. G.; Barlow, R. J.; Gellert, P. R.; Washington, C., Core-shell structure of PLA-PEG nanoparticles used for drug delivery. Langmuir 2003,19,8428-8435.
    [107]Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G., Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles:Preparation, pharmacokinetics and distribution in vivo. J. ColloidInterf. Sci.2011,354,116-123.
    [108]Wei, X.; Gong, C.; Gou, M.; Fu, S.; Guo, Q.; Shi, S.; Luo, F.; Guo, G.; Qiu, L.; Qian, Z., Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm.2009,381,1-18.
    [109]Forrest, M. L.; Yanez, J. A.; Remsberg, C. M.; Ohgami, Y.; Kwon, G. S.; Davies, N. M., Paclitaxel prodrugs with sustained release and high solubility in poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelle nanocarriers:Pharmacokinetic disposition, tolerability, and cytotoxicity. Pharmaceut. Res.2008,25,194-206.
    [110]Mikhail, A. S.; Allen, C., Poly(ethylene glycol)-b-poly(epsilon-caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel:Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules 2010,11,1273-1280.
    [111]Gaucher, G.; Marchessault, R. H.; Leroux, J.-C., Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J. Control. Release 2010,143,2-12.
    [112]van Vlerken, L. E.; Vyas, T. K.; Amiji, M. M., Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharmaceut. Res.2007,24,1405-1414.
    [113]Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S., Poly(ethylene glycol) in Drug Delivery:Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed.2010,49, 6288-6308.
    [114]Werkmeister, J. A.; Adhikari, R.; White, J. F.; Tebb, T. A.; Le, T. P. T.; Taing, H. C.; Mayadunne, R.; Gunatillake, P. A.; Danon, S. J.; Ramshaw, J. A. M., Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage. Acta Biomaterialia 2010,6,3471-3481.
    [115]Lundberg, P.; Walter, M. V.; Isabel Montanez, M.; Hult, D.; Hult, A.; Nystrom, A.; Malkoch, M., Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polymer Chemistry 2011,2,394-402.
    [116]Gou, P.-F.; Zhu, W.-P.; Shen, Z.-Q., Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A(14)B(7) Miktoarm Star Copolymers Based on Poly(epsilon-caprolactone) and Poly(ethylene glycol). Biomacromolecules 2010,11,934-943.
    [117]Khanna, K.; Varshney, S.; Kakkar, A., Miktoarm star polymers:advances in synthesis, self-assembly, and applications. Polymer Chemistry 2010,1,1171-1185.
    [118]Du, J.-Z.; Tang, L.-Y.; Song, W.-J.; Shi, Y.; Wang, J., Evaluation of Polymeric Micelles from Brush Polymer with Poly(epsilon-caprolactone)-b-Poly(ethylene glycol) Side Chains as Drug Carrier. Biomacromolecules 2009,10,2169-2174.
    [119]Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.-S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F., Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater.2008,7,588-595.
    [120]Prabaharan, M.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S., Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn (R) H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 2009,30,3009-3019.
    [121]Liu, J.; Pang, Y.; Huang, W.; Zhu, X.; Zhou, Y.; Yan, D., Self-Assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery. Biomaterials 2010,31,1334-1341.
    [122]Zhang, Y.; Zhuo, R. X., Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials 2005,26,6736-6742.
    [123]Gong, C; Wei, X.; Wang, X.; Wang, Y.; Guo, G.; Mao, Y.; Luo, F.; Qian, Z., Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery:I. Preparation and characterization. Nanotechnology 2010,21, doi: 10.1088/0957-4484/21/21/215103.
    [124]Gong, C.; Wang, Y.; Wang, X.; Wei, X.; Wu, Q.; Wang, B.; Dong, P.; Chen, L.; Luo, F.; Qian, Z., Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic drug delivery, part 2:in vitro and in vivo toxicity evaluation. J. Nanopart. Res.2011,13,721-731.
    [125]Wang, Z.; Yu, L; Ding, M.; Tan, H.; Li, J.; Fu, Q., Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polymer Chemistry 2011,2,601-607.
    [126]Tseng, S. J.; Tang, S. C.; Shau, M. D.; Zeng, Y. F.; Cherng, J. Y.; Shih, M. F., Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Bioconjugate Chem.2005,16,1375-1381.
    [127]Gullotti, E.; Yeo, Y., Extracellularly Activated Nanocarriers:A New Paradigm of Tumor Targeted Drug Delivery. Molecular Pharmaceutics 2009,6,1041-1051.
    [128]Danhier, F.; Feron, O.; Preat, V., To exploit the tumor microenvironment:Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148,135-146.
    [129]Greish, K., Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J. Drug Target.2007,15,457-464.
    [130]Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater.2011,10,389-397.
    [131]Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007,2,751-760.
    [132]Ding, M.; Li, J.; Fu, X.; Zhou, J.; Tan, H.; Gu, Q.; Fu, Q., Synthesis, Degradation, and Cytotoxicity of Multiblock Poly(epsilon-caprolactone urethane)s Containing Gemini Quaternary Ammonium Cationic Groups. Biomacromolecules 2009,10,2857-2865.
    [133]Ding, M.; Zhou, L.; Fu, X.; Tan, H.; Li, J.; Fu, Q., Biodegradable gemini multiblock poly(epsilon-caprolactone urethane)s toward controllable micellization. Soft Matter 2010,6, 2087-2092.
    [134]Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E., Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 2010,328,1031-1035.
    [135]Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA 2000,97,13003-13008.
    [136]Nel, A. E.; Maedler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.2009,8,543-557.
    [137]Ding, M.; Qian, Z.; Wang, J.; Li, J.; Tan, H.; Gu, Q.; Fu, Q., Effect of PEG content on the properties of biodegradable amphiphilic multiblock poly(epsilon-caprolactone urethane)s. Polymer Chemistry 2011,2,885-891.
    [138]Ding, M.; He, X.; Zhou, L.; Li, J.; Tan, H.; Fu, X.; Fu, Q., Nontoxic gemini cationic biodegradable polyurethane drug carriers:Synthesis, self-assembly and in vitro cytotoxicity. J. Control. Release 2011,152, E87-E89.
    [139]Ding, M.; He, X.; Wang, Z.; Li, J.; Tan, H.; Deng, H.; Fu, Q.; Gu, Q., Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials 2011,32, 9515-9524.
    [140]Zhou, L.; Yu, L.; Ding, M.; Li, J.; Tan, H.; Wang, Z.; Fu, Q., Synthesis and Characterization of pH-Sensitive Biodegradable Polyurethane for Potential Drug Delivery Applications. Macromolecules 2011,44,857-864.
    [141]Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.2007,32,962-990.
    [142]Cayre, O. J.; Chagneux, N.; Biggs, S., Stimulus responsive core-shell nanoparticles: synthesis and applications of polymer based aqueous systems. Soft Matter 2011,7, 2211-2234.
    [143]Roy, D.; Cambre, J. N.; Sumerlin, B. S., Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci.2010,35,278-301.
    [144]Wei, H.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci.2009,34,893-910.
    [145]Jin, Y.; Song, L.; Su, Y.; Zhu, L.; Pang, Y.; Qiu, F.; Tong, G.; Yan, D.; Zhu, B.; Zhu, X., Oxime Linkage:A Robust Tool for the Design of pH-Sensitive Polymeric Drug Carriers. Biomacromolecules 2011,12,3460-3468.
    [146]Liu, G.-Y.; Lv, L.-P.; Chen, C.-J.; Liu, X.-S.; Hu, X.-F.; Ji, J., Biocompatible and biodegradable polymersomes for pH-triggered drug release. Soft Matter 2011,7,6629-6636.
    [147]Ding, J.; Shi, F.; Xiao, C.; Lin, L.; Chen, L.; He, C.; Zhuang, X.; Chen, X., One-step preparation of reduction-responsive poly(ethylene glycol)-poly (amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry 2011,2,2857-2864.
    [148]Solomatin, S. V.; Bronich, T. K.; Bargar, T. W.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V., Environmentally responsive nanoparticles from block ionomer complexes:Effects of pH and ionic strength. Langmuir 2003,19,8069-8076.
    [149]Dong, L.; Xia, S.; Wu, K.; Huang, Z.; Chen, H.; Chen, J.; Zhang, J., A pH/Enzyme-responsive tumor-specific delivery system for doxorubicin. Biomaterials 2010, 31,6309-6316.
    [150]Chen, Y.; Wang, R.; Zhou, J.; Fan, H.; Shi, B., On-demand drug delivery from temperature-responsive polyurethane membrane. React. Funct. Polym.2011,71,525-535.
    [151]Davaran, S.; Rashidi, M. R.; Hanaee, J.; Khani, A.; Mahkam, M.; Hashemi, M., Synthesis and degradation characteristics of polyurethanes containing AZO derivatives of 5-amino salicylic acid. J. Bioact. Compat. Pol.2006,21,315-326.
    [152]Paramonov, S. E.; Bachelder, E. M.; Beaudette, T. T.; Standley, S. M.; Lee, C. C.; Dashe, J.; Frechet, J. M. J., Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjugate Chem.2008,19,911-919.
    [153]Bachelder, E. M.; Beaudette, T. T.; Broaders, K. E.; Paramonov, S. E.; Dashe, J.; Frechet, J. M. J., Acid-degradable polyurethane particles for protein-based vaccines:Biological evaluation and in vitro analysis of particle degradation products. Molecular Pharmaceutics 2008,5,876-884.
    [154]Rosenbauer, E.-M.; Wagner, M.; Musyanovych, A.; Landfester, K., Controlled Release from Polyurethane Nanocapsules via pH-, UV-Light- or Temperature-Induced Stimuli. Macromolecules 2010,43,5083-5093.
    [155]Zhang, C.; Zhao, K.; Hu, T.; Cui, X.; Brown, N.; Boland, T., Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J. Control. Release 2008,131,128-136.
    [156]Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X., Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers.J. Am. Chem. Soc.2010,132,442-443.
    [157]Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H., Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly (ethylene glycol)-b-poly(L-histidine).J. Control. Release 2007,123,19-26.
    [158]Ulbrich, K.; Subr, V., Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliver. Rev.2004,56,1023-1050.
    [159]Zhou, L.; Liang, D.; He, X.; Li, J.; Tan, H.; Li, J.; Fu, Q.; Gu, Q., The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials 2012,33,2734-2745.
    [160]Dai, S.; Ravi, P.; Tam, K. C., pH-Responsive polymers:synthesis, properties and applications. Soft Matter 2008,4,435-449.
    [161]Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and polyethylene glycol). Soft Matter 2011,7,3546-3552.
    [162]Jiang, G.; Tuo, X.; Wang, D.; Liu, J., Syntheses and self-assembly of novel polyurethane-itaconic acid copolymer hydrogels. React. Funct. Polym.2010,70,175-181.
    [163]Park, J. H.; Bae, Y. H., Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane):synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials 2002,23,1797-1808.
    [164]Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci.2008,33,448-477.
    [165]Thomas, M.; Klibanov, A. M., Non-viral gene therapy:polycation-mediated DNA delivery. Appl. Microbiol. Biot.2003,62,27-34.
    [166]Loh, X. J.; Sng, K. B. C.; Li, J., Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 2008,29,3185-3194.
    [167]Nguyen, M. K.; Lee, D. S., Injectable biodegradable hydrogels. Macromol. Biosci.2010,10, 563-79.
    [168]Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliver. Rev.2002,54,37-51.
    [169]Ruel-Gariepy, E.; Leroux, J. C., In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J. Pharm. Biopharm 2004,58,409-426.
    [170]Tsitsilianis, C., Responsive reversible hydrogels from associative "smart" macromolecules. Soft Matter 2010,6,2372-2388.
    [171]Jeong, B. M.; Lee, D. S.; Shon, J. I.; Bae, Y. H.; Kim, S. W., Thermoreversible Gelation of Poly(Ethylene Oxide)Biodegradable Polyester Block Copolymers. J. Polym. Sci. Part A: Polym. Chem 1999,37,751-760.
    [172]Cong True, H.; Minh Khanh, N.; Lee, D. S., Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules 2011, 44,6629-6636.
    [173]Jeong, B.; Bae, Y. H.; Kim, S. W., Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999,32,7064-7069.
    [174]Jeong, B.; Bae, Y. H.; Kim, S. W., Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloid Surface. B 1999,16,185-193.
    [175]Hwang, M. J.; Suh, J. M.; Bae, Y. H.; Kim, S. W.; Jeong, B., Caprolactonic poloxamer analog:PEG-PCL-PEG. Biomacromolecules 2005,6,885-890.
    [176]Gong, C.; Qian, Z.; Liu, C.; Huang, M.; Gu, Y.; Wen, Y.; Kan, B.; Wang, K.; Dai, M.; Li, X.; Gou, M.; Tu, M.; Wei, Y., A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) block copolymers. Smart Mater. Struct.2007,16,927-933.
    [177]Gong, C.; Shi, S.; Dong, P.; Kan, B.; Gou, M.; Wang, X.; Li, X.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z., Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int. J. Pharm.2009,365,89-99.
    [178]Jeong, B.; Bae, Y. H.; Kim, S. W., In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J. Biomed. Mater. Res.2000,50,171-177.
    [179]Jeong, B.; Bae, Y. H.; Kim, S. W., Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J. Control. Release 2000, 63,155-163.
    [180]Li, Z. H.; Ning, W.; Wang, J. M.; Choi, A.; Lee, P. Y.; Tyagi, P.; Huang, L., Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharmaceut. Res. 2003,20,884-888.
    [181]Lee, P. Y.; Li, Z. H.; Huang, L., Thermosensitive hydrogel as a Tgf-beta 1 gene delivery vehicle enhances diabetic wound healing. Pharmaceut. Res.2003,20,1995-2000.
    [182]Gong, C. Y.; Wu, Q. J.; Dong, P. W.; Shi, S.; Fu, S. Z.; Guo, G.; Hu, H. Z.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y., Acute Toxicity Evaluation of Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive PEG-PCL-PEG Hydrogel. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2009,91B,26-36.
    [183]Fang, F.; Gong, C.; Qian, Z.; Zhang, X.; Gou, M.; You, C.; Zhou, L.; Liu, J.; Zhang, Y.; Guo, G.; Gu, Y.; Luo, F.; Chen, L.; Zhao, X.; Wei, Y., Honokiol Nanoparticles in Thermosensitive Hydrogel:Therapeutic Effects on Malignant Pleural Effusion. Acs Nano 2009,3,4080-4088.
    [184]Ding, M.; Li, J.; Tan, H.; Fu, Q., Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 2012,8,5414-5428.
    [185]Loh, X. J.; Goh, S. H.; Li, J., New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 2007,8,585-593.
    [186]Loh, X. J.; Goh, S. H.; Li, J., Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly. (R)-3-hydroxybutyrate, poly(ethylene glycol), and polypropylene glycol). Biomaterials 2007,28,4113-4123.
    [187]Loh, X. J.; Goh, S. H.; Li, J., Biodegradable Thermogelling Poly (R)-3-hydroxybutyrate-Based Block Copolymers:Micellization, Gelation, and Cytotoxicity and Cell Culture Studies. J. Phys. Chem. B 2009,113,11822-11830.
    [188]Li, X.; Loh, X. J.; Wang, K.; He, C. B.; Li, J., Poly(ester urethane)s consisting of poly (R)-3-hydroxybutyrate and poly(ethylene glycol) as candidate biomaterials:Characterization and mechanical property study. Biomacromolecules 2005,6,2740-2747.
    [189]Loh, X. J.; Tan, K. K.; Li, X.; Li, J., The in vitro hydrolysis of poly(ester urethane)s consisting of poly (R)-3-hydroxybutyrate and poly(ethylene glycol). Biomaterials 2006,27, 1841-1850.
    [190]Loh, X. J.; Peh, P.; Liao, S.; Sng, C.; Li, J., Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J. Control. Release 2010,143,175-182.
    [191]Loh, X. J.; Tan, Y. X.; Li, Z.; Teo, L. S.; Goh, S. H.; Li, J., Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)-Thermodynamics of micellization and hydrolytic degradation. Biomaterials 2008,29,2164-2172.
    [192]Dayananda, K.; He, C.; Lee, D. S., In situ gelling aqueous solutions of pH-and temperature-sensitive poly(ester amino urethane)s. Polymer 2008,49,4620-4625.
    [193]Zheng, Y.; He, C.; Huynh, C. T.; Lee, D. S., Biodegradable pH- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromolecular Research 2010,18,974-980.
    [194]Huynh, C. T.; Nguyen, M. K.; Kim, J. H.; Kang, S. W.; Kim, B. S.; Lee, D. S., Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene glycol)-poly([small beta]-amino ester urethane) multiblock copolymer hydrogels. Soft Matter 2011,7,4974-4982.
    [195]Cong Truc, H.; Kang, S. W.; Li, Y.; Kim, B. S.; Lee, D. S., Controlled release of human growth hormone from a biodegradable pH/temperature-sensitive hydrogel system. Soft Matter 2011,7,8984-8990.
    [196]Huynh, C. T.; Nguyen, M. K.; Lee, D. S., Biodegradable pH/temperature-sensitive oligo(P-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia 2011,7,3123-3130.
    [197]Du, F.-S.; Wang, Y.; Zhang, R.; Li, Z.-C., Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 2010,6,835-848.
    [198]Tseng, S. j.; Tang, S.-C., Synthesis and characterization of the novel transfection reagent poly(amino ester glycol urethane). Biomacromolecules 2007,8,50-58.
    [199]Godbey, W. T.; Wu, K. K.; Mikos, A. G., Poly(ethylenimine) and its role in gene delivery. J. Control. Release 1999,60,149-160.
    [200]Pouton, C. W.; Lucas, P.; Thomas, B. J.; Uduehi, A. N.; Milroy, D. A.; Moss, S. H., Polycation-DNA complexes for gene delivery:a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control. Release 1998,53, 289-299.
    [201]Y. Cherng, J.; C. Hung, W.; C. Kao, H., Blending of Polyethylenimine with a Cationic Polyurethane Greatly Enhances Both DNA Delivery Efficacy and Reduces the Overall Cytotoxicity. Current Pharmaceutical Biotechnology 12,839-846.
    [202]Shau, M. D.; Tseng, S. J.; Yang, T. F.; Cherng, J. Y.; Chin, W. K., Effect of molecular weight on the transfection efficiency of novel polyurethane as a biodegradable gene vector. Journal of Biomedical Materials Research Part A 2006,77A,736-746.
    [203]Liu, X.-Y.; Ho, W.-Y.; Hung, W. J.; Shau, M.-D., The characteristics and transfection efficiency of cationic poly (ester-co-urethane)-short chain PEI conjugates self-assembled with DNA. Biomaterials 2009,30,6665-6673.
    [204]Jian, Z.-Y.; Chang, J.-K.; Shau, M.-D., Synthesis and Characterizations of New Lysine-Based Biodegradable Cationic Poly(urethane-co-ester) and Study on Self-Assembled Nanoparticles with DNA. Bioconjugate Chem.2009,20,774-779.
    [205]Hung, W. C.; Da Shau, M.; Kao, H. C.; Shih, M. F.; Chemg, J. Y., The synthesis of cationic polyurethanes to study the effect of amines and structures on their DNA transfection potential. J. Control. Release 2009,133,68-76.
    [1]Vladimir P, T., Structure and design of polymeric surfactant-based drug delivery systems.J. Control. Release 2001,73,137-172.
    [2]Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv. Drug Deliver. Rev.2001,47,113-131.
    [3]Adams, M. L.; Lavasanifar, A.; Kwon, G. S., Amphiphilic block copolymers for drug delivery. J. Pharm. Sci.2003,92,1343-1355.
    [4]Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B., Smart polymers:Physical forms and bioengineering applications. Prog. Polym. Sci.2007,32,1205-1237.
    [5]Okano, T.; Bae, Y. H.; Jacobs, H.; Kim, S. W., Thermally on-off switching polymers for drug permeation and release. J. Control. Release 1990,11,255-265.
    [6]Allan S, H., Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J. Control. Release 1987,6,297-305.
    [7]Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M., A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008,126,187-204.
    [8]Natalya, R., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.2007,32,962-990.
    [9]Bergbreiter, D. E.; Mariagnanam, V. M.; Zhang, L., Polymer ligands that can regulate reaction temperature in "smart" catalysts. Adv. Mater.1995,7,69-71.
    [10]Komori, K.; Matsui, H.; Tatsuma, T., Control of heme peptide activity by using phase transition polymers modified with inhibitors. Bioelectrochemistry 2005,65,129-134.
    [11]Lee, C. K.; Su, W. D., Nonionic surfactant-mediated affinity cloud-point extraction of vancomycin. Sep. Sci. Technol.1999,34,3267-3277.
    [12]Li, J.-L.; Bai, R.; Chen, B.-H., Preconcentration of Phenanthrene from Aqueous Solution by a Slightly Hydrophobic Nonionic Surfactant. Langmuir 2004,20,6068-6070.
    [13]Aathimanikandan, S. V.; Savariar, E. N.; Thayumanavan, S., Temperature-Sensitive Dendritic Micelles.J. Am. Chem. Soc.2005,127,14922-14929.
    [14]Zhang, Q.; Clark, C. G.; Wang, M.; Remsen, E. E.; Wooley, K. L., Thermally-Induced (Re)shaping of Core-Shell Nanocrystalline Particles. Nano Letters 2002,2,1051-1054.
    [15]Sundararaman, A.; Stephan, T.; Grubbs, R. B., Reversible Restructuring of Aqueous Block Copolymer Assemblies through Stimulus-Induced Changes in Amphiphilicity.J. Am. Chem. Soc.2008,130,12264-12265.
    [16]You, Y.-Z.; Oupicky, D., Synthesis of Temperature-Responsive Heterobifunctional Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide). Biomacromolecules 2006,8,98-105.
    [17]Morishima, Y., Thermally Responsive Polymer Vesicles. Angew. Chem. Int. Ed.2007,46, 1370-1372.
    [18]Bulmus, V.; Woodward, M.; Lin, L.; Murthy, N.; Stayton, P.; Hoffman, A., A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 2003,93,105-120.
    [19]El-Sayed, M. E. H.; Hoffman, A. S.; Stayton, P. S., Rational design of composition and activity correlations for pH-sensitive and glutathione-reactive polymer therapeutics. J. Control. Release 2005,101,47-58.
    [20]Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery:Polymeric Micelles that are Responsive to Intracellular pH Change. Angew. Chem. Int. Ed.2003,42,4640-4643.
    [21]Li, Y.; Du, W.; Sun, G.; Wooley, K. L., pH-Responsive Shell Cross-Linked Nanoparticles with Hydrolytically Labile Cross-Links. Macromolecules 2008,41,6605-6607.
    [22]Jung, J.; Lee, I.-H.; Lee, E.; Park, J.; Jon, S., pH-Sensitive Polymer Nanospheres for Use as a Potential Drug Delivery Vehicle. Biomacromolecules 2007,8,3401-3407.
    [23]Jiang, J.; Tong, X.; Zhao, Y., A New Design for Light-Breakable Polymer Micelles. J. Am. Chem. Soc.2005,127,8290-8291.
    [24]Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Frechet, J. M. J., Synthetic Micelle Sensitive to IR Light via a Two-Photon Process. J. Am. Chem. Soc.2005,127,9952-9953.
    [25]Nishiyama, N.; Iriyama, A.; Jang, W.-D.; Miyata, K.; Itaka, K.; Inoue, Y.; Takahashi, H.; Yanagi, Y.; Tamaki, Y.; Koyama, H.; Kataoka, K., Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater.2005,4,934-941.
    [26]Ghosh, S.; Irvin, K.; Thayumanavan, S., Tunable Disassembly of Micelles Using a Redox Trigger. Langmuir 2007,23,7916-7919.
    [27]Napoli, A.; Boerakker, M. J.; Tirelli, N.; Nolte, R. J. M.; Sommerdijk, N. A. J. M.; Hubbell, J. A., Glucose-oxidase Based Self-Destructing Polymeric Vesicles. Langmuir 2004,20, 3487-3491.
    [28]Napoli, A.; Valentini, M.; Tirelli, N.; Muller, M.; Hubbell, J. A., Oxidation-responsive polymeric vesicles. Nat. Mater.2004,3,183-189.
    [29]Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K., PEG-Detachable Polyplex Micelles Based on Disulfide-Linked Block Catiomers as Bioresponsive Nonviral Gene Vectors. J. Am. Chem. Soc.2008,130, 6001-6009.
    [30]Cerritelli, S.; Velluto, D.; Hubbell, J. A., PEG-SS-PPS:□ Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules 2007,8, 1966-1972.
    [31]Li, Y.; Lokitz, B. S.; Armes, S. P.; McCormick, C. L., Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agents(?). Macromolecules 2006, 39,2726-2728.
    [32]Li, C.; Madsen, J.; Armes, S. P.; Lewis, A. L., A New Class of Biochemically Degradable, Stimulus-Responsive Triblock Copolymer Gelators. Angew. Chem. Int. Ed.2006,45, 3510-3513.
    [33]Oupicky, D.; Parker, A. L.; Seymour, L. W., Laterally Stabilized Complexes of DNA with Linear Reducible Polycations:□ Strategy for Triggered Intracellular Activation of DNA Delivery Vectors. J. Am. Chem. Soc.2001,124,8-9.
    [34]Manickam, D. S.; Oupicky, D., Multiblock Reducible Copolypeptides Containing Histidine-Rich and Nuclear Localization Sequences for Gene Delivery. Bioconjugate Chem. 2006,17,1395-1403.
    [35]Gil, E. S.; Hudson, S. M., Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci.2004,29,1173-1222.
    [36]Galaev, I. Y.; Mattiasson, B.,'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol.1999,17,335-340.
    [37]Jeong, B.; Gutowska, A., Lessons from nature:stimuli-responsive polymers and their biomedical applications. Trends Biotechnol.2002,20,305-311.
    [38]Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D., Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliver. Rev.2002,54,613-630.
    [39]He, C; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release 2008,127,189-207.
    [40]Lu, Y.; Ballauff, M., Thermosensitive core-shell microgels:From colloidal model systems to nanoreactors. Prog. Polym. Sci.2011,36,767-792.
    [41]Aseyev, V. O.; Tenhu, H.; Winnik, F. M., Temperature dependence of the colloidal stability of neutral amphiphilic polymers in water. In Conformation-Dependent Design of Sequences in Copolymers Ii, Khokhlov, A. R., Ed. Springer-Verlag Berlin:Berlin,2006; Vol.196, pp 1-85.
    [42]Heskins, M.; Guillet, J. E., Solution Properties of Poly(N-isopropylacrylamide). Journal of Macromolecular Science:Part A-Chemistry 1968,2,1441-1455.
    [43]Ono, Y.; Shikata, T., Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution:A sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc.2006,128,10030-10031.
    [44]Okada, Y.; Tanaka, F., Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 2005,38,4465-4471.
    [45]H.G, S., Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci. 1992,17,163-249.
    [46]Berndt, I.; Popescu, C.; Wortmann, F.-J.; Richtering, W., Mechanics versus Thermodynamics: Swelling in Multiple-Temperature-Sensitive Core-Shell Microgels. Angew. Chem. Int. Ed. 2006,45,1081-1085.
    [47]Tsitsilianis, C, Responsive reversible hydrogels from associative "smart" macromolecules. Soft Matter 2010,6,2372-2388.
    [48]Ding, H.; Wu, F.; Huang, Y.; Zhang, Z.-r.; Nie, Y., Synthesis and characterization of temperature-responsive copolymer of PELGA modified poly(N-isopropylacrylamide). Polymer 2006,47,1575-1583.
    [49]Bromberg, L. E.; Ron, E. S., Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Delivery Rev.1998,31,197-221.
    [50]Burke, A.; Hasirci, N., Polyurethanes in biomedical applications. In Biomaterials:From Molecules to Engineered Tissues, Hasirci, N.; Hasirci, V., Eds. Kluwer Academic/Plenum Publ:New York,2004; Vol.553, pp 83-101.
    [51]Chen, K.-Y.; Kuo, J.-F.; Chen, C.-Y., Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials 2000,21,161-171.
    [52]Huynh, C. T.; Nguyen, M. K.; Lee, D. S., Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia 2011,7,3123-3130.
    [53]Loh, X. J.; Goh, S. H.; Li, J., New Biodegradable Thermogelling Copolymers Having Very Low Gelation Concentrations. Biomacromolecules 2006,8,585-593.
    [54]Loh, X. J.; Colin Sng, K. B.; Li, J., Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(e-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 2008,29,3185-3194.
    [55]Loh, X. J.; Tan, Y. X.; Li, Z.; Teo, L. S.; Goh, S. H.; Li, J., Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)-Thermodynamics of micellization and hydrolytic degradation. Biomaterials 2008,29,2164-2172.
    [56]Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 2011,7,3546-3552.
    [57]Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm.2011,412, 52-58.
    [58]Fang, Y.-E.; Zhao, X., Preparation and permeability of a block copolymer dialysis membrane by poly(γ-methyl-L-glutamate) and poly(ethylene glycol). J. Appl. Polym. Sci.1998,68, 75-82.
    [59]Zhao, Q.; Cheng, G.; Li, H.; Ma, X.; Zhang, L., Synthesis and characterization of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polymer 2005,46,10561-10567.
    [60]Mao, H.; Li, C.; Zhang, Y.; Furyk, S.; Cremer, P. S.; Bergbreiter, D. E., High-Throughput Studies of the Effects of Polymer Structure and Solution Components on the Phase Separation of Thermoresponsive Polymers. Macromolecules 2004,37,1031-1036.
    [61]Liu, X.-M.; Wang, L.-S.; Wang, L.; Huang, J.; He, C., The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials 2004,25,5659-5666.
    [1]Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci.2007,32,962-990.
    [2]Fleige, E.; Quadir, M. A.;Haag, R., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds:Concepts and applications. Adv. Drug Deliv. Rev. 2012,64,866-884.
    [3]Randolph, L. M.; Chien, M. P.; Gianneschi, N. C., Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. Chem. Sci.2012,3,1363-1380.
    [4]Zhao, Y., Light-Responsive Block Copolymer Micelles. Macromolecules 2012,45, 3647-3657.
    [5]Yoshimatsu, K.; Lesel, B. K.; Yonamine, Y.; Beierle, J. M.; Hoshino, Y.; Shea, K. J., Temperature-Responsive "Catch and Release" of Proteins by using Multifunctional Polymer-Based Nanoparticles. Angew. Chem. Int. Ed.2012,51,2405-2408.
    [6]Otsuka, I.; Travelet, C.; Halila, S.; Fort, S.; Pignot-Paintrand, I.; Narumi, A.; Borsali, R., Thermoresponsive Self-Assemblies of Cyclic and Branched Oligosaccharide-block-poly(N-isopropylacrylamide) Diblock Copolymers into Nanoparticles. Biomacromolecules 2012,13,1458-1465.
    [7]Colson, Y. L.; Grinstaff, M. W., Biologically Responsive Polymeric Nanoparticles for Drug Delivery. Adv. Mater.2012,24,3878-3886.
    [8]Zhang, C. Y.; Yang, Y. Q.; Huang, T. X.; Zhao, B.; Guo, X. D.; Wang, J. F.; Zhang, L. J., Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 2012,33,6273-6283.
    [9]Felber, A. E.; Dufresne, M.-H.; Leroux, J.-C., pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev.2012,64,979-992.
    [10]Li, J.; Huo, M. R.; Wang, J.; Zhou, J. P.; Mohammad, J. M.; Zhang, Y. L.; Zhu, Q. N.; Waddad, A. Y.; Zhang, Q., Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012,33,2310-2320.
    [11]Cho, H.; Bae, J.; Garripelli, V. K.; Anderson, J. M.; Jun, H.-W.; Jo, S., Redox-sensitive polymeric nanoparticles for drug delivery. Chem. Commun.2012,48,6043-6045.
    [12]Dong, L.; Xia, S.; Wu, K.; Huang, Z.; Chen, H.; Chen, J.; Zhang, J., A pH/Enzyme-responsive tumor-specific delivery system for doxorubicin. Biomaterials 2010, 31,6309-6316.
    [13]Xiong, M.-H.; Bao, Y.; Yang, X.-Z.; Wang, Y.-C.; Sun, B.; Wang, J., Lipase-Sensitive Polymeric Triple-Layered Nanogel for "On-Demand" Drug Delivery. J. Am. Chem. Soc. 2012,134,4355-4362.
    [14]Stefanadis, C.; Chrysochoou, C.; Markou, D.; Petraki, K.; Panagiotakos, D. B.; Fasoulakis, C.; Kyriakidis, A.; Papadimitriou, C.; Toutouzas, P. K., Increased Temperature of Malignant Urinary Bladder Tumors In Vivo:The Application of a New Method Based on a Catheter Technique. J. Clin. Oncol.2001,19,676-681.
    [15]Cheng, Y.; Hao, J.; Lee, L. A.; Biewer, M. C.; Wang, Q.; Stefan, M. C., Thermally Controlled Release of Anticancer Drug from Self-Assembled y-Substituted Amphiphilic Poly(e-caprolactone) Micellar Nanoparticles. Biomacromolecules 2012,13,2163-2173.
    [16]Chang, C.; Wei, H.; Wu, D. Q.; Yang, B.; Chen, N.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X., Thermo-responsive shell cross-linked PMMA-b-P(NIPAAm-co-NAS) micelles for drug delivery. Int. J. Pharm.2011,420,333-340.
    [17]Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H., Tumor pH-responsive flower-like micelles of poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(l-histidine). J. Control. Release 2007,123,19-26.
    [18]Ulbrich, K.; Subr, V. r., Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev.2004,56,1023-1050.
    [19]Jin, Y.; Song, L.; Su, Y.; Zhu, L.; Pang, Y.; Qiu, F.; Tong, G.; Yan, D.; Zhu, B.; Zhu, X., Oxime Linkage:A Robust Tool for the Design of pH-Sensitive Polymeric Drug Carriers. Biomacromolecules 2011,12,3460-3468.
    [20]Bayo-Puxan, N.; Dufresne, M.-H.; Felber, A. E.; Castagner, B.; Leroux, J.-C., Preparation of polyion complex micelles from poly(ethylene glycol)-block-polyions. J. Control. Release 2011,156,118-127.
    [21]Felber, A. E.; Castagner, B.; Elsabahy, M.; Deleavey, G. F.; Damha, M. J.; Leroux, J.-C., siRNA nanocarriers based on methacrylic acid copolymers. J. Control. Release 2011,152, 159-167.
    [22]Ding, M.; Li, J.; Tan, H.; Fu, Q., Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 2012,8,5414-5428.
    [23]Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X., Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc.2009,132,442-443.
    [24]Rosenbauer, E.-M.; Wagner, M.; Musyanovych, A.; Landfester, K., Controlled Release from Polyurethane Nanocapsules via pH-, UV-Light-or Temperature-Induced Stimuli. Macromolecules 2010,43,5083-5093.
    [25]Zhou, L.; Liang, D.; He, X.; Li, J.; Tan, H.; Li, J.; Fu, Q.; Gu, Q., The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials 2012,33,2734-2745.
    [26]Loh, X. J.; Colin Sng, K. B.; Li, J., Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 2008,29,3185-3194.
    [27]Huynh, C. T.; Nguyen, Q. V.; Kang, S. W.; Lee, D. S., Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer 2012,53,4069-4075.
    [28]Huynh, C. T.; Nguyen, M. K.; Lee, D. S., Biodegradable pH/temperature-sensitive oligo((β-amino ester urethane) hydrogels for controlled release of doxorubicin. Acta Biomaterialia 2011,7,3123-3130.
    [29]Huynh, C. T.; Nguyen, M. K.; Kim, J. H.; Kang, S. W.; Kim, B. S.; Lee, D. S., Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene glycol)-poly([small beta]-amino ester urethane) multiblock copolymer hydrogels. Soft Matter 2011,7,4974-4982.
    [30]Confortini, O.; Du Prez, F. E., Functionalized Thermo-Responsive Poly(vinyl ether) by Living Cationic Random Copolymerization of Methyl Vinyl Ether and 2-Chloroethyl Vinyl Ether. Macromol. Chem. Phys.2007,208,1871-1882.
    [31]Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and polyethylene glycol). Soft Matter 2011,7,3546-3552.
    [32]Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm.2011,412, 52-58.
    [33]Astafieva, I.; Zhong, X. F.; Eisenberg, A., Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 1993,26,7339-7352.
    [34]Cao, W.; Li, Y.; Yi, Y.; Ji, S.; Zeng, L.; Sun, Z.; Xu, H., Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chemical Science 2012,3, 3403-3408.
    [1]Lee, J. S.; Jan, F. J., Polymersomes for drug delivery:Design, formation and characterization. J. Control. Release 2012,161,473-483.
    [2]Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X., Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci.2012,37, 237-280.
    [3]Esser-Kahn, A. P.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S., Triggered Release from Polymer Capsules. Macromolecules 2011,44,5539-5553.
    [4]Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C., Targeted polymeric therapeutic nanoparticles:design, development and clinical translation. Chem. Soc. Rev.2012,41,2971-3010.
    [5]Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy:Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res.1986,46,6387-6392.
    [6]Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J. Control. Release 2000,65,271-284.
    [7]Machida, Y.; Onishi, H.; Kurita, A.; Hata, H.; Morikawa, A.; Machida, Y., Pharmacokinetics of prolonged-release CPT-11-loaded microspheres in rats. J. Control. Release 2000,66, 159-175.
    [8]Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv. Drug Delivery Rev.2001,47,113-131.
    [9]Vladimir P, T., Structure and design of polymeric surfactant-based drug delivery systems. J. Control. Release 2001,73,137-172.
    [10]Liu, F.; Eisenberg, A., Preparation and pH Triggered Inversion of Vesicles from Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine). J. Am. Chem. Soc.2003,125, 15059-15064.
    [11]Rosler, A.; Vandermeulen, G. W. M.; IClok, H.-A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Delivery Rev.2001,53,95-108.
    [12]Musumeci, T.; Ventura, C. A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G., PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm.2006, 325,172-179.
    [13]Zhang, L.; Guo, R.; Yang, M.; Jiang, X.; Liu, B., Thermo and pH Dual-Responsive Nanoparticles for Anti-Cancer Drug Delivery. Adv. Mater.2007,19,2988-2992.
    [14]Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; Ishii, T.; Kataoka, K., A Protein Nanocarrier from Charge-Conversion Polymer in Response to Endosomal pH. J. Am. Chem. Soc.2007,129, 5362-5363.
    [15]Lee, E. S.; Gao, Z.; Bae, Y. H., Recent progress in tumor pH targeting nanotechnology. J. Control. Release 2008,132,164-170.
    [16]Gillies, E. R.; Frechet, J. M. J., pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin. Bioconjugate Chem.2005,16,361-368.
    [17]Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K., PEG-Detachable Polyplex Micelles Based on Disulfide-Linked Block Catiomers as Bioresponsive Nonviral Gene Vectors. J. Am. Chem. Soc.2008,130, 6001-6009.
    [18]Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem. Commun.2008,6570-6572.
    [19]Kim, S. H.; Jeong, J. H.; Lee, S. H.; Kim, S. W.; Park, T. G., Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 2008,129,107-116.
    [20]Cerritelli, S.; Velluto, D.; Hubbell, J. A., PEG-SS-PPS:□ Reduction-Sensitive Disulfide Block Copolymer Vesicles for Intracellular Drug Delivery. Biomacromolecules 2007,8, 1966-1972.
    [21]He, C.; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release 2008,727,189-207.
    [22]Crespy, D.; Rossi, R. N., Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int.2007,56,1461-1468.
    [23]Ono, Y.; Shikata, T., Hydration and Dynamic Behavior of Poly(N-isopropylacrylamide)s in Aqueous Solution:□ A Sharp Phase Transition at the Lower Critical Solution Temperature. J. Am. Chem. Soc.2006,128,10030-10031.
    [24]Okada, Y.; Tanaka, F., Cooperative Hydration, Chain Collapse, and Flat LCST Behavior in Aqueous Poly(N-isopropylacrylamide) Solutions. Macromolecules 2005,38,4465-4471.
    [25]Berndt, I.; Popescu, C.; Wortmann, F.-J.; Richtering, W., Mechanics versus Thermodynamics: Swelling in Multiple-Temperature-Sensitive Core-Shell Microgels. Angew. Chem., Int. Ed. 2006,45,1081-1085.
    [26]Bromberg, L. E.; Ron, E. S., Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv. Drug Delivery Rev.1998,31,197-221.
    [27]Badi, N.; Lutz, J.-F., PEG-based thermogels:Applicability in physiological media. J. Control. Release 2009,140,224-229.
    [28]Lian, X.; Wu, D.; Song, X.; Zhao, H., Synthesis and Self-Assembly of Amphiphilic Asymmetric Macromolecular Brushes. Macromolecules 2010,43,7434-7445.
    [29]Wang, F.; Klaikherd, A.; Thayumanavan, S., Temperature Sensitivity Trends and Multi-Stimuli Sensitive Behavior in Amphiphilic Oligomers. J. Am. Chem. Soc.2011,133, 13496-13503.
    [30]Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 2011,7,3546-3552.
    [31]Ding, M.; Li, J.; Tan, H.; Fu, Q., Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 2012,8,5414-5428.
    [32]Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm.2011,412, 52-58.
    [33]Lu, H.; Sun, P.; Zheng, Z.; Yao, X.; Wang, X.; Chang, F.-C., Reduction-sensitive rapid degradable poly(urethane-urea)s based on cystine. Polym. Degrad. Stabil.2012,97,661-669.
    [34]Li, J.; Huo, M. R.; Wang, J.; Zhou, J. P.; Mohammad, J. M.; Zhang, Y. L.; Zhu, Q. N.; Waddad, A. Y.; Zhang, Q., Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012,33,2310-2320.
    [35]Thambi, T.; Yoon, H. Y.; Kim, K.; Kwon, I. C.; Yoo, C. K.; Park, J. H., Bioreducible Block Copolymers Based on Poly(Ethylene Glycol) and Poly(y-Benzyl 1-Glutamate) for Intracellular Delivery of Camptothecin. Bioconjugate Chem.2011,22,1924-1931.
    [36]Meng, F.; Hennink, W. E.; Zhong, Z., Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009,30,2180-2198.
    [37]Braunova, A.; Pechar, M.; Laga, R.; Ulbrich, K., Hydrolytically and Reductively Degradable High-Molecular-Weight Poly(ethylene glycol)s. Macromol. Chem. Phys.2007,208, 2642-2653.
    [38]Hwang, M. J.; Joo, M. K.; Choi, B. G.; Park, M. H.; Hamley, I. W.; Jeong, B., Multiple Sol-Gel Transitions of PEG-PCL-PEG Triblock Copolymer Aqueous Solution. Macromol. Rapid. Comm.2010,31,2064-2069.
    [39]Ren, Y.; Jiang, X.; Yin, G.; Yin, J., Multistimuli responsive amphiphilic graft poly(ether amine):Synthesis, characterization, and self-assembly in aqueous solution. J. Polym. Sci., Part A:Polym. Chem.2010,48,327-335.
    [40]Xia, Y.; Yin, X.; Burke, N. A. D.; Stover, H. D. H., Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Macromolecules 2005,38,5937-5943.
    [41]Rzaev, Z. M. O.; Dincer, S.; Piskin, E., Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog. Polym. Sci.2007,32,534-595.
    [42]Schild, H. G., Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.1992,17,163-249.
    [43]Aoshima, S.; Kanaoka, S.; Springer-Verlag, B., Synthesis of stimuli-responsive polymers by living polymerization:Poly(N-isopropylacrylamide) and poly(vinyl ether)s. In Wax Crystal Control:Nanocomposites, Stimuli-Responsive Polymers,2008; Vol.210, pp 169-208.
    [44]Han, S.; Hagiwara, M.; Ishizone, T., Synthesis of Thermally Sensitive Water-Soluble Polymethacrylates by Living Anionic Polymerizations of Oligo(ethylene glycol) Methyl Ether Methacrylates. Macromolecules 2003,36,8312-8319.
    [45]Oishi, M.; Hayashi, H.; Iijima, M.; Nagasaki, Y., Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels.J. Mater. Chem.2007, 17,3720-3725.
    [46]Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery:Polymeric Micelles that are Responsive to Intracellular pH Change. Angew. Chem. Int. Ed.2003,42,4640-4643.
    [1]Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S., Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery. J. Am. Chem. Soc.2012,134,8848-8855.
    [2]Farokhzad,0. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. Acs Nano 2009,3, 16-20.
    [3]Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P. A., Controlled drug delivery in tissue engineering. Adv. Drug Deliver. Rev.2008,60,229-242.
    [4]Ghosh, S., Recent research and development in synthetic polymer-based drug delivery systems. J. Chem. Res.2004,2004,241-246.
    [5]Freiberg, S.; Zhu, X. X., Polymer microspheres for controlled drug release. Int. J. Pharm. 2004,252,1-18.
    [6]You, S.; Li, W., Administration of nanodrugs in proper menstrual stage for maximal drug retention in breast cancer. Med. Hypotheses 2008,71,141-147.
    [7]Santini, J. J. T.; Richards, A. C.; Scheidt, R.; Cima, M. J.; Langer, R., Microchips as Controlled Drug-Delivery Devices. Angew. Chem. Int. Ed.2000,39,2396-2407.
    [8]Grayson, A. C. R.; Choi, I. S.; Tyler, B. M.; Wang, P. P.; Brem, H.; Cima, M. J.; Langer, R., Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater.2003, 2,767-772.
    [9]Jain, R. K.., Normalizing tumor vasculature with anti-angiogenic therapy:A new paradigm for combination therapy. Nat. Med.2001,7,987-989.
    [10]Chen, Y.; Wang, R.; Zhou, J.; Fan, H.; Shi, B., On-demand drug delivery from temperature-responsive polyurethane membrane. React. Funct. Polym.2011,71,525-535.
    [11]Hoare, T.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lin, D.; Lau, S.; Padera, R.; Langer, R.; Kohane, D. S., A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery. Nano Letters 2009,9,3651-3657.
    [12]Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J., Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliver. Rev.2012,64,190-199.
    [13]Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater.2009,8,935-939.
    [14]Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T., PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser. Bioconjugate Chem. 2009,20,209-212.
    [15]Pernia Leal, M.; Torti, A.; Riedinger, A.; La Fleur, R.; Petti, D.; Cingolani, R.; Bertacco, R.; Pellegrino, T., Controlled Release of Doxorubicin Loaded Within Magnetic Thermo-Responsive Nanocarriers Under Magnetic and Thermal Actuation in a Microfluidic Channel. AcsNano 2012,6,10535-10545.
    [16]Satarkar, N.; Hilt, J., Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control. Release 2008,130,246-251.
    [17]Rovers, S. A.; Hoogenboom, R.; Kemmere, M. F.; Keurentjes, J. T. F., Repetitive on-demand drug release by magnetic heating of iron oxide containing polymeric implants. Soft Matter 2012,8,1623-1627.
    [18]Chan, A.; Orme, R. P.; Flicker, R. A.; Roach, P., Remote and local control of stimuli responsive materials for therapeutic applications. Adv. Drug Deliver. Rev.2012,65,497-514.
    [19]Cheng, Y.; Hao, J.; Lee, L. A.; Biewer, M. C.; Wang, Q.; Stefan, M. C., Thermally Controlled Release of Anticancer Drug from Self-Assembled.y-Substituted Amphiphilic Poly(s-caprolactone) Micellar Nanoparticles. Biomacromolecules 2012,13,2163-2173.
    [20]Brazel, C. S., Magnetothermally-responsive Nanomaterials:Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release. Pharmaceut. Res.2008,26,644-656.
    [21]Yan, X.; Wang, F.; Zheng, B.; Huang, F.; Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev.2012,41,6042-6065.
    [22]Jia, Y.-g.; Zhu, X. X.; Liu, L.-y.; Li, J., Multi-Responsive Properties of a Poly(Ethylene Glycol)-Grafted Alternating Copolymers of Distyrenic Monomer with Maleic Anhydride. Langmuir 2012,28,4500-4506.
    [23]Wang, K.; Guo, D.-S.; Wang, X.; Liu, Y., Multistimuli Responsive Supramolecular Vesicles Based on the Recognition of p-Sulfonatocalixarene and its Controllable Release of Doxorubicin. Acs Nano 2011, J,2880-2894.
    [24]Loh, X. J.; Tsai, M.-H.; Barrio, J. d.; Appel, E. A.; Lee, T.-C.; Scherman, O. A., Triggered insulin release studies of triply responsive supramolecular micelles. Polym. Chem.2012,3, 3180-3188.
    [25]Dong, J.; Wang, Y.; Zhang, J.; Zhan, X.; Zhu, S.; Yang, H.; Wang, G., Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 2013,9,370-373.
    [26]Qiao, Z. Y.; Zhang, R.; Du, F. S.; Liang, D. H.; Li, Z. C., Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J. Control. Release 2011,152,57-66.
    [27]Klaikherd, A.; Nagamani, C.; Thayumanavan, S., Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J. Am. Chem. Soc.2009,131,4830-4838.
    [28]Fu, H.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 2011,7,3546-3552.
    [29]Sun, X.; Gao, H.; Wu, G.; Wang, Y.; Fan, Y.; Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int. J. Pharm.2011,412, 52-58.
    [30]Cao, W.; Li, Y.; Yi, Y.; Ji, S.; Zeng, L.; Sun, Z.; Xu, H., Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chemical Science 2012,3, 3403-3408.
    [31]Choi, Y. Y.; Jang, J. H.; Park, M. H.; Choi, B. G.; Chi, B.; Jeong, B., Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J. Mater. Chem.2010,20,3416-3421.
    [32]Wang, F.; Klaikherd, A.; Thayumanavan, S., Temperature Sensitivity Trends and Multi-Stimuli Sensitive Behavior in Amphiphilic Oligomers. J. Am. Chem. Soc.2011,133, 13496-13503.
    [33]Zhang, C. Y.; Yang, Y. Q.; Huang, T. X.; Zhao, B.; Guo, X. D.; Wang, J. F.; Zhang, L. J., Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 2012,33,6273-6283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700