树状大分子辅助的金属纳米颗粒的合成、功能化及其生物医学应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展,越来越多的纳米颗粒显现潜在的生物医学应用前景。良好的稳定性和生物相容性是纳米颗粒是否可用于生物医学领域的重要指标。本课题旨在开发性能良好的纳米颗粒作为CT(computed tomography,计算机断层扫描)造影剂,探索其在癌症检测中的应用。以聚酰胺-胺树状大分子为载体,本文构建了多种树状大分子/金、银及其合金的有机/无机杂化纳米颗粒。利用树状大分子独特的三维结构和其表面的易修饰性,可以制备多功能化的纳米颗粒,以满足特定的应用需求。
     在前期树状大分子/金、银纳米颗粒工作的基础上,本文探索了树状大分子/金-银合金纳米颗粒性质的可控性及其作为CT造影剂的可行性。在发现特定金/银摩尔比下可以得到纳米线结构后,本文进一步优化了纳米线的制备参数,并尝试制备功能化的纳米线结构。鉴于金纳米颗粒的优势,本文制备了多功能化的树状大分子/金纳米颗粒,用于体外和体内癌细胞靶向CT造影。为了降低造价,本文后期偏向于开发基于低代数树状大分子/金纳米颗粒的CT造影剂。本文的方法与结论如下所述:
     1)以氨基末端第五代聚酰胺-胺树状大分子(G5.NH2)为模板或稳定剂,以硼氢化钠为还原剂,制备不同树状大分子/金/银摩尔比的金-银合金纳米颗粒。随后,对金-银合金纳米颗粒进行乙酰化处理,中和其表面电荷。产物合金纳米颗粒呈球形,具有可控的光学性质和尺寸。在恒定树状大分子/金属摩尔配比条件下,合金纳米颗粒的尺寸随着金含量的提高而降低。在同样金属组分条件下,乙酰化后合金纳米颗粒的尺寸略有增大。所得合金纳米颗粒显示良好的稳定性,并在乙酰化后表现出良好的细胞相容性。合金纳米颗粒的X-射线衰减系数依赖于其金属组分和表面修饰。随着组分中金含量的提高或是乙酰化的进行,合金纳米颗粒的X-射线衰减系数呈升高趋势。
     2)以G5.NH2为稳定剂和还原剂,制备不同树状大分子/金/银摩尔比的金-银合金纳米颗粒。随着调控金/银投料比,纳米颗粒的形貌从球形进化为不规则多面体,进而为卷曲的线状。合金纳米颗粒的X-射线衰减系数依赖于其金属组分和表面修饰。随着组分中金含量的提高或是乙酰化的进行,其相应的X-射线衰减系数呈升高趋势。随后,系统研究各个实验参数,最终探索出制备形貌均一金纳米线(平均直径1.3nm,长度达微米级)的最优路线为:以第五代聚酰胺-胺树状大分子为稳定剂、树状大分子/金/银摩尔投料比1/15/5、反应温度40℃、反应时间48小时、反应体系为水相。这些参数会影响纳米线的横向生长和Ag+的还原速度。通过密度泛函理论计算和进一步的实验数据,本章提出了金纳米线的生长机理:Ag+的协同选择性吸附、还原和Au0的定向迁移。本章发展的制备方法对在水相中制备其它纳米线提供了一定的借鉴意义,并为功能化纳米线的制备奠定了坚实基础。
     3)基于前一章的工作,本章期望制备具有靶向功能的纳米线结构。以G5.NH2为稳定剂,首先修饰靶向配体叶酸(folic acid,FA)或异硫氰酸酯荧光素(fluorescein isothiocyanate,FI),然后加入金盐、银盐,于恒温水浴中进行反应,最后进行乙酰化处理。令人惊奇的是,TEM结果显示制备得到的产物呈球形。所得合金纳米颗粒显示良好的稳定性,并在乙酰化后表现出良好的细胞相容性。研究发现,树状大分子的表面修饰会影响其在水相中的团聚状态,进而对合金纳米颗粒的形貌产生重要的影响。所得合金纳米颗粒表现出良好的体外癌细胞靶向吞噬能力和X-射线衰减性能,并且可作为探针,用于癌细胞的靶向CT造影。
     4)为了制备具有肿瘤靶向CT造影功能的纳米探针,以G5.NH2为模板,通过表面修饰FI和乳糖酸(lactobionic acid,LA)-聚乙二醇(polyethylene glycol,PEG),然后包裹金纳米颗粒,最后乙酰化制备得到多功能化的靶向CT造影剂(LA-Au DENPs)。制备得到的LA-Au DENPs具有优良的稳定性、细胞相容性、体外肝癌细胞靶向性能。X-射线衰减测试表明,LA-Au DENPs具有明显高于临床用CT造影剂碘海醇的CT值。更为重要的是,LA-Au DENPs做为探针,可以有效地在体外和体内对肝癌细胞进行靶向CT造影。
     5)鉴于高代数树状大分子造价较高,开发基于低代数树状大分子的CT造影剂具有更好的应用前景。以氨基末端第二代聚酰胺-胺树状大分子(G2.NH2)为稳定剂,通过水热法制备金纳米颗粒,随后可通过FA和乙酰化对纳米颗粒表面进行功能化。通过优化树状大分子/金的摩尔投料比、反应时间及温度、修饰方法等实验参数,可制备得到具有良好稳定性和细胞相容性的金纳米颗粒。未FA修饰的纳米颗粒表现出与临床用CT造影剂碘海醇相近的体外X-射线衰减系数。FA修饰后,其表现出优于碘海醇的X-射线衰减系数。体内实验表明,所得金纳米颗粒具有良好的器官造影性能,远优于碘海醇。更重要的是,所得叶酸修饰的纳米颗粒表现出良好的体外和体内癌细胞靶向CT造影性能。
     6)最后,以G2.NH2为载体,表面进行PEG化,然后通过硼氢化钠还原法制备金纳米颗粒。通过实验手段优化树状大分子/金摩尔比和反应时间等制备参数。制备得到的聚乙二醇化金纳米颗粒在表现出良好的稳定性。由于PEG的修饰,产物金纳米颗粒不需要进行乙酰化处理便可表现出良好的细胞相容性,在浓度3000nM的范围内不表现出明显的细胞毒性。聚乙二醇化金纳米颗粒具有明显高于临床用CT造影剂碘海醇的X-射线衰减系数。重要的是,所得产物纳米颗粒可对小鼠心脏、膀胱和肿瘤模型进行CT造影。
With the development of nanotechnology, more and more nanoparticles (NPs) show their great potential in biomedical applications, in which desirable stability and biocompatibility are essential. The aim of this research is to develop dendrimer/metal NPs-based computed tomography (CT) contrast agents with desirable properities for CT imaging of cancer. We employed poly(amidoamine)(PAMAM) dendrimers as the platform to develop several kinds of gold, silver, and their alloy NPs-based CT contrast agents. Taking advantage of the modifiable dendrimer surface, multifunctional hybrid NPs can be formed, meeting certain requirements of applications.
     Based on the previous work of dendrimer/gold and dendrimer/silver NPs, here firstly dendrimer/gold-silver alloy NPs were controllably synthesized and their abilities as contrast agents for CT imaging were investigated. After finding nanowires (NWs) formed in certain gold/silver molar ratios, the experimental parameters were optimized and their feasibility of functionalization was investigated. Considering the advantage of gold, multifunctional dendrimer/gold NPs were synthesized for in vitro and in vivo CT imaging of cancer cells. In order to reduce the cost, low generation dendrimers were employed to form gold NPs for CT imaging applications. The methods and results are as follows:
     1) Using amine-terminated generation5PAMAM dendrimer (G5.NH2) as templates or stabilizers and NaBH4as reducing agent, Au-Ag alloy NPs with different components can be formed by simply regulating the molar ratio of dendrimer/gold atom/silver atom. Followed by an acetylation reaction to transform the dendrimer terminal amines to acetyl groups, the surface charge of the particles was changed toward neutral. UV-vis spectra indicate that the formed NPs are alloy with tunable optical properties. TEM studies reveal that the size of the alloy NPs is variable depending on both dendrimer/Au atom/Ag atom molar ratio and the acetylation modification. Under constant total dendrimer/metal atom molar ratio, the size of the alloy NPs decreases with gold composition. For particles with similar metal composition, the size of the particles becomes a little larger after acetylation. The formed Au-Ag alloy NPs are stable and cytocompatible. X-ray absorption coefficient measurements show that the attenuation of the alloy NPs is dependent on both gold content and the particle surface characteristics. With the Au content increasing and after acetylation, the corresponding CT value of the particles increases.
     2) Using G5.NH2as stabilizers and reducing agents, Au-Ag alloy NPs with different components can be formed at room temperature. By regulating the Au/Ag feed molar ratio, the formed NPs experience a shape evolution from spherical particles and polyhedrons to curved NWs. The alloy NPs display desirable stability. X-ray absorption coefficient measurements show that the attenuation of the binary NPs is dependent on both gold content and the particle surface characteristics. With the Au content increasing and after acetylation, the corresponding CT value of the particles increases. After that, a wide range of synthetic parameters such as reaction time, temperature, solvent, and additive were systematically investigated to explore their effects on the morphology of the Au NWs. The optimized synthesis protocol is as follows:G5.NH2as stabilizers, dendrimer/Au/Ag molar ratio at1/15/5, reaction performed at40℃for48h in aqueous solution. Our data show that the selection of these parameters is essential to obtain relatively uniform Au NWs, which are associated with the transverse growth control of Au NWs and the proper reduction rate of Ag(I). A new growth mechanism involving a synergic facet-dependent deposition/reduction of Ag(I) and anisotropic migration of Au atoms is proposed, which is based on density functional theory calculations. This may provide guidance for synthesis of other kinds of NWs in aqueous solution and also make the formation of other functionalized NWs possible.
     3) Based on the previous chapter, following a similar synthetic procedure, we were aiming to prepare NWs with functionalized surface. Using G5.NH2as stabilizers, which were pre-modified with folic acid (FA) or fluorescein isothiocyanate (FI), Au-Ag alloy NPs can be formed in the water bath following an acetylation reaction. To our surprise, spherical Au-Ag alloy NPs were formed. They display good water solubility and colloidal stability, and excellent cytocompatibility in a given concentration range. It can be concluded that modification of dendrimer surface may influence their cluster state in aqueous solution, which may further affect the shape of the alloy NPs. With the much better X-ray attenuation property than that of conventional iodine-based CT contrast agent Omnipaque and the ability to be specifically uptaken by cancer cells overexpressing high affinity FA receptor, the developed FA-targeted Au-Ag alloy NPs are able to be used as a nanoprobe for targeted CT imaging of cancer cells in vitro.
     4) To generate tumor-targeting CT imaging nanoprobes, G5.NH2were firstly modified with FI and polyethylene glycol (PEG)-linked lactobionic acid (LA), which can be employed as templates to form dendrimer entrapped Au NPs (LA-Au DENPs). The formed LA-Au DENPs display good stability, desirable cytocompatibility in the given concentration range, and specifically targeting ability towards human hepatocellular carcinoma cells in vitro. X-ray attenuation measurements show that the LA-Au DENPs display much stronger attenuation intensity than Omnipaque at the same concentration of radiodense element (Au or iodine). Importantly, the LA-modified Au DENPs are able to be used as an efficient nanoprobe for targeted CT imaging of human hepatocellular carcinoma in vitro and xenografted tumor model in vivo via LA-mediated active targeting.
     5) In consideration of the high cost of high generation dendrimer, development of low generation dendrimer based CT contrast agents may be more potential for practical applications. In this chapter, amine-terminated generation2PAMAM dendrimers (G2.NH2) were employed as stabilizers to form dendrimer-stabilized Au NPs (Au DSNPs) via a simple hydrothermal approach without addition of reducing agents, followed by surface modification of FA and acetyl groups. Au DSNPs with desirable stability and cytocompatibility can be prepared via optimizing the synthesis parameters. X-ray attenuation coefficient measurements show that nontargeted acetylated Au DSNPs display approximately similar X-ray attenuation property to that of Omnipaque. In contrast, FA-targeted Au DSNPs displayed better X-ray attenuation intensity than Omnipaque. The acetylated Au DSNPs show much better performance in CT imaging of the major organs of rats in vivo than Omnipaque. Importantly, the FA-modified Au DSNPs enable targeted CT imaging of cancer cells in vitro and xenograft tumor model in vivo via FA receptor-mediated active targeting pathway.
     6) Lastly, we show that G2.NH2firstly modified with PEG chains can be employed as templates to form Au NPs via a chemical reduction protocol. The formed PEGylated Au DENPs are quite stable and show desirable cytocompatibility in the given concentration range. In addition, the PEGylated Au DENPs display much stronger X-ray attenuation intensity than Omnipaque at the same concentration of radiodense element (Au or iodine). The formed particles can be used for CT imaging of heart and bladder of mice and xenografted tumor model in vivo.
引文
1. Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H., Nanomedicine-challenge and perspectives. Angew. Chem.-Int. Edit.2009,48, (5), 872-897.
    2. Langer, R., Drug delivery and targeting. Nature 1998,392, (6679),5-10.
    3. Langer, R.; Tirrell, D. A., Designing materials for biology and medicine. Nature 2004,428, (6982),487-492.
    4. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine. J. Phys. D-Appl. Phys.2003,36, (13), R167-R181.
    5. Panyam, J.; Labhasetwar, V, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.2003,55, (3),329-347.
    6. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.2001,53, (3),321-339.
    7. Ahn, S.; Jung, S. Y.; Lee, J. P.; Kim, H. K.; Lee, S. J., Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids. ACS nano 2010.
    8. Trono, J. D.; Mizuno, K.; Yusa, N.; MATSUKAWA, T.; YOKOYAMA, K.; UESAKA, M., Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-ray drug delivery system. J. Radiat. Res.2010, (0),1012210180.
    9. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2009, 114,(1),50-56.
    10. Kennedy, L. C; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A., A new era for cancer treatment:Gold nanoparticle mediated thermal therapies. Small 2011.
    11. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chem. Rev.2005,105, (4),1025-1102.
    12. Daniel, M. C.; Astruc, D., Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104, (1),293-346.
    13. Mallin, M. P.; Murphy, C. J., Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett.2002,2, (11),1235-1237.
    14. Li, D.; Cui, Y.; Wang, K.; He, Q.; Yan, X.; Li, J., Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv. Funct. Mater.2007, 17, (16),3134-3140.
    15. Zhao, T.; Sun, R.; Yu, S.; Zhang, Z.; Zhou, L.; Huang, H.; Du, R., Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloid Surf. A-Physicochem. Eng. Asp.2010,366, (1-3),197-202.
    16. Hoffman, L. W.;Andersson, G. G.; Sharma, A.; Clarke, S. R.; Voelcker, N. H., New insights into the structure of PAMAM dendrimer/gold nanoparticle nanocomposites. Langmuir 2011.
    17. Park, M. H.; Ofir, Y.; Samanta, B.; Rotello, V. M., Robust and responsive dendrimer-gold nanoparticle nanocomposites via dithiocarbamate crosslinking. Adv. Mater.2009,21, (22),2323-2323.
    18. Shi, X.; Sun, K.; Baker, J. R., Jr., Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J. Phys. Chem. C 2008,112, (22),8251-8258.
    19. Esumi, K., Dendrimers for nanoparticle synthesis and dispersion stabilization. Colloid Chemistry Ⅱ 2003,31-52.
    20. Jakhmola, A.; Anton, N.; Vandamme, T., Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthcare Mater.2012,1, (4),413-431.
    21. Shen, M.; Shi, X., Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2010,2, (6),1027-1032.
    22. Tao, H.; Wei, L.; Liang, A.; Li, J.; Jiang, Z.; Jiang, H., Highly sensitive resonance scattering detection of DNA hybridization using aptamer-modified gold nanopaticle as catalyst. Plasmonics 2010,5, (2),189-198.
    23. Jia, L.; He, T.; Li, Z.; Li, X. M., Monolayer-protected gold nanoparticle surface-bound catalysts:Preparation and application. Chin. J. Catal.2010,31, (11-12), 1307-1315.
    24. Lee, T. H.; Gonzalez, J. I.; Zheng, J.; Dickson, R. M., Single-molecule optoelectronics. Accounts Chem. Res.2005,38, (7),534-541.
    25. Graham, D.; Faulds, K.; Smith, W. E., Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chem. Commun.2006, (42),4363-4371.
    26. Shi, X.; Wang, S. H.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X. D.; Lee, I. H.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3,1245-1252.
    27. Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X. Y; Baker, J. R.; Balogh, L. R, Silver/dendrimer nanocomposites as biomarkers:Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett.2005,5, (11), 2123-2130.
    28. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis. Accounts Chem. Res.2001,34, (3),181-190.
    29. Esumi, K.; Isono, R.; Yoshimura, T., Preparation of PAMAM-and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 2004,20, (1),237-243.
    30. Peng, X. H.; Pan, Q. M.; Rempel, G. L., Bimetallic dendrimer-encapsulated nanoparticles as catalysts:a review of the research advances. Chem. Soc. Rev.2008,37, (8),1619-1628.
    31.刘辉.乙酰化介导合成树状大分子稳定化的纳米银颗粒及其性能表征.硕士毕业论文,东华大学,上海,2010.
    32. Bae, C. H.; Nam, S. H.; Park, S. M., Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci.2002,197,628-634.
    33. Baba, K.; Kaneko, T.; Hatakeyama, R., Efficient synthesis of gold nanoparticles using ion irradiation in gas-liquid interfacial plasmas. Probe 2009,3,6.
    34. Lloyd, J. R., Microbial reduction of metals and radionuclides. Fems Microbiol.Rev. 2003,27, (2-3),411-425.
    35. Shakibaie, M.; Forootanfar, H.; Mollazadeh, M. K.; Bagherzadeh, Z.; Nafissi, V. N.; Shahverdi, A. R.; Faramarzi, M. A., Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol. Appl. Biochem.2010,57, (2),71-75.
    36. Bar, H.; Bhui, D. K.; Sahoo, G. P.; Sarkar, P.; De, S. P.; Misra, A., Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf. A-Physicochem. Eng. Asp.2009,339, (1-3),134-139.
    37. Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y., Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 2001,17, (3),578-580.
    38. Chen, D. H.; Chen, C. J., Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem.2002,12, (5),1557-1562.
    39. Jin, Y. L.; Yao, J. L.; Gu, R. A., Preparation and surface enhanced Raman spectroscopic studies on Au-Ag alloy nanoparticles. Spectrosc. Spectr. Anal.2008,28, (6),1309-1311.
    40. Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A., Electron dynamics in gold and gold-silver alloy nanoparticles:The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys.1999,111, (3),1255-1264.
    41. Sanchez-Ramirez, J. F.; Pal, U.; Nolasco-Hernandez, L.; Mendoza-Alvarez, J.; Pescador-Rojas, J. A., Synthesis and optical properties of Au-Ag alloy nanoclusters with controlled composition. J. Nanomater.2008,2008,1-9.
    42. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001,17, (22),6782-6786.
    43. Dietrich, S.; Schulze, S.; Hietschold, M.; Lang, H., Au nanoparticles stabilised by PEGylated low generation PAMAM dendrimers:Design, characterisation and properties. J. Colloid Interface Sci.2011.
    44. Sau, T. K.; Rogach, A. L.; J ckel, F.; Klar, T. A.; Feldmann, J., Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater.2010,22, (16),1805-1825.
    45. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005,109, (29),13857-13870.
    46. Luo, X.; Imae, T., Shape-controlled synthesis of gold nanoparticles under UV irradiation in the presence of poly (ethylene glycol). Curr. Nanosci.2007,3, (3), 195-198.
    47. Yang, S.; Zhang, T.; Zhang, L.; Wang, S.; Yang, Z.; Ding, B., Continuous synthesis of gold nanoparticles and nanoplates with controlled size and shape under UV irradiation. Colloid Surf. A-Physicochem. Eng. Asp.2007,296, (1-3),37-44.
    48. Sau, T. K.; Murphy, C. J., Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc.2004,126, (28), 8648-8649.
    49. Mintzer, M. A.; Grinstaff, M. W., Biomedical applications of dendrimers:a tutorial. Chem. Soc. Rev.2010.
    50. Zhong, S.; Yung, L. Y. L., Enhanced biological stability of collagen with incorporation of PAMAM dendrimer. J. Biomed. Mater. Res. Part A 2009,91, (1), 114-122.
    51. Auten, B. J.; Lang, H.; Chandler, B. D., Dendrimer templates for heterogeneous catalysts:Bimetallic Pt-Au nanoparticles on oxide supports. Appl. Catal. B-Environ. 2008,81,(3-4),225-235.
    52. Xie, H.; Howe, J. Y.; Schwartz, V.; Monnier, J. R.; Williams, C. T.; Ploehn, H. J., Hydrodechlorination of 1,2-dichloroethane catalyzed by dendrimer-derived Pt-Cu/SiO2 catalysts. J. Catal.2008,259, (1),111-122.
    53. Mark, S. S.; Sandhyarani, N.; Zhu, C.; Campagnolo, C.; Batt, C. A., Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Langmuir 2004,20, (16),6808-6817.
    54. Kim, C.; Park, E.; Song, C. K.; Koo, B. W., Ferrocene end-capped dendrimer: Synthesis and application to CO gas sensor. Synth. Met.2001,123, (3),493-496.
    55. Cavaye, H.; Smith, A. R. G.; James, M.; Nelson, A.; Burn, P. L.; Gentle, I. R.; Lo, S. C.; Meredith, P., Solid-state dendrimer sensors:Probing the diffusion of an explosive analogue using neutron reflectometry. Langmuir 2009,25, (21),12800-12805.
    56. Cheng, Y. Y.; Xu, Z. H.; Ma, M. L.; Xu, T. W., Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci.2008,97, (1), 123-143.
    57. Tomalia, D. A.; Fr"|chet, J. M. J., Discovery of dendrimers and dendritic polymers: A brief historical perspective*. J. Polym. Sci. Pol. Chem.2002,40, (16),2719-2728.
    58. Buhleier, E.; Wehner, W.; V gtle, F., Cascade and nonskid-chain-like synthesis of molecular cavity topologies. Synthesis 1978,2,155-158.
    59. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A new class of polymers:Starburst-dendritic macromolecules. Polym. J.1985,17, (1),117-132.
    60.郝利玲;智慧;刘文;钟和良;林培华;李笃信;董川,一种新型树状大分子的合成及表征.山西大学学报2009,32,(1),82-86.
    61. Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J., Unsymmetrical three-dimensional macromolecules:Preparation and characterization of strongly dipolar dendritic macromolecules. J. Am. Chem. Soc.1993,115, (24),11496-11505.
    62. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles:synthesis, characterization, and applications to catalysis. Accounts of Chemical Research 2001,34, (3),181-190.
    63. Kim, Y. G.; Oh, S. K.; Crooks, R. M., Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mat.2004,16,(1),167-172.
    64. Manna, A.; Imae, T.; Aoi, K.; Okada, M.; Yogo, T., Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium:Comparison of size between silver and gold particles. Chem. Mat.2001,13, (5),1674-1681.
    65. Zhao, M. Q.; Sun, L.; Crooks, R. M., Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc.1998,120, (19),4877-4878.
    66. Scott, R. W. J.; Wilson, O. M.; Crooks, R. M., Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 2005,109, (2), 692-704.
    67. Divsar, F.; Nomani, A.; Chaloosi, M.; Haririan, I., Synthesis and characterization of gold nanocomposites with modified and intact polyamidoamine dendrimers. Microchim. Acta 2009,165, (3-4),421-426.
    68. Shukla, R.; Hill, E.; Shi, X. Y; Kim, J.; Muniz, M. C.; Sun, K.; Baker, J. R., Jr., Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 2008,4, (11),2160-2163.
    69. Haba, Y; Kojima, C.; Harada, A.; Ura, T.; Horinaka, H.; Kono, K., Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 2007,23, (10),5243-5246.
    70. Maly, J.; Lampova, H.; Semeradtova, A.; Stofik, M.; Kovacik, L., The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels. Nanotechnology 2009,20, (38).
    71. Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., Hydrophobic dendrimers as templates for Au nanoparticles. Langmuir 2005,21,11981-11986.
    72. Oh, S. K.; Kim, Y. G.; Ye, H. C.; Crooks, R. M., Synthesis, characterization, and surface immobilization of metal nanoparticles encapsulated within bifunctionalized dendrimers. Langmuir 2003,19, (24),10420-10425.
    73. Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z. Y.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R., Jr., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res,2005,65, (12),5317-5324.
    74. Majoros, I. J.; Myc, A.; Thomas, T.; Mehta, C. B.; Baker, J. R., Jr., PAMAM dendrimer-based multifunctional conjugate for cancer therapy:Synthesis, characterization, and functionality. Biomacromolecules 2006,7, (2),572-579.
    75. Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A. K.; Thomas, T.; Mule, J.; Baker, J. R., Jr., Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 2002,19,(9),1310-1316.
    76. Shi, X.; Wang, S. H.; Sun, H. P.; Baker, J. R., Jr., Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter 2007,3, 71-74.
    77. Shi, X.; Ganser, T. R.; Sun, K.; Balogh, L. P.; Baker, J. R., Jr., Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 2006,17, (4), 1072-1078.
    78. Shi, X.; Lee, I.; Baker, J. R., Jr., Acetylation of dendrimer-entrapped gold and silver nanoparticles.J.Mater. Chem.2008,18, (5),586-593.
    79. Balogh, L.; Laverdure, K. S.; Gido, S. P.; Mott, A. G.; Miller, M. J.; Ketchel, B. P.; Tomalia, D. A., Dendrimer-metal nanocomposites. Organic/Inorganic Hybrid Materials Ⅱ 1999,576,69-75.
    80. Esumi, K.; Suzuki, A.; Aihara, N.; Usui, K.; Torigoe, K., Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 1998,14, (12), 3157-3159.
    81. Garcia, M. E.; Baker, L. A.; Crooks, R. M., Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal. Chem.1999,71, (1),256-258.
    82. Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J., Dendrimer templates for the formation of gold nanoclusters. Macromolecules 2000,33, (16), 6042-6050.
    83. Sun, X. P.; Dong, S. J.; Wang, E. K., One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004, 37, (19),7105-7108.
    84. Hayakawa, K.; Yoshimura, T.; Esumi, K, Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 2003,19, (13),5517-5521.
    85. Sutton, A.; Franc, G.; Kakkar, A., Silver metal nanoparticles:Facile dendrimer-assisted size-controlled synthesis and selective catalytic reduction of chloronitrobenzenes. J. Polym. Sci. Pol. Chem.2009,47, (18),4482-4493.
    86. Hong, S.; Leroueil, P. R.; Majoros, I. J.; Orr, B. G; Baker, J. R., Jr.; Holl, M. M. B., The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol.2007,14, (1),107-115.
    87. Thomas, T. P.; Majoros, I. J.; Kotlyar, A.; Kukowska-Latallo, J. F.; Bielinska, A.; Myc, A.; Baker, J. R., Jr., Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem.2005,48, (11),3729-3735.
    88. Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X. S.; Baker, J. R., Jr., Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 2009,134, (7),1373-1379.
    89. Shi, X. Y.; Wang, S. H.; Swanson, S. D.; Ge, S.; Cao, Z. Y; Van Antwerp, M. E.; Landmark, K. J.; Baker, J. R., Jr., Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv. Mater.2008,20, (9),1671-+.
    90. Lee, J. H.; Huh, Y. M.; Jun, Y; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med.2007,13, (1),95-99.
    91. Strable, E.; Bulte, J. W M.; Moskowitz, B.; Vivekanandan, K.; Allen, M.; Douglas, T., Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem. Mat.2001,13, (6),2201-2209.
    92. Shi, X.; Thomas, T. P.; Myc, L. A.; Kotlyar, A.; Baker, J. R., Jr., Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys.2007,9, 5712-5720.
    93. Yu, J.; Zhao, H.; Ye, L.; Yang, H.; Ku, S.; Yang, N.; Xiao, N., Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by glioma cells in vitro. J. Mater. Chem.2009,19, (9),1265-1270.
    94. Pan, B. F.; Gao, F.; Gu, H. C., Dendrimer modified magnetite nanoparticles for protein immobilization. J. Colloid Interface Sci.2005,284, (1),1-6.
    95. Pan, B.F.; Gao, F.; Ao, L. M., Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J. Magn. Magn. Mater.2005,293, (1),252-258.
    96. Minelli, C.; Lowe, S. B.; Stevens, M. M., Engineering nanocomposite materials for cancer therapy. Small 2010.
    97. Liu, J.; Cao, Z.; Lu, Y., Functional nucleic acid sensors. Chem. Rev.2009,109, (5), 1948-1998.
    98. Xiang, Y.; Tong, A.; Lu, Y, Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range.J. Am. Chem. Soc.2009,131, (42),15352-15357.
    99. L.;, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J. Am. Chem. Soc.2007,129, (18),5804-5805.
    100. Sun, Y. H.; Kong, R. M.; Lu, D. Q.; Zhang, X. B.; Meng, H. M.; Tan, W.; Shen, G. L.; Yu, R. Q., A nanoscale DNA-Au dendrimer as a signal amplifier for the universal design of functional DNA-based SERS biosensors. Chem. Commun.2011.
    101. Li, Z.; Huang, P.; Zhang, X.; Lin, J.; Yang, S.; Liu, B.; Gao, F.; Xi, P.; Ren, Q.; Cui, D., RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol. Pharm.2009,7, (1),94-104.
    102. Haba, Y.; Kojima, C.; Harada, A.; Ura, T.; Horinaka, H.; Kono, K., Preparation of poly (ethylene glycol)-modified poly (amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 2007,23, (10),5243-5246.
    103. Aydogan, B.; Li, J.; Rajh, T.; Chaudhary, A.; Chmura, S. J.; Pelizzari, C.; Wietholt, C.; Kurtoglu, M.; Redmond, P., AuNP-DG:Deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol. Imaging. Biol.2010,12, (5),463-467.
    104. Kojima, C.; Umeda, Y.; Ogawa, M.; Harada, A.; Magata, Y.; Kono, K., X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 2010,21,245104.
    105. Li, J.; Chaudhary, A.; Chmura, S. J.; Pelizzari, C.; Rajh, T.; Wietholt, C.; Kurtoglu, M.; Aydogan, B., A novel functional CT contrast agent for molecular imaging of cancer. Phys. Med. Biol.2010,55,4389.
    106. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    107. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X., Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J. Mater. Chem.2011.
    1. Daniel, M. C.; Astruc, D., Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104, (1),293-346.
    2. Liu, H.; Wang, H.; Guo, R.; Cao, X.; Zhao, J.; Luo, Y.; Shen, M.; Zhang, G.; Shi, X., Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym. Chem.2010,1,(10),1677-1683.
    3. Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol.2007,2, (12),751-760.
    4. Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics. Chem. Rev.2005,105, (4),1547-1562.
    5. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N., Gold nanocages:Synthesis, properties, and applications. Accounts Chem. Res.2008, 41,(12),1587-1595.
    6. Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X.; Baker, J. R., Jr.; Balogh, L. P., Silver/dendrimer nanocomposites as biomarkers:Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett.2005,5, (11), 2123-2130.
    7. Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Yonzon, C. R.; Van Duyne, R. P., A nanoscale optical biosensor:Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J. Phys. Chem.B 2003,107, (8),1772-1780.
    8. You, C. C.; De, M.; Han, G.; Rotello, V. M., Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. J. Am. Chem. Soc.2005,127, (37),12873-12881.
    9. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer. Nano Lett.2005,5, (5),829-834.
    10. Huang, Y. F.; Chang, H. T.; Tan, W. H., Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem.2008,80, (3),567-572.
    11. Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol.2008,26, (1),83-90.
    12. Shi, X.; Wang, S.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    13. Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X.; Baker, J. R., Jr., Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 2009,134, (7),1373-1379.
    14. Choi, M. R.; Stanton-Maxey, K. J.; Stanley, J. K.; Levin, C. S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J. P.; Bashir, R.; Halas, N. J.; Clare, S. E., A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett.2007,7, (12),3759-3765.
    15. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc.2006,128, (6),2115-2120.
    16. Skrabalak, S. E.; Chen, J.; Au, L.; Lu, X.; Li, X.; Xia, Y, Gold nanocages for biomedical applications. Adv. Mater.2007,19, (20),3177-3184.
    17. Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. X., Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007,19, (20),3136-3141.
    18. Chen, Y H.; Tsai, C. Y.; Huang, P. Y.; Chang, M. Y.; Cheng, P. C.; Chou, C. H.; Chen, D. H.; Wang, C. R.; Shiau, A. L.; Wu, C. L., Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 2007,4,(5),713-722.
    19. Podsiadlo, P.; Sinani, V. A.; Bahng, J. H.; Kam, N. W. S.; Lee, J.; Kotov, N. A., Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 2008,24, (2),568-574.
    20. Sandhu, K. K.; McIntosh, C. M.; Simard, J. M.; Smith, S. W.; Rotello, V. M., Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chem.2002,13, (1),3-6.
    21. Wu, W. T.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Q., Smart core-shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mat.2010,22, (6),1966-1976.
    22. Li, D.; He, Q.; Li, J., Smart core/shell nanocomposites:Intelligent polymers modified gold nanoparticles. Adv. Colloid Interface Sci.2009,149, (1),28-38.
    23. Li, D. X.; Cui, Y.; Wang, K. W.; He, Q.; Yan, X. H.; Li, J. B., Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv. Funct. Mater.2007,17, (16),3134-3140.
    24. Li, D. X.; He, Q.; Cui, Y.; Li, J. B., Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem. Mater.2007,19, (3),412-417.
    25. Li, D. X.; He, Q.; Cui, Y.; Wang, K. W.; Zhang, X. M.; Li, J. B., Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chem.-Eur. J.2007,13, (8),2224-2229.
    26. Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M., Thermosensitive core-shell particles as carriers for Ag nanoparticles:Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed.2006,45, (5),813-816.
    27. Zhang, Y W.; Peng, H. S.; Huang, W.; Zhou, Y E.; Zhang, X. H.; Yan, D. Y, Hyperbranched poly(amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J. Phys. Chem. C 2008,112, (7),2330-2336.
    28. Esumi, K.; Hosoya, T.; Suzuki, A.; Torigoe, K., Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. J. Colloid Interface Sci.2000,226, (2),346-352.
    29. Esumi, K.; Suzuki, A.; Aihara, N.; Usui, K.; Torigoe, K., Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 1998,14, (12), 3157-3159.
    30. Goodson, T.; Varnavski, O.; Wang, Y, Optical properties and applications of dendrimer-metal nanocomposites. Int. Rev. Phys. Chem.2004,23, (1),109-150.
    31. Perignon, N.; Marty, J. D.; Mingotaud, A. F.; Dumont, M.; Rico-Lattes, I.; Mingotaud, C., Hyperbranched polymers analogous to PAMAM dendrimers for the formation and stabilization of gold nanoparticles. Macromolecules 2007,40, (9), 3034-3041.
    32. Shi, X.; Ganser, T. R.; Sun, K.; Balogh, L. P.; Baker, J. R., Jr., Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 2006,17, (4), 1072-1078.
    33. Shi, X.; Lee, I.; Baker, J. R., Jr., Acetylation of dendrimer-entrapped gold and silver nanoparticles. J. Mater. Chem.2008,18, (5),586-593.
    34. Shi, X.; Wang, S. H.; Sun, H.; Baker, J. R., Jr., Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter 2007,3,(1), 71-74.
    35. Tomalia, D. A.; Frechet, J. M. J., Dendrimers and Other Dendritic Polymers. John Wiley & Sons Ltd:New York,2001.
    36. Trollsas, M.; Hedrick, J. L., Dendrimer-like star polymers. J. Am. Chem. Soc.1998, 120, (19),4644-4651.
    37. Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, J. R., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.2005,65, (12),5317-5324.
    38. Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R., Jr., Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem.2005,48, (19),5892-5899.
    39. Thomas, T. P.; Majoros, I. J.; Kotlyar, A.; Kukowska-Latallo, J. F.; Bielinska, A.; Myc, A.; Baker, J. R., Jr., Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J. Med. Chem.2005,48, (11),3729-3735.
    40. Shi, X.; Lee, I.; Chen, X.; Shen, M.; Xiao, S.; Zhu, M.; Baker, J. R., Jr.; Wang, S. H., Influence of dendrimer surface charge on the bioactivity of 2-methoxyestradiol complexed with dendrimers. Soft Matter 2010,6, (11),2539-2545.
    41. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114, (1),50-56.
    42. Peng, C; Wang, H.; Guo, R.; Shen, M.; Cao, X.; Zhu, M.; Zhang, G.; Shi, X., Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J. Appl. Polym. Sci.2011,119, (3),1673-1682.
    43. Peng, C.; Zheng, L.; Chen, Q.; Shen, M.; Guo, R.; Wang, H.; Cao, X.; Zhang, G.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33,1107-1119.
    44. Wang, H.; Zheng, L.; Peng, C.; Guo, R.; Shen, M.; Shi, X.; Zhang, G., Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011,32, (11),2979-2988.
    45. Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A. K.; Thomas, T.; Mule, J.; Baker, J. R., Jr., Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 2002,19,(9),1310-1316.
    46. Endo, T.; Yoshimura, T.; Esumi, K., Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer. J. Colloid Interface Sci.2005, 286, (2),602-609.
    47. Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996,12, (3),788-800.
    48. Chung, Y. M.; Rhee, H. K., Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor. Catal. Lett.2003,85, (3-4),159-164.
    49. Chung, Y. M.; Rhee, H. K., Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. J. Mol. Catal. A-Chem.2003, 206, (1-2),291-298.
    50. Chung, Y. M.; Rhee, H. K., Dendrimer-templated Ag-Pd bimetallic nanoparticles. J. Colloid Interface Sci.2004,271, (1),131-135.
    51. Peng, X. H.; Pan, Q. M.; Rempel, G. L.; Wu, S., Synthesis, characterization, and application of PdPt and PdRh bimetallic nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Catal. Commun.2009,11, (1),62-66.
    52. Scott, R. W. J.; Datye, A. K.; Crooks, R. M., Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J. Am. Chem. Soc.2003,125, (13),3708-3709.
    53. Esumi, K.; Matsumoto, T.; Seto, Y.; Yoshimura, T., Preparation of gold-, gold/silver-dendrimer nanocomposites in the presence of benzoin in ethanol by UV irradiation. J. Colloid Interface Sci.2005,284, (1),199-203.
    54. Wilson, O. M.; Scott, R. W J.; Garcia-Martinez, J. C.; Crooks, R. M., Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc.2005,127, (3), 1015-1024.
    55. Zhang, Q. B.; Xie, J. P.; Liang, J.; Lee, J. Y., Synthesis of monodisperse Ag-Au alloy nanoparticles with independently tunable morphology, composition, size, and surface chemistry and their 3-D super lattices. Adv. Funct. Mater.2009,19, (9), 1387-1398.
    56. Majoros, I. J.; Keszler, B.; Woehler, S.; Bull, T.; Baker, J. R., Jr., Acetylation of poly(amidoamine) dendrimers. Macromolecules 2003,36, (15),5526-5529.
    57. Shi, X.; Banyai, I.; Rodriguez, K.; Islam, M. T.; Lesniak, W.; Balogh, P.; Balogh, L. P.; Baker, J. R., Jr., Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges. Electrophoresis 2006,27, (9), 1758-1767.
    58. Shi, X.; Lesniak, W.; Islam, M. T.; Muniz, M. C.; Balogh, L. P.; Baker, J. R., Jr., Comprehensive characterization of surface-functionalized poly (amidoamine) dendrimers with acetamide, hydroxyl, and carboxyl groups. Colloid Surf. A-Physicochem. Eng. Asp.2006,272, (1-2),139-150.
    59. Moskovits, M.; Srnova-Sloufova, I.; Vlckova, B., Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys.2002,116, (23),10435-10446.
    60. Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; McCord, M.; Zhang, X., One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem.2011,21, (28), 10330-10335.
    61. Takeuchi, Y.; Ida, T.; Kimura, K., Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation. J. Phys. Chem. B 1997,101, (8),1322-1327.
    62. Xu, C. J.; Tung, G. A.; Sun, S. H., Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem. Mater. 2008,20, (13),4167-4169.
    1. Burda, C; Chen, X. B.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chem. Rev.2005,105, (4),1025-1102.
    2. Chung, Y. M.; Rhee, H. K., Dendrimer-templated Ag-Pd bimetallic nanoparticles. J. Colloid Interface Sci.2004,271,(1),131-135.
    3. Hodak, J. H.; Henglein, A.; Hartland, G. V, Photophysics of nanometer sized metal particles:Electron-phonon coupling and coherent excitation of breathing vibrational modes. J. Phys. Chem. B 2000,104, (43),9954-9965.
    4. Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A., Electron dynamics in gold and gold-silver alloy nanoparticles:The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys.1999,111, (3),1255-1264.
    5. Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M., Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc.2005,127, (3), 1015-1024.
    6. Mallin, M. P.; Murphy, C. J., Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett.2002,2, (11),1235-1237.
    7. Cao, Y. W.; Jin, R.; Mirkin, C. A., DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc.2001,123,7961-7962.
    8. Li, D. X.; Li, C. F.; Wang, A. H.; He, Q. A.; Li, J. B., Hierarchical gold/copolymer nanostructures as hydrophobic nanotanks for drug encapsulation. J. Mater. Chem.2010, 20, (36),7782-7787.
    9. Wang, C; Yin, H.; Chan, R.; Peng, S.; Dai, S.; Sun, S., One-pot synthesis of oleylamine coated AuAg alloy NPs and their catalysis for CO oxidation. Chem. Mater. 2009,21,433-435.
    10. Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y, Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 2001,17, (3),578-580.
    11. Link, S.; Wang, Z. L.; El-Sayed, M. A, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 1999,103, (18),3529-3533.
    12. Sanchez-Ramirez, J. F.; Pal, U.; Nolasco-Hernandez, L.; Mendoza-Alvarez, J.; Pescador-Rojas, J. A., Synthesis and optical properties of Au-Ag alloy nanoclusters with controlled composition. J. Nanomater.2008,2008,1-9.
    13. Chen, D. H.; Chen, C. J., Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem.2002,12, (5),1557-1562.
    14. Jin, Y. L.; Yao, J. L.; Gu, R. A., Preparation and surface enhanced Raman spectroscopic studies on Au-Ag alloy nanoparticles. Spectrosc. Spectr. Anal.2008,28, (6),1309-1311.
    15. Raveendran, P.; Fu, J.; Wallen, S. L., A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem.2006,8, (1),34-38.
    16. Compagnini, G.; Messina, E.; Puglisi, O.; Nicolosi, V., Laser synthesis of Au/Ag colloidal nano-alloys:Optical properties, structure and composition. Appl. Surf. Sci. 2007,254,(4),1007-1011.
    17. Lee, I.; Han, S. W.; Kim, K., Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun.2001, (18),1782-1783.
    18. Mondal, S.; Roy, N.; Laskar, R. A.; Sk, I.; Basu, S.; Mandal, D.; Begum, N. A., Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ leaves. Colloid Surf. B-Biointerfaces 2011,82, (2),497-504.
    19. Ramaswamy, R.; Shannon, C., Screening the optical properties of Ag-Au alloy gradients formed by bipolar electrodeposition using surface enhanced raman spectroscopy. Langmuir 2011,27,878-881.
    20. Shen, M. W.; Sun, K.; Shi, X., Hydroxylated dendrimer-stabilized gold and silver nanoparticles:Spontaneous formation, characterization, and surface properties. Curr. Nanosci.2010,6, (3),307-314.
    21. Shi, X.; Sun, K.; Baker, J. R., Jr., Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J. Phys. Chem. C 2008,112,8251-8258.
    22. Sun, X.; Dong, S.; Wang, E., One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 2004, 37,7105-7108.
    23. Sun, X.; Jiang, X.; Dong, S.; Wang, E., One-step synthesis and size control of dendrimer-protected gold nanoparticles:A Heat-Treatment-Based Strategy. Macromol. Rapid Commun.2003,24, (17),1024-1028.
    24. Christopher, P.; Linic, S., Shape-and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. Chemcatchem 2010,2, (1),78-83.
    25. Wang, C.; Hu, Y.J.; Lieber, C. M.; Sun, S. H., Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc.2008,130, (28),8902-8903.
    26. Wu, B.; Heidelberg, A.; Boland, J. J., Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater.2005,4, (7),525-529.
    27. Hong, X.; Wang, D. S.; Li, Y. D., Kinked gold nanowires and their SPR/SERS properties. Chem. Commun.2011,47, (35),9909-9911.
    28. Liu, Z.; Searson, P. C., Single nanoporous gold nanowire sensors. J. Phys. Chem. B 2006,110, (9),4318-4322.
    29. Yogeswaran, U.; Chen, S.-M., A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008,8, (1),290-313.
    30. Wang, Q.-Q.; Han, J.-B.; Guo, D.-L.; Xiao, S.; Han, Y.-B.; Gong, H.-M.; Zou, X.-W, Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region. Nano Lett.2007,7, (3),723-728.
    31. Halder, A.; Ravishankar, N., Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater.2007,19, (14),1854-1858.
    32. Pei, L. H.; Mori, K.; Adachi, M., Formation process of two-dimensional networked gold nanowires by citrate reduction of AuC14-and the shape stabilization. Langmuir 2004,20, (18),7837-7843.
    33. Kim, F.; Sohn, K.; Wu, J. S.; Huang, J. X., Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc.2008,130, (44),14442-14443.
    34. Liu, X. G.; Wu, N. Q.; Wunsch, B. H.; Barsotti, R. J., Jr.; Stellacci,F., Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. Small 2006,2, (8-9),1046-1050.
    35. Bai, H. Y.; Xu, K.; Xu, Y. J.; Matsui, H., Fabrication of an nanowires of uniform length and diameter using a monodisperse and rigid biomolecular template: Collagen-like triple helix. Angew. Chem.-Int. Edit.2007,46, (18),3319-3322.
    36. Kim, J. U.; Cha, S. H.; Shin, K.; Jho, J. Y.; Lee, J. C., Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater.2004, 16, (5),459-464.
    37. Cross, C. E.; Hemminger, J. C.; Penner, R. M., Physical vapor deposition of one-dimensional nanoparticle arrays on graphite:Seeding the electrodeposition of gold nanowires. Langmuir 2007,23, (20),10372-10379.
    38. Huo, Z. Y.; Tsung, C.-K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D., Sub-two nanometer single crystal Au nanowires. Nano Lett.2008,8, (7),2041-2044.
    39. Lu, X. M.; Yavuz, M. S.; Tuan, H.-Y.; Korgel, B. A.; Xia, Y N., Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc.2008,130, (28), 8900-8901.
    40. Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M., Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008,24, (17),9855-9860.
    41. Feng, H. J.; Yang, Y M.; You, Y. M.; Li, G. P.; Guo, J.; Yu, T.; Shen, Z. X.; Wu, T.; Xing, B. G., Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun.2009, (15), 1984-1986.
    42. Xu, J.; Wang, H.; Liu, C. C.; Yang,Y.M.; Chen, T.; Wang, Y.W.; Wang, F.; Liu, X. G.; Xing, B. G.; Chen, H. Y., Mechanical nanosprings:Induced coiling and uncoiling of ultrathin Au nanowires. J. Am. Chem. Soc.2010,132, (34),11920-11922.
    43. Shi, X.; Wang, S.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    44. Shi, X.; Wang, S. H.; Sun, H.; Baker, J. R., Jr., Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter 2007,3,(1), 71-74.
    45. Majoros, I. J.; Keszler, B.; Woehler, S.; Bull, T.; Baker, J. R., Jr., Acetylation of poly(amidoamine) dendrimers. Macromolecules 2003,36, (15),5526-5529.
    46. Liu, H.; Sun, K.; Zhao, J.; Guo, R.; Shen, M.; Cao, X.; Zhang, G.; Shi, X., Dendrimer-mediated synthesis and shape evolution of gold-silver alloy nanoparticles. Colloid Surf. A-Physicochem. Eng. Asp.2012,405,22-29.
    47. Endo, T.; Yoshimura, T.; Esumi, K., Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer. J. Colloid Interface Sci.2005, 286, (2),602-609.
    48. Shi, X.; Lee, I.; Baker, J. R., Jr., Acetylation of dendrimer-entrapped gold and silver nanoparticles. J. Mater. Chem.2008,18, (5),586-593.
    49. Moskovits, M.; Srnova-Sloufova, I.; Vlckova, B., Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys.2002,116, (23),10435-10446.
    50. Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996,12, (3),788-800.
    51. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M., Shape control in gold nanoparticle synthesis. Chem. Soc. Rev.2008,37, (9),1783-1791.
    52. Marambio-Jones, C.;Hoek, E. M. V., A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res.2010,12, (5),1531-1551.
    53. Smitha, S. L.; Gopchandran, K. G.; Ravindran, T. R.; Prasad, V. S., Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 2011,22,265705.
    54. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114, (1),50-56.
    55. Takeuchi, Y.; Ida, T.; Kimura, K., Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation. J. Phys. Chem. B 1997,101, (8),1322-1327.
    56. Xu, C. J.; Tung, G A.; Sun, S. H., Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem. Mater. 2008,20, (13),4167-4169.
    57. Liu, H.; Wang, H.; Guo, R.; Cao, X.; Zhao, J.; Luo, Y.; Shen, M.; Zhang, G.; Shi, X., Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym. Chem.2010,1, (10),1677-1683.
    58. Kojima, C.; Umeda, Y.; Ogawa, M.; Harada, A.; Magata, Y.; Kono, K., X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 2010,21, (24),245104.
    59. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    60. Hong, X.; Wang, D. S.; Yu, R.; Yan, H.; Sun, Y.; He, L.; Niu, Z. Q.; Peng, Q.; Li, Y D., Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects. Chem. Commun.2011,47, (18),5160-5162.
    61. Wang, C.; Sun, S. H., Facile synthesis of ultrathin and single-crystalline Au nanowires. Chem.-Asian J.2009,4,(7),1028-1034.
    62. Liu, X. Y.;Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C.-Y.; Su, D.-S.; Li, J., Synthesis of thermally stable and highly active bimetallic Au- Ag nanoparticles on inert supports. Chem. Mater.2008,21, (2),410-418.
    63. Orendorff, C. J.; Murphy, C. J., Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006,110, (9),3990-3994.
    1. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114, (1),50-56.
    2. Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett.2008,8, (12),4593-4596.
    3. Wang, H.; Zheng, L.; Peng, C.; Guo, R.; Shen, M.; Shi, X.; Zhang, G, Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011,32, (11),2979-2988.
    4. Haller, C.; Hizoh, I., The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest. Radiol.2004,39, (3),149-154.
    5. Hizoh, I.; Haller, C., Radiocontrast-induced renal tubular cell apoptosis:Hypertonic versus oxidative stress. Invest. Radiol.2002,37, (8),428-434.
    6. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    7. Kojima, C.; Umeda, Y.; Ogawa, M.; Harada, A.; Magata, Y.; Kono, K., X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 2010,21, (24),245104.
    8. Liu, H.; Shen, M.; Zhao, J.; Guo, R.; Cao, X.; Zhang, G.; Shi, X., Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf. B-Biointerfaces 2012,94,58-67.
    9. Liu, H.; Sun, K.; Zhao, J.; Guo, R.; Shen, M.; Cao, X.; Zhang, G.; Shi, X., Dendrimer-mediated synthesis and shape evolution of gold-silver alloy nanoparticles. Colloid Surf. A-Physicochem. Eng. Asp.2012,405,22-29.
    10. Shi, X.; Wang, S.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    11. Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X.; Baker, J. R., Jr., Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 2009,134, (7),1373-1379.
    12. Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X., Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym. Chem.2011,2,1754-1760.
    13. Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X., Encapsulation of 2-methoxyestradiol within multifunctional poly (amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011,32, (12),3322-3329.
    14. Akada, Y.; Tatsumi, H.; Yamaguchi, T.; Hirose, A.; Morita, T.; Ide, E., Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater.Trans.2008,49, (7),1537-1545.
    15. Campbell, I. G.; Jones, T. A.; Foulkes, W. D.; Trowsdale, J., Folate-binding protein is a marker for ovarian cancer. Cancer Res.1991,51,5329-5338.
    16. Ross, J. F.; Chaudhuri, P. K.; Ratnam, M., Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994,73,2432-2443.
    17. Weitman, D.; Lark, R. H.; Coney, L. R.; Fort, D. W.; Frasca, V.; Surawski, V. R.; Kamen, B. A., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res.1992,52,3396-3401.
    18. Liu, H.; Wang, H.; Guo, R.; Cao, X.; Zhao, J.; Luo, Y.; Shen, M.; Zhang, G.; Shi, X., Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym. Chem.2010,1,(10),1677-1683.
    1. Villanueva, A.; Llovet, J. M., Targeted therapies for hepatocellular carcinoma. Gastroenterology 2011,140,(5),1410-1426.
    2. Liu, Y. J.; Chen, Z. J.; Liu, C. X.; Yu, D. X.; Lu, Z. J.; Zhang, N., Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32,(22),5167-5176.
    3. Wang, H.; Zheng, L.; Peng, C.; Shen, M.; Shi, X.; Zhang, G, Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 2013,34,470-480.
    4. Mankoff, D. A., A definition of molecular imaging. J. Nucl. Med.2007,48, (6), 18N-21N.
    5. Lusic, H.; Grinstaff, M. W., X-ray-computed tomography contrast agents. Chem. Rev.2012,113,(3),1641-1666.
    6. Jakhmola, A.; Anton, N.; Vandamme, T., Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv. Healthcare Mater.2012,1, (4),413-431.
    7. Kim, D. K.; Park, S. J.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Y, Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    8. Peng, C.; Zheng, L.; Chen, Q.; Shen, M.; Guo, R.; Wang, H.; Cao, X.; Zhang, G.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33, (4),1107-1119.
    9. Reuveni, T.; Motiei, M.; Romman, Z.; Popovtzer, A.; Popovtzer, R., Targeted gold nanoparticles enable molecular CT imaging of cancer:an in vivo study. Int. J. Nanomed. 2011,6,2859-2864.
    10. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X., Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J. Mater. Chem.2011,21, (13),5120-5127.
    11. Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H., Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater.2011,23, (42),4886-4891.
    12. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M., Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol.2006,79, (939),248-253.
    13. Hallouard, F.; Anton, N.; Choquet, P.; Constantinesco, A.; Vandamme, T., Iodinated blood pool contrast media for preclinical X-ray imaging applications-a review. Biomaterials 2010,31, (24),6249-6268.
    14. Rigsby, C. K.; Gasber, E.; Seshadri, R.; Sullivan, C.; Wyers, M.; Ben-Ami, T., Safety and efficacy of pressure-limited power injection of iodinated contrast medium through central lines in children. Am. J. Roentgenol.2007,188, (3),726-732.
    15. Fang, Y.; Peng, C.; Guo, R.; Zheng, L.; Qin, J.; Zhou, B.; Shen, M.; Lu, X.; Zhang, G.; Shi, X., Dendrimer-stabilized bismuth sulfide nanoparticles:Synthesis, characterization, and potential computed tomography imaging applications. Analyst 2013,138, (11),3172-3180.
    16. Rabin,0.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater.2006,5, (2),118-122.
    17. Liu, H.; Shen, M.; Zhao, J.; Guo, R.; Cao, X.; Zhang, G.; Shi, X., Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf. B-Biointerfaces 2012,94,58-67.
    18. Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett.2008,8, (12),4593-4596.
    19. Regino, C. A. S.; Walbridge, S.; Bernardo, M.; Wong, K. J.; Johnson, D.; Lonser, R.; Oldfield, E. H.; Choyke, P. L.; Brechbiel, M. W., A dual CT-MR dendrimer contrast agent as a surrogate marker for convection-enhanced delivery of intracerebral macromolecular therapeutic agents. Contrast Media Mol. Imaging 2008,3, (1),2-8.
    20. McDonald, M. A.; Watkin, K. L., Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest. Radiol.2003,38, (6),305-310.
    21. Wen, S.; Li, K.; Cai, H.; Chen, Q.; Shen, M.; Huang, Y.; Peng, C.; Hou, W.; Zhu, M.; Zhang, G.; Shi, X., Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 2013,34, (5),1570-1580
    22. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114, (1),50-56
    23. Chen, Q.; Li, K.; Wen, S.; Liu, H.; Peng, C.; Cai, H.; Shen, M.; Zhang, G.; Shi, X., Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2013,34, (21),5200-5209
    24. Peng, C.; Qin, J.; Zhou, B.; Chen, Q.; Shen, M.; Zhu, M.; Lu, X.; Shi, X., Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym. Chem.2013,4,4412-4424.
    25. Ashwell, G.; Harford, J., Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem.1982,51, (1),531-554.
    26. Schwartz, A. L.; Fridovich, S. E.; Knowles, B. B.; Lodish, H. F., Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J. Biol. Chem.1981,256, (17),8878-8881
    27. Peng, C.; Zheng, L.; Chen, Q.; Shen, M.; Guo, R.; Wang, H.; Cao, X.; Zhang, G.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33,1107-1119.
    28. Medina, S. H.; Tekumalla, V.; Chevliakov, M. V.; Shewach, D. S.; Ensminger, W. D.; El-Sayed, M. E. H., N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 2011,32, (17),4118-4129.
    29. Soenen, S. J. H.; Brisson, A. R.; Jonckheere, E.; Nuytten, N.; Tan, S.; Himmelreich, U.; De Cuyper, M., The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials 2011,32, (6),1748-1758.
    30. Shi, X.; Wang, S. H.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    31. Shi, X.; Wang, S. H.; Sun, H.; Baker, J. R., Jr., Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 2007,3, 71-74.
    32. Shi, X.; Wang, S. H.; Swanson, S. D.; Ge, S.; Cao, Z.; Van Antwerp, M. E.; Landmark, K. J.; Baker, J. R., Jr., Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in vivo magnetic resonance imaging of tumors. Adv. Mater.2008,20, (9),1671-1678.
    33. Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X.; Baker, J. R., Jr., Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 2009,134, (7),1373-1379.
    34. Wang, Y.; Guo, R.; Cao, X.; Shen, M.; Shi, X., Encapsulation of 2-methoxyestradiol within multifunctional poly (amidoamine) dendrimers for targeted cancer therapy. Biomaterials 2011,32, (12),3322-3329.
    35. Liu, H.; Xu, Y.; Wen, S.; Chen, Q.; Zheng, L.; Shen, M.; Zhao, J.; Zhang, G.; Shi, X., Targeted tumor computed tomography imaging using low generation dendrimer-stabilized gold nanoparticles. Chem. Eur. J.2013,19,6409-6416.
    36. Liu, H.; Xu, Y.; Wen, S.; Zhu, J.; Zheng, L.; Shen, M.; Zhao, J.; Zhang, G.; Shi, X., Facile formation of low generation dendrimer-stabilized gold nanoparticles for in vivo X-ray computed tomography imaging applications. Polym. Chem.2013,4,1788-1795.
    1. deKrafft, K. E.; Xie, Z.; Cao, G.; Tran, S.; Ma, L.; Zhou, O. Z.; Lin, W., Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew. Chem. Int. Edit.2009,121, (52),10085-10088.
    2. Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A., Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med.2007,13, (5),636-641.
    3. Liu, Y.; Ai, K.; Liu, J.; Yuan, Q.; He, Y.; Lu, L., A high-performance Ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem. Int. Edit.2012,51, (6),1437-1442.
    4. Wang, H.; Zheng, L.; Peng, C.; Guo, R.; Shen, M.; Shi, X.; Zhang, G., Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011,32, (11),2979-2988.
    5. Haller, C.; Hizoh, I., The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest. Radiol.2004,39, (3),149-154.
    6. Hizoh, I.; Haller, C., Radiocontrast-induced renal tubular cell apoptosis:Hypertonic versus oxidative stress. Invest. Radiol.2002,37, (8),428-434.
    7. Ai, K.; Liu, Y.; Liu, J.; Yuan, Q.; He, Y.; Lu, L., Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater.2011,23, (42),4886-4891.
    8. Oh, M. H.; Lee, N.; Kim, H.; Park, S. P.; Piao, Y.; Lee, J.; Jun, S. W.; Moon, W. K.; Choi, S. H.; Hyeon, T., Large-scale synthesis of bioinert tantalum oxide nanoparticles for x-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J. Am. Chem. Soc.2011,133, (14),5508-5515.
    9. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114,(1),50-56.
    10. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    11. Kojima, C.; Umeda, Y.; Ogawa, M.; Harada, A.; Magata, Y.; Kono, K., X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 2010,21, (24),245104.
    12. Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett.2008,8, (12),4593-4596.
    13. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Zheng, L.; Zhang, G.;Shi, X., Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J. Mater. Chem.2011,18, (13),5120-5127.
    14. Peng, C.; Wang, H.; Guo, R.; Shen, M.; Cao, X.; Zhu, M.; Zhang, G.; Shi, X., Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J. Appl. Polym. Sci.2011,119, (3),1673-1682.
    15. Peng, C.; Zheng, L.; Chen, Q.; Shen, M.; Guo, R.; Wang, H.; Cao, X.; Zhang, G.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33,1107-1119.
    16. Wang, H.; Zheng, L.; Peng, C.; Shen, M.; Shi, X.; Zhang, G, Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 2013,34,470-480.
    17. Liu, H.; Shen, M.; Zhao, J.; Guo, R.; Cao, X.; Zhang, G.; Shi, X., Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf. B-Biointerfaces 2012,94,58-67.
    18. Peng, C.; Li, K.; Cao, X.; Xiao, T.; Hou, W.; Zheng, L.; Guo, R.; Shen, M.; Zhang, G.; Shi, X., Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale 2012,4,6768-6778.
    19. Shi, X.; Wang, S.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    20. Shukla, R.; Hill, E.; Shi, X.; Kim, J.; Muniz, M. C.; Sun, K.; Baker, J. R., Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 2008,4, (11),2160-2163.
    21. Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X.; Baker, J. R., Jr., Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 2009,134, (7),1373-1379.
    22. Alric, C.; Taleb, J.; Due, G.L.; Mandon, C.; Billotey, C; Meur-Herland, A. L.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P., Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc.2008,130, (18),5908-5915.
    23. Wilson, O. M.; Scott, R. W. J.; Garcia-Martinez, J. C.; Crooks, R. M., Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J. Am. Chem. Soc.2005,127, (3), 1015-1024.
    24. Sun, X.; Dong, S.; Wang, E., One-step synthesis and characterization of polyelectrolyte-protected gold nanoparticles through a thermal process. Polymer 2004, 45, (7),2181-2184.
    25. Sun, X.; Jiang, X.; Dong, S.; Wang, E., One-step synthesis and size control of dendrimer-protected gold nanoparticles:A Heat-Treatment-Based Strategy. Macromol. Rapid Commun.2003,24, (17),1024-1028.
    1. Liu, Y.; Ai, K.; Liu, J.; Yuan, Q.; He, Y.; Lu, L., A high-performance Ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem.-Int. Edit.2012,51, (6),1437-1442.
    2. Ai, K.; Liu, Y.; Liu, J.; Yuan, Q.; He, Y.; Lu, L., Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater.2011,23, (42),4886-4891.
    3. Fang, Y.; Peng, C; Guo, R.; Zheng, L. F.; Qin, J. B.; Zhou, B. Q.; Shen, M. W.; Lu, X. W.; Zhang, G X.; Shi, X., Dendrimer-stabilized bismuth sulfide nanoparticles: Synthesis, characterization, and potential computed tomography imaging applications. Analyst 2013,138,3172-3180.
    4. Liu, Z.; Pu, F.; Liu, J. H.; Jiang, L. Y.; Yuan, Q. H.; Li, Z. Q.; Ren, J. S.; Qu, X. G., PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity. Nanoscale 2013,5, (10),4252-4261.
    5. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc.2007,129, (24),7661-7665.
    6. Sun, I.-C.; Eun, D.-K.; Na, J. H.; Lee, S.; Kim, I.-J.; Youn, I.-C.; Ko, C.-Y.; Kim, H.-S.; Lim, D.; Choi, K., Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem. Eur. J.2009,15, (48),13341-13347.
    7. Wang, H.; Zheng, L. F.; Peng, C.; Shen, M. W.; Shi, X.; Zhang, G X., Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 2013,34,470-480.
    8. Liu, H.; Xu, Y. H.; Wen, S. H.; Chen, Q.; Zheng, L. F.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X., Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem. Eur. J.2013,19, 6409-6416.
    9. Liu, H.; Xu, Y. H.; Wen, S. H.; Zhu, J. Y.; Zheng, L. F.; Shen, M. W.; Zhao, J. L.; Zhang, G. X.; Shi, X., Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. Polym. Chem.2013,4,1788-1795.
    10. Guo, R.; Wang, H.; Peng, C.; Shen, M. W.; Pan, M. J.; Cao, X. Y.; Zhang, G. X.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2009,114, (1),50-56.
    11. Shi, X.; Wang, S. H.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X.; Lee, I.; Baker, J. R., Jr., Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007,3, (7),1245-1252.
    12. Wang, H.; Zheng, L. F.; Peng, C.; Guo, R.; Shen, M. W.; Shi, X.; Zhang, G. X., Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials 2011,32, (11),2979-2988.
    13. Liu, H.; Shen, M. W.; Zhao, J. L.; Guo, R.; Cao, X. Y.; Zhang, G X.; Shi, X., Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf. B-Biointerfaces 2012,94,58-67.
    14. Peng, C.; Li, K. A.; Cao, X. Y.; Xiao, T. T.; Hou, W. X.; Zheng, L. F.; Guo, R.; Shen, M. W.; Zhang, G. X.; Shi, X., Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale 2012,4,6768-6778.
    15. Peng, C.; Zheng, L. F.; Chen, Q.; Shen, M. W.; Guo, R.; Wang, H.; Cao, X. Y.; Zhang, G. X.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33, 1107-1119.
    16. Cai, Q.-Y; Kim, S. F.; Choi, K. S.; Kim, S. Y.; Byun, S. J.; Kim, K. W.; Park, S. H.; Juhng, S. K.; Yoon, K.-H., Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest. Radiol.2007,42, (12),797-806.
    17. Kojima, C.; Umeda, Y.; Ogawa, M.; Harada, A.; Magata, Y.; Kono, K., X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 2010,21, (24),245104.
    18. Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H., Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006,11,(17-18),812-818.
    19. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J. Control. Release 2000, 65, (1-2),271-284.
    20. Peng, C; Zheng, L.; Chen, Q.; Shen, M.; Guo, R.; Wang, H.; Cao, X.; Zhang, G.; Shi, X., PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 2012,33,1107-1119.
    21. Liu, H.; Xu, Y.; Wen, S.; Chen, Q.; Zheng, L.; Shen, M.; Zhao, J.; Zhang, G.; Shi, X., Targeted tumor computed tomography imaging using low generation dendrimer-stabilized gold nanoparticles. Chem. Eur. J.2013,19,6409-6416.
    22. Liu, H.; Shen, M.; Zhao, J.; Guo, R.; Cao, X.; Zhang, G.; Shi, X., Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf. B-Biointerfaces 2012,94,58-67.
    23. Liu, H.; Xu, Y.; Wen, S.; Zhu, J.; Zheng, L.; Shen, M.; Zhao, J.; Zhang, G.; Shi, X., Facile formation of low generation dendrimer-stabilized gold nanoparticles for in vivo X-ray computed tomography imaging applications. Polym. Chem.2013,4,1788-1795.
    24. Pavan, G M.; Barducci, A.; Albertazzi, L.; Parrinello, M., Combining metadynamics simulation and experiments to characterize dendrimers in solution. Soft Matter 2013,9, (9),2593-2597.
    25. Guo, R.; Wang, H.; Peng, C.; Shen, M.; Pan, M.; Cao, X.; Zhang, G.; Shi, X., X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J. Phys. Chem. C 2010, 114, (1),50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700