多功能PAMAM/金纳米复合材料的制备、表征及其在生物CT成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子影像学是一类先进的医学成像技术,可以用于检测并且定量测量体外、体内的生物学和细胞水平活动。分子影像学的一个重要分支是X-射线断层扫描技术(CT成像),该技术由于较高的空间分辨率和密度被广泛地用于临床成像。作为生物学体系中CT成像的重要组成部分,如何设计合适的具有良好生物相容性、更长成像时间、更高成像灵敏度和特异性的造影剂是非常重要的。相对于传统的含碘(I)造影剂而言,金纳米粒子(Au NPs)具有的一些优势使得其被作为分子探针用于CT成像的趋势在逐渐增长。树状大分子是一类高度支化、单分散、可合成的大分子,具有精确的组成结构。由于临床使用的含碘CT造影剂(如Omnipaque)成像时间短、高浓度时具有肾脏毒性且无特异性,所以本论文将树状大分子和Au NPs的优点结合起来,系统地研究了树状大分子/Au纳米复合材料的制备、稳定性、生物相容性和X-射线衰减系数,并评估了此类纳米复合材料作为造影剂在CT成像中应用的可行性。
     本论文选用第五代聚酰胺-胺(Polyamidoamine,PAMAM)树状大分子(G5.NH2)作为模板制备树状大分子包裹的Au NPs (Au DENPs),并对G5.NH2的末端氨基进行乙酰化修饰以中和材料的表面电势。通过调节Au和G5.NH2的摩尔比,制备了直径在2-4nm的[(Au0)50-G5.NHAc]DENP。通过SPC-A1细胞(一种人肺癌细胞)的苏木精-曙红(HE)染色和MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)实验证实[(Au0)50-G5.NHAc] DENPs在一定浓度范围内无细胞毒性。同时,通过瘤内注射和腹腔注射的方式,考察了[(Au0)50-G5.NHAc] DENPs对SPC-A1肿瘤的荷瘤鼠肿瘤部位的CT成像效果。以上实验证实,此类乙酰化的AuDENPs在肿瘤细胞的CT成像中具有巨大的潜力。
     为了改进所制备的Au DENPs的性能,利用聚乙二醇(PEG)对G5.NH2进行了修饰。首先,将PEG通过化学键合的方式修饰连接在G5.NH2的末端胺基上制备了G5.NH2-mPEG。随后,以此G5.NH2-mPEG为模板制备Au DENPs,并将末端氨基乙酰化即制备得到了PEG化的Au DENPs。PEG的修饰,提高了Au DENPs中Au的上载量,且通过调节Au/G5.NH2的摩尔比,此类PEG化的Au DENPs的尺寸分布在较窄的空间(2-4nm)。制备得到的PEG化的Au DENPs是水溶性的,且在pH=5-8和温度范围为4-50℃具有良好的稳定性,且当材料浓度达到50μM时,仍无明显的细胞毒性。通过对PEG化的Au DENPs的X-射线衰减系数的测定发现,在相同的Au和I浓度时,PEG化的Au DENPs较Omnipaque(传统的临床诊断用的含碘造CT影剂)具有更高的X-射线衰减系数。由于药代动力学的研究证明PEG化的Au DENPs具有较长的血液半衰期,故此类PEG化的Au DENPs不仅可以用于老鼠的血池造影成像,同时可以有效地用于SPC-A1移植瘤荷瘤鼠肿瘤部位的CT成像。这些结果均证实此类PEG化的Au DENPs有望被作为具有良好生物相容性的CT造影剂用于多重生物体系尤其是癌症的CT成像诊断。
     目前,开发多功能对肿瘤组织靶向高效CT成像的纳米探针仍然是研发工作的一大挑战。在上述研究工作的基础上,进一步以PEG作为中间体合成并表征了叶酸(FA)修饰的PEG化的Au DENPs,并将此种造影剂用于活体荷瘤鼠肿瘤部位的CT成像。在此,依次利用两种不同的PEG(FA-PEG-COOH和mPEG-COOH)修饰在G5.NH2的表面,并以此化合物作为模板合成Au DENPs,随后对G5.NH2末端剩余的氨基进行乙酰化处理即可制备得到FA修饰的PEG化的Au DENPs。制备得到的多功能化的AuDENPs通过不同的检测手段进行了表征。通过细胞活性实验、流式细胞术检测细胞周期实验、溶血实验分别验证了所制备材料的细胞毒性和血液相容性。所制备的多功能的Au DENPs在不同pH和温度范围、不同溶剂中均具有良好的胶体稳定性,且在给定的浓度范围内具有良好的细胞相容性和血液相容性。在相同的Au和I浓度时,所制备的FA修饰的PEG化的Au DENPs较Omnipaque具有更高的X-射线衰减系数。更重要的是,此类FA修饰的PEG化的Au DENPs可以实现对高叶酸受体的癌细胞的体外靶向CT成像,同时实现对活体移植瘤荷瘤鼠肿瘤部位的靶向CT成像。以上的结果证实,此类FA修饰的PEG化的Au DENPs有望被作为造影剂用于肿瘤组织的靶向CT成像。
     研究新型CT造影剂的另一个方向是如何将多种造影元素有效地结合起来。因此,我们设计利用含碘(I)造影剂泛影酸(Diatrizoic acid,DTA)修饰的G5.NH2作为稳定剂,通过温和的反应方法制备树状大分子稳定的Au NPs (Au DSNPs),并将此类造影剂用于增强CT成像的效果。首先,通过EDC将DTA修饰在G5.NH2上,并以此化合物为模板在室温且无外加还原剂的条件下,通过自还原的方法将氯金酸的水溶液还原成Au NPs,随后将G5.NH2剩余的末端氨基乙酰化中和电势,即可得到平均直径为6nm的DTA修饰的Au DSNPs ([(Au0)50-G5.NHAc-DTA] DSNPs),通过不同的方法对所制备的[(Au0)50-G5.NHAc-DTA] DSNPs进行了表征。结果证实,所制备的Au DSNPs在不同pH和温度范围内具有良好的胶体稳定性。体外溶血实验、细胞毒性实验、流式细胞检测分析和细胞形貌的观察均表明制备的Au DSNPs在材料浓度达到3μm时,仍具有良好的血液相容性和细胞相容性。在相同的Au和I浓度时,[(Au0)50-G5.NHAc-DTA] DSNPs较仅含Au的[(Au0)50-G5.NHAc] DENPs和仅含I的Omnipaque而言,具有更高的X-射线衰减系数。同时,制备的DTA修饰的Au DSNPs可以用于体外癌细胞和活体小鼠的血管CT成像,且较单一的含Au的[(Au0)50-G5.NHAc] DENPs和含I的Omnipaque在相同的Au和I浓度时,具有更好的CT成像效果。同时含有Au和I两种造影元素的DTA修饰的Au DSNPs可以增强X-射线衰减系数和检测的灵敏度,因而被用于多种生物体系的CT成像。
     在以上Au DENPs研究工作的基础上,进一步将DTA、异硫氰酸酯荧光素(FITC)和FA依次通过共价键修饰在[(Au0)5o-G5.NH2] DENPs的表面并对剩余氨基乙酰化以降低材料的表面电势从而制备得到了平均粒径为2.6nm的DTA修饰的多功能化的Au DENPs。通过溶血性实验、细胞形貌观察和细胞毒性实验证实,所制备的材料在给定的浓度范围内(3000nm),具有良好的血液相容性和细胞相容性。且所制备的材料,较单一的含金造影剂([(Au0)50-G5.NHAc] DENPs)而言,在相同Au摩尔浓度时,具有更高的X-射线衰减系数。所制备的DTA修饰的多功能化的Au DENPs可以实现对具有高叶酸受体表达的SKO细胞(一种具有高叶酸受体表达的人卵巢癌细胞)体外靶向CT成像,同时实现对活体移植瘤荷瘤鼠肿瘤部位的靶向CT成像。以上的结果证实,此类FA修饰的含有DTA的多功能化的AuDENPs有望被作为造影剂用于肿瘤组织的靶向CT成像。
     总之,PAMAM/Au纳米复合材料由于具有良好的X-射线衰减系数,在CT成像领域具有巨大的应用潜质。
Molecular imaging (MI) is an advanced technology in the field of medical imaging that has the ability to detect and to quantitatively measure the function of biological and cellular events in vitro and in vivo. As one of the important MI technologies, computed tomography (CT) is a reliable and widely used clinical imaging technique with high spatial and density resolution. The key component in CT imaging of biological systems is to design suitable contrast agents that have good biocompatibility, longer imaging time, and desirable imaging sensitivity and specificity. The utilization of gold nanoparticles (Au NPs) has seen an increasing potential as molecular probes for X-ray CT imaging, as they offer several advantages over conventional iodine-based agents. Dendrimers are a family of highly branched, monodispersed, synthetic macromolecules with well defined structural composition and architecture. Due to the drawbacks of clinically used iodine-based CT contrast agents (e.g., Omnipaque) such as short imaging time, renal toxicity at a high concentration, and non-specificity, the advantage of dendrimers and Au NPs were combined to systematically study the preparation, stability, biocompatibility, and X-ray attenuation characteristics of dendrimer/Au-based nanocomposites to testify their feasibility as contrast agents for CT imaging in this thesis.
     In this thesis, amine-terminated generation5polyarnidoamine (PAMAM) dendrimers (G5.NH2) were used as templates to prepared dendrimer-entrapped Au NPs (Au DENPs) followed by acetylation to neutralize the positive surface charge of the particles. By varying the molar ratio of gold salt/G5dendrimer, the acetylated Au DENPs ([(Au0)50-G5.NHAc] DENPs) with a size range of2-4nm can be prepared. The cell viability of acetylated Au DENPs were tested by hematoxylin and eosin staining and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of a human lung adencarcinoma cell line (SPC-A1cells), and confirmed that the [(Au0)5o-G5.NHAc] DENPs have no cell toxicity at a certain concentration. Meanwhile, the xenograft SPC-A1tumor model can be imaged after both intratumoral and intraperitoneal administration of the particles. Findings from this study suggest that the developed acetylated Au DENPs have a great potential to be used for CT imaging of cancer cells.
     Surface modification for G5.NH2was then carried out by polyethylene glycol (PEG) to improve the properties of Au DENPs. Firstly, PEG monomethyl ether was connected with the terminal amino group of G5.NH2by chemical bonding to get G5.NH2-mPEG. Then, G5.NH2-mPEG dendrimers were used as templates to synthesize Au DENPs, followed by acetylation of the remaining dendrimer terminal amines to generate PEGylated Au DENPs. The partial PEGylation modification of dendrimer terminal amines allows high loading of Au within the dendrimer interior, and consequently by simply varying the Au/dendrimer molar ratio, the size of the PEGylated Au DENPs can be controlled at a range of2-4nm with a narrow size distribution. The formed PEGylated Au DENPs are water-dispersible, stable in a pH range of5-8and a temperature range of4-50℃, and non-cytotoxic at a concentration as high as50u.M. X-ray absorption coefficient measurements show that the X-ray attenuation of the PEGylated Au DENPs is much higher than that of Omnipaque (a kind of traditional CT imaging contrast agent based on iodine used for clinical diagnosis) with I (iodine) concentration similar to Au. With the sufficiently long half-decay time demonstrated by pharmacokinetics studies for blood, the PEGylated Au DENPs enabled not only X-ray CT blood pool imaging of mice and rats after intravenous injection of the particles, but also effective CT imaging of a xenograft SPC-A1tumor model in nude mice. These findings suggest that the designed PEGylated Au DENPs can be used as a promising contrast agent with enhanced biocompatibility for CT imaging of various biological systems, especially in cancer diagnosis.
     At the moment, development of multifunctional nanoprobes with a targeting capability for efficient CT imaging of tumors still remains a great challenge. Herein, based on the previous research, folic acid (FA)-modified PEGylated Au DENPs were synthesized and characterized via a facile polyethylene glycol (PEG) linking strategy for in vivo targeted tumor computed tomography (CT) imaging applications. For this study, G5.NH2sequentially modified by two types of PEG moieties (PEG monomethyl ether with one end of carboxyl group (mPEG-COOH), and FA-modified PEG with one end of carboxyl groups (FA-PEG-COOH)) were used as templates to synthesize Au NPs within the dendrimer interiors, followed by acetylation of the remaining dendrimer terminal amines. The formed multifunctional Au DENPs were characterized via different techniques. Cell viability assay, flow cytometric analysis of the cell cycles, and hemolysis assay were used to assess the cytotoxicity and hemocompatibility of the particles. We show that the formed multifunctional Au DENPs are stable at different pH and temperature conditions and in different aqueous media, cytocompatible and hemocompatible in the given Au concentration range, and display much higher x-ray attenuation intensity than Omnipaque (an iodine-based CT contrast agent) under similar concentration of the active element (Au or iodine). Moreover, the developed FA-modified PEGylated Au DENPs enable targeted CT imaging of the model cancer cells with high FA receptor expression in vitro and the corresponding xenografted tumor model in vivo. These findings suggest that the designed FA-modified PEGylated Au DENPs may be used as a promising contrast agent for targeted CT imaging of tumors.
     Another direction for CT imaging is to design novel CT contrast agents which contains more than one radiodense element. Therefore, we designed a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of G5.NH2modified by diatrizoic acid (G5.NH2-DTA) as stabilizers for enhanced computed tomography (CT) imaging applications. G5.NH2dendrimers were first conjugated with DTA via EDC chemistry to get G5.NH2-DTA conjugates, which were subsequently used as templates for the synthesis of Au NPs via reduction of HAuCl4in aqueous solution without additional reducing agents at room temperature. Followed by an acetylation reaction to neutralize the dendrimer remaining terminal amines, DTA-modified Au DSNPs with a mean size of6nm were formed. The formed DTA-containing [(Au0)50-G5.NHAc-DTA] DSNPs were characterized via different techniques. We show that the Au DSNPs are colloid stable in aqueous solution under different pH and temperature conditions. In vitro hemolytic assay, cytotoxicity assay, flow cytometry analysis, and cell morphology observation reveal that the formed Au DSNPs have good hemocompatibility and non-cytotoxic at a concentration up to3.0μM. X-ray absorption coefficient measurements show that the DTA-containing Au DSNPs have enhanced attenuation intensity, much higher than that of [(Au0)50-G5.NHAc] DENPs without DTA or Omnipaque at the same molar concentration of the active element (Au or I). The formed DTA-containing Au DSNPs can be used for CT imaging of cancer cells in vitro as well as for blood pool CT imaging of mice in vivo with significantly improved signal enhancement. With the two radiodense elements of Au and iodine incorporated within one particle, the formed DTA-containing Au DSNPs may be applicable for CT imaging of various biological systems with enhanced X-ray attenuation property and detection sensitivity.
     Based on the above research about Au DENPs, DTA, fluorescein isothiocyanate (FITC), and FA were further ordinal modified onto the surface of [(Au0)50-G5.NH2] DENPs by covalent bond, followed by acetylation to neutralize the positive surface charge of the particles, and DTA-modified multifunctional Au DENPs with a mean size of2.6nm were formed. In vitro hemolytic assay, cell morphology observation, and cytotoxicity assay reveal that the formed Au DENPs have good hemocompatibility and non-cytotoxic at a concentration up to3000nM. X-ray absorption coefficient measurements show that the DTA-containing multifunctional Au DENPs have enhanced attenuation intensity, much higher than that of [(Au0)50-G5.NHAc] DENPs without DTA at the same molar concentration of Au. Moreover, the developed FA-modified DTA-containing multifunctional Au DENPs enable targeted CT imaging of the model SKO cells with high FA receptor expression in vitro and the corresponding xenografted tumor model in vivo. These findings suggest that the designed FA-modified DTA-containing multifunctional Au DENPs may be used as a promising contrast agent for targeted CT imaging of tumors.
     In summary, this PAMAM/Au system with well X-ray attenuation will find various applications in CT imaging area.
引文
[1]Moghimi SM, Hunter AC, Murray JC. Nanomedicine:current status and future prospects. Faseb J. 2005;19:311-30.
    [2]Peer D, Karp JM, Hong S, FaroKhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol.2007;2:751-60.
    [3]Weissleder R. Molecular imaging:exploring the next frontier 1. Radiology.1999;212:609-14.
    [4]Weissleder R. Molecular imaging in cancer. Science.2006;312:1168.
    [5]Weissleder R, Mahmood U. Molecular Imagingl. Radiology.2001;219:316.
    [6]Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging:current status and future directions. Clinical radiology.2010;65:567-81.
    [7]Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Molecular imaging. 2010;9:117-27.
    [8]Debbage P, Jaschke W. Molecular imaging with nanoparticles:giant roles for dwarf actors. Histochemistry and cell biology.2008;130:845-75.
    [9]Tomalia DA, Baker.H, Dewald.J, al. e. A new class of polymers:starburst-dendritic macromolecules. Polym J.1985;17:117-32.
    [10]Flory PJ. Molecular Size Distribution in Three Dimensional Polymers. Ⅰ. Gelation 1. J Am Chem Soc. 1941;63:3083-90.
    [11]Buhleier E, Wehner W, Vogtle F. Cascade and nonskid-chain-like synthesis of molecular cavity topologies. Synthesis.1978;2:155-8.
    [12]Newkome GR, Yao ZQ, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules:a new approach to micelles. A [27]-arborol. J Org Chem.1985;50:2003-4.
    [13]Tomalia DA. Birth of a new macromolecular architecture:dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci.2005;30:294-324.
    [14]Denkewalter RG, Kolc J, Lukasavage WJ. Macromolecular highly branched homogeneous compound based on lysine units. Google Patents; 1981.
    [15]Ihre H, Hult A, Soderlind E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis (hydroxymethyl) propionic acid and 1,1,1-tris (hydroxyphenyl) ethane. J Am Chem Soc.1996;118:6388-95.
    [16]Carnahan MA, Grinstaff MW. Synthesis of generational polyester dendrimers derived from glycerol and succinic or adipic acid. Macromolecules.2006;39:609-16.
    [17]Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers:a tutorial. Chem Soc Rev. 2011;40:173-90.
    [18]Wooley KL, Hawker CJ, Frechet JMJ. Unsymmetrical 3-dimensional macromolecules-preparation and characterization of strongly dipolar dendritic macromolecules. J Am Chem Soc.1993;115:11496-505.
    [19]Zimmerman SC, Zeng FW, Reichert DEC, Kolotuchin SV. Self-assembling dendrimers. Science. 1996;271:1095-8.
    [20]Maraval V, Pyzowski J, Caminade AM, Majoral JP. "Lego" chemistry for the straightforward synthesis of dendrimers. J Org Chem.2003;68:6043-6.
    [21]Newkome GR, Shreiner CD. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs:An overview of the divergent procedures. Polymer.2008;49:1-173.
    [22]De Gennes PG, Hervet H. Statistics of "starburst" polymers. J Phys Lett.1983;44:351-60.
    [23]Bosman AW, Janssen HM, Meijer EW. About dendrimers:structure, physical properties, and applications. Chem Rev.1999;99:1665-88.
    [24]Wooley KL, Hawker CJ, Frechet JMJ. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J Am Chem Soc.1991; 113:4252-61.
    [25]Moreno KX, Simanek EE. Conformational analysis of triazine dendrimers:using NMR spectroscopy to probe the choreography of a dendrimer's dance. Macromolecules.2008;41:4108-14.
    [26]Lee I, Athey BD, Wetzel AW, Meixner W, Baker JR, Jr. Structural molecular dynamics studies on polyamidoamine dendrimers. for a therapeutic application:Effects of pH and generation. Macromolecules. 2002;35:4510-20.
    [27]Ihre H, De Jesus OLP, Frechet JMJ. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J Am Chem Soc.2001;123:5908-17.
    [28]Hawker CJ, Wooley KL, Frechet JMJ. Unimolecular micelles and globular amphiphiles:dendritic macromolecules as novel recyclable solubilization agents. J Chem Soc, Perkin Trans 1.1993:1287-97.
    [29]Zeng F, Zimmerman SC. Dendrimers in supramolecular chemistry:from molecular recognition to self-assembly. Chem Rev.1997;97:1681-712.
    [30]Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev.2005;57:2215-37.
    [31]Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst (TM) dendrimers. J Biomed Mater Res.1996;30:53-65.
    [32]Gajbhiye V, Kumar PV, Tekade RK, Jain NK. PEGylated PPI dendritic architectures for sustained delivery of H-2 receptor antagonist. Eur J Med Chem.2009;44:1155-66.
    [33]Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D'Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm.2003;252:263-6.
    [34]Kim Y, Klutz AM, Jacobson KA. Systematic investigation of polyamidoamine dendrimers surface-modified with poly(ethylene glycol) for drug delivery applications:Synthesis, characterization, and evaluation of cytotoxicity. Bioconjugate Chem.2008;19:1660-72.
    [35]Patil ML, Zhang M, Minko T. Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing. Acs Nano.2011;5:1877-87.
    [36]Pun SH, Bellocq NC, Liu AJ, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem.2004;15:831-40.
    [37]Sideratou Z, Kontoyianni C, Drossopoulou GI, Paleos CM. Synthesis of a folate functionalized PEGylated poly(propylene imine) dendrimer as prospective targeted drug delivery system. Bioorg Med Chem Lett. 2011;20:6513-7.
    [38]Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM dendrimers:synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem. 2008; 19:2239-52.
    [39]Chen HT, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc.2004; 126:10044-8.
    [40]DeLucia A, Wakefield TW, Andrews PC, Nichol BJ, Kadell AM, Wrobleski SK, et al. Efficacy and toxicity of differently charged polycationic protamine-like peptides for heparin anticoagulation reversal. J Vase Surg.1993;18:49.
    [41]Gillies ER, Dy E, Frechet JMJ, Szoka FC. Biological evaluation of polyester dendrimer:poly (ethylene oxide)"bow-tie" hybrids with tunable molecular weight and architecture. Mol Pharm.2005;2:129-38.
    [42]Faraday M. The Bakerian lecture:experimental relations of gold (and other metals) to light. Philos Trans R Soc London.1857;147:145-81.
    [43]Daniel MC, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev.2004; 104:293-346.
    [44]Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc.1951;11:55-75.
    [45]Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B.2006; 110:15700-7.
    [46]Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir.1993;9:3408-13.
    [47]Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun.1994:801-2.
    [48]Templeton AC, Wuelfing WP, Murray RW. Monolayer-protected cluster molecules. Accounts Chem Res. 2000;33:27-36.
    [49]Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev.2008;37:1896-908.
    [50]Boisselier E, Salmon L, Ruiz J, Astruc D. How to very efficiently functionalize gold nanoparticles by "click" chemistry. Chem Commun.2008:5788-90.
    [51]Boisselier E, Astruc D. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev.2009;38:1759-82.
    [52]Shen M, Shi X. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale.2010;2:1596-610.
    [53]Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, et al. Chemical sensing and imaging with metallic nanorods. Chem Commun.2007:544-57.
    [54]Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunochemistry. 1971;8:1081.
    [55]Huang YF, Lin YW, Lin ZH, Chang HT. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. J Nanopart Res.2009; 11:775-83.
    [56]Lu W, Zhang G, Zhang R, Flores LG, Huang Q, Gelovani JG, et al. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 2010;70:3177-88.
    [57]Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev.2011;40:3391-404.
    [58]Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A. 2003;100:13549.
    [59]Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS nano.2010;4:4559-64.
    [60]Krause W. Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev.1999;37:159-73.
    [61]Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 2004;39:149-54.
    [62]Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, et al. X-ray Attenuation Property of Dendrimer-Entrapped Gold Nanoparticles. J Phys Chem C.2010;114:50-6.
    [63]Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, et al. Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett.2012;7.
    [64]Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano.2010;4:3689-96.
    [65]Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, et al. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Letters.2008;8:4593-6.
    [66]Alric C, Taleb J, Le Due G, Mandon C, Billotey C, Le Meur-Herland A, et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 2008;130:5908-15.
    [67]Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology. 2010;21:245104.
    [68]Shi X, Wang S H, Meshinchi S, Van Antwerp M E, Bi X D, Lee I H, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007;3:1245-52.
    [69]Yordanov A T, Lodder A L, Woller E K, Cloninger M J, Patronas N, Milenic D, et al. Novel iodinated dendritic nanoparticles for computed tomography (CT) imaging. Nano Lett 2002;2:595-9.
    [70]Yordanov A T, Mollov N, Lodder A L, Woller E, Cloninger M, Walbridge S, et al. A water-soluble triiodo amino acid and its dendrimer conjugate for computerized tomography (CT) imaging. J Serb Chem Soc. 2005;70:163-70.
    [71]Fu Y, Nitecki D E, Maltby D, Simon G H, Berejnoi K, Raatschen H. J, et al. Dendritic iodinated contrast agents with PEG-cores for CT imaging:synthesis and preliminary characterization. Bioconjugate Chem. 2006;17:1043-56.
    [72]Guo R, Wang H, Peng C, Shen M, Zheng L, Zhang G, et al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem.2011;18:5120-7.
    [73]Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107-19.
    [74]Wang Y, Guo R, Cao XY, Shen MW, Shi XY. Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials.2011;32:3322-9.
    [75]Peng C, Wang H, Guo R, Shen MW, Cao XY, Zhu MF, et al. Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci.2011;119:1673-82.
    [76]Knecht MR, Garcia-Martinez JC, Crooks RM. Hydrophobic dendrimers as templates for Au nanoparticles. Langmuir 2005;21:11981-6.
    [77]Oh S K, Kim Y G, Ye H C, M CR. Synthesis, characterization, and surface immobilization of metal nanoparticles encapsulated within bifunctionalized dendrimers. Langmuir 2003;19:10420-5.
    [78]Shi X, Lee I, R BJJ. Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 2008; 18:586-93.
    [79]Shi X, Wang S H, Sun H P, R BJJ. Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter.2007;3:71-4.
    [80]Balogh L, Tomalia DA. Poly(amidoamine) dendrimer-templated nanocomposites.1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 1998;120:7355-6.
    [81]Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA. Formation of silver and gold dendrimer nanocomposites. J Nanoparticle Res.1999; 1:353-68.
    [82]Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem Res 2001;34:181-90.
    [83]Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J Am Chem Soc 2005; 127:1015-24.
    [84]Lemon BI, Crooks RM. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J Am Chem Soc 2000;122:12886-7.
    [85]Shi X, Sun K, Balogh L P, R BJJ. Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 2006;17:4554-60.
    [86]Esumi K. Top. Curr. Chem.2003.
    [87]Esumi K. In Encyclopedia of Nanoscience and Nanotechnology, ed. H. S. Nalwa2004.
    [88]Esumi K, Suzuki A, Aihara N, Usui K, K T. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 1998;14:3157-9.
    [89]Esumi K, Suzuki A, Yamahira A, K T. Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir 2000; 16:2604-8.
    [90]Fahmi A, Pietsch T, Appelhans D, Gindy N, B V. Water-soluble CdSe nanoparticles stabilised by dense-shell glycodendrimers. New J Chem 2009;33:703-6.
    [91]Satoh N, Nakashima T, Kamikura K, K Y. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 2008;3:106-11.
    [92]Shi X, Sun K, R BJJ. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C 2008;112:8251-8.
    [93]Guo R, Wang H, Peng C, Shen M W, Pan M J, Cao X Y, et al. X-ray Attenuation Property of Dendrimer-Entrapped Gold Nanoparticles. J Phys Chem C 2010; 114:50-6.
    [94]Liu H, Shen M, Zhao J, Guo R, Cao X, Zhang G, et al. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf B-Biointerfaces. 2012;94:58-67.
    [95]Shi XY, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007;3:1245-52.
    [1]Kim YG, Oh SK, Crooks RM. Preparation and characterization of 1-2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem Mat 2004;16:167-72.
    [2]Li DX, He Q, Cui Y, Li JB. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem Mat 2007;19:412-7.
    [3]Li DX, He Q, Cui Y, Wang KW, Zhang XM, Li JB. Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chem-Eur J.2007; 13:2224-9.
    [4]Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, et al. Biological applications of colloidal nanocrystals. Nanotechnology 2003;14:R15-R27.
    [5]Shenhar R, Rotello VM. Nanoparticles:Scaffolds and building blocks. Accounts Chem Res 2003;36:549-61.
    [6]Balogh D, Zhang ZX, Cecconello A, Vavra J, Severa L, Teply F, et al. Helquat-induced chiroselective aggregation of Au NPs. Nano Letters.2012;12:5835-9.
    [7]Chen M, Yang Y, Chen S, Li J, Aklilu M, Tai Y. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. ACS applied materials & interfaces. 2013;5:511-7.
    [8]Liu H, Shen M, Zhao J, Guo R, Cao X, Zhang G, et al. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles. Colloid Surf B-Biointerfaces. 2012;94:58-67.
    [9]Kojima C, Cho S, Higuchi E. Gold nanoparticle-loaded PEGylated dendrimers for theragnosis. Res Chem Intermed.2012;38:1279-89.
    [10]Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials.2012;33:1079-89.
    [11]Guo R, Wang H, Peng C, Shen M, Zheng L, Zhang G, et al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem.2011;21:5120-7.
    [12]Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, et al. X-ray Attenuation Property of Dendrimer-Entrapped Gold Nanoparticles. J Phys Chem C 2010; 114:50-6.
    [13]Guan Z, Li S, Cheng P, Zhou N, Gao N, Xu Q. Band-selective coupling-induced enhancement of two-photon photoluminescence in gold nanocubes and its application as turn-on fuorescent probes for cysteine and glutathione. ACS Appl Mater Interfaces.2012;4:5711-6.
    [14]Kojima C, Watanabe Y, Hattori H, Iida T. Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory. J Phys Chem C.2011;115:19091-5.
    [15]Wang J, Boriskina SV, Wang H, Reinhard BM. Illuminating epidermal growth factor receptor densities on filopodia through plasmon coupling. Acs Nano.2011;5:6619-28.
    [16]Vieweger M, Goicochea N, Koh E, Dragnea B. Photothermal Imaging and Measurement of Protein Shell Stoichiometry of Single HIV-1 Gag Virus-like Nanoparticles. Acs Nano.2011;5:7324-33.
    [17]Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007;7:1929-34.
    [18]Guo R, Li RT, Li XL, Zhang LY, Jiang XQ, Liu BR. Dual-Functional Alginic Acid Hybrid Nanospheres for Cell Imaging and Drug Delivery. Small 2009;5:709-17.
    [19]Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W. Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods. Langmuir 2008;24:11860-5.
    [20]Patra CR, Cao S, Safgren S, Hattacharya R, Ames MM, Shah V, et al. Intracellular Fate of a Targeted Delivery System. J Biomed Nanotechnol.2008;4:508-14.
    [21]Shi XY, Ganser TR, Sun K, Balogh LP, Baker JR. Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 2006;17:1072-8.
    [22]Shi XY, Lee I, Baker JR. Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 2008; 18:586-93.
    [23]Shi XY, Sun K, Baker JR. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C 2008;112:8251-8.
    [24]Shi XY, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007;3:1245-52.
    [25]Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y. Gold nanocages for biomedical applications. Adv Mater 2007; 19:3177-84.
    [26]Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology. 2010;21:245104.
    [27]Shi XY, Wang SH, Sun HP, Baker JR. Improved biocompatibility of surface functionalized dendrimer entrapped gold nanoparticles. Soft Matter.2007;3:71-4.
    [28]Majoros IJ, Keszler B, Woehler S, Bull T, Baker JR. Acetylation of poly(amidoamine) dendrimers. Macromolecules 2003;36:5526-9.
    [29]Peng C, Wang H, Guo R, Shen MW, Cao XY, Zhu MF, et al. Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci.2011;119:1673-82.
    [1]Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C.2010;114:50-6.
    [2]Peng C, Wang H, Guo R, Shen MW, Cao XY, Zhu MF, et al. Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci.2011;119:1673-82.
    [3]Wang H, Zheng L, Peng C, Guo R, Shen M, Shi X, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials.2011;32:2979-88.
    [4]Ha S, Camalier CE, Weitzmann MN, Beck GJ, Lee JH. Long-term monitoring of the physicochemical properties of silica-based nanoparticles on the rate of endocytosis and exocytosis and consequences of cell division. Soft Materials.2013;11:195-203.
    [5]Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials.2013;34:3020-30.
    [6]Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z. Invivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials.2013;34:2787-95.
    [7]Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, et al. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol.2007;42:797-806.
    [8]Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc.2007; 129:7661-5.
    [9]Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. Acs Nano.2010;4:3689-96.
    [10]Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K. X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology. 2010;21:245104.
    [11]Takeuchi Y, Ida T, Kimura K. Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation. J Phys Chem B.1997;101:1322-7.
    [12]Xu CJ, Tung GA, Sun SH. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater.2008;20:4167-9.
    [13]Huang X, Peng X, Wang Y, Wang Y, Shin D, E1-Sayed MA, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. Acs Nano. 2010;4:5887-96.
    [1]Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C.2010; 114:50-6.
    [2]Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107-19.
    [3]Kim D, Jeong YY, Jon S. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano.2010;4:3689-96.
    [4]Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer:an in vivo study. Int J Nanomed.2011;6:2859-64.
    [5]Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34:470-80.
    [6]Yang H, Zhang CX, Shi X, Hu H, Du XX, Fang Y, et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials.2010;31:3667-73.
    [1]Fu YJ, Nitecki DE, Maltby D, Simon GH, Berejnoi K, Raatschen HJ, et al. Dendritic iodinated contrast agents with PEG-cores for CT imaging:Synthesis and preliminary characterization. Bioconjugate Chem. 2006;17:1043-56.
    [2]Guo R, Wang H, Peng C, Shen M, Zheng L, Zhang G, et al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem.2011; 18:5120-7.
    [3]Yordanov AT, Lodder AL, Woller EK, Cloninger MJ, Patronas N, Milenic D, et al. Novel iodinated dendritic nanoparticles for computed tomography (CT) imaging. Nano Lett 2002;2:595-9.
    [4]Kao CY, Hoffman EA, Beck KC, Bellamkonda RV, Annapragada AV. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad radiol.2003;10:475-83.
    [5]Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials.2007;28:5555-61.
    [6]Shi X, Lee I, Baker JR, Jr. Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem. 2008;18:586-93.
    [7]Shi X, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee IH, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small.2007;3:1245-52.
    [8]Shi XY, Sun K, Baker JR. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J Phys Chem C 2008; 112:8251-8.
    [9]Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107-19.
    [10]Wang H, Zheng L, Peng C, Guo R, Shen M, Shi X, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials.2011;32:2979-88.
    [1]Peng C, Li K, Cao X, Xiao T, Hon W, Zheng L, et al. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale.2012;4:6768-78.
    [2]Peng C, Qin JB, Zhou BQ, Chen Q, Shen MW, Zhu MF, et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem.2013;4:4412-24.
    [3]Peng C, Wang H, Guo R, Shen MW, Cao XY, Zhu MF, et al. Acetylation of dendrimer-entrapped gold nanoparticles:synthesis, stability, and X-ray attenuation properties. J Appl Polym Sci.2011;119:1673-82.
    [4]Wang H, Zheng L, Peng C, Guo R, Shen M, Shi X, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials.2011;32:2979-88.
    [5]Guo R, Wang H, Peng C, Shen M, Zheng L, Zhang G, et al. Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem.2011;18:5120-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700