紫外光固化脂环族聚氨酯丙烯酸酯涂膜的合成及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光固化技术由于其成型迅速、工艺简单、节约能源、环境友好、适用于规模化工业生产等特点,可以用来制备性能优异的清漆涂膜。在紫外光固化涂料领域中,脂环族聚氨酯丙烯酸酉(Cycloaliphatic polyurethane acrylate, CPUA)低聚物是一种重要的紫外光固化用树脂,它结合了聚氨酯和聚丙烯酸酯的性能优点,具有良好的附着力、柔韧性、耐磨性和耐低温性。另外,CPUA分子中环己基代替了传统涂料中的苯环,提高了紫外光固化涂膜的耐黄变性和耐候性。本论文探讨了四种常见的聚醚型二元醇软段,聚乙二醇1000(PEG1000)聚四氢呋喃醚1000(PTMG1000)、聚丙二醇1000(PPG1000)和聚丙二醇2000(PPG2000)对CPUA紫外光固化涂膜性能的影响,并以性能最佳的CPUA紫外光固化涂膜为基础进行共混改性,制备了脂环族聚氨酯丙烯酸酯/脂环族环氧丙烯酸酯、脂环族聚氨酯丙烯酸酯/脂环族环氧树脂和脂环族聚氨酯丙烯酸酯/脂环族环氧树脂/低分子量的含硅丙烯酸酯KH570紫外光固化共混涂膜,并考察了它们的微观形貌、相结构与涂膜的热稳定性、机械性能及涂膜表面性能之间的关系。另外,对采用自由基/阳离子混杂紫外光固化技术制备的互穿聚合物网络(Interpenetrating Polymer Network, IPN)体系UTC-3的动力学成因和相分离行为进行了深入研究。具体研究内容及主要结论如下:
     1.以异佛尔酮二异氰酸酯(IPDI)和甲基丙烯酸羟乙酯(HEMA)为硬段,聚醚二元醇PEG1000、PTMG1000、PPG1000、PPG2000为软段,分别制备了四种不同的CPUA紫外光固化涂膜CPUA-1、CPUA-2、CPUA-3和CPUA-4。这四种光固化涂膜的主要性能相差不大,其中,低聚物CPUA-1由于PEG1000分子的链结构规则,结晶性好,涂膜硬度高,但是其较高含量的醚键导致低聚物黏度较大,涂装困难,且涂膜耐清洗性差;而低聚物CPUA-3由于PPG1000分子侧基的存在降低了体系的结晶性,低聚物黏度较小,得到的紫外光固化涂膜各项性能指标良好,比较适合规模化工业生产。通过对聚醚型二元醇的分子结构与相应的紫外光固化CPUA涂膜性能之间关系的分析可知,软段的结构和含量是决定CPUA涂膜性能的重要影响因素:软段越柔软,低聚物越容易结晶,涂膜的硬度和耐热性就越好;软段分子量越大,硬段含量越少,涂膜的硬度越低。
     2.紫外光固化脂环族聚醚型聚氨酯丙烯酸酯CPUA-3和脂环族环氧丙烯酸酯(Cycloaliphatic epoxy acrylate,CEA)共混改性涂膜中,CPUA-3、CEA和活性稀释剂三羟甲基丙烷三甲基丙烯酸酉(Trimethylolpropane triacrylate, TMPTMA)三者相容性良好,在紫外光固化过程中发生自由基共聚,无明显的相分离现象。由涂膜液氮淬断面的扫描电子显微镜(SEM)图可知,共混涂膜UEAT-2(CPUA-3、CEA和TMPTMA的组成质量比为30:20:50)的断裂面出现较长的断裂带,且断面比较光滑,表明该组成比时的涂膜具有良好的韧性,此时涂膜的铅笔硬度,摆杆硬度,拉伸性能和耐热性各项性能指标最佳,表面光滑无缺陷。
     3.紫外光固化CPUA-3和脂环族环氧树脂(Cycloaliphatic epoxy resin, CER)共混改性涂膜中,CPUA-3、CER和TMPTMA三者相容性良好。在紫外光固化过程中,CPUA-3和TMPTMA发生自由基共聚反应,聚合速率相对较高;CER发生阳离子光聚合反应,聚合速率相对较低。两种不同的光聚合类型引发微观相分离现象,体系呈现明显的两相结构。当紫外光固化共混涂膜中CER的质量分数在50%-70%范围内时,两相形成IPN结构。在各种组成配比的涂膜中,具有IPN结构的紫外光固化涂膜UTC-3(CPUA-3. TMPTMA和CER的组成质量比为15:15:70)的综合性能最佳,其力学性能,热稳定性和表面性能均较好,这主要是由于IPN体系中两相聚合物之间具有协同效应,分子链之间存在大量的氢键,能促进了两相之间的相容性,表现为动态热机械分析(DMA)曲线呈单峰态势。
     4.紫外光诱导相分离的自由基/阳离子紫外光固化共混改性体系中,考察了体系固化前共混体系的差示扫描量热(DSC)曲线和相关玻璃化转变温度Tg,黏流温度Tf及热聚合初始温度Ti,建立了共混体系的温变相图。随着CER含量的增加,紫外光固化共混改性体系的相结构经历了“海-岛”结构(Ⅰ)、双连续结构和“海-岛”结构(Ⅱ)三个阶段。由于CPUA与CER之间存在黏度差异,体系主体相发生的相反转的过程是不对称的。以其中性能最佳的紫外光固化IPN涂膜UTC-3为研究对象,采用SEM测试跟踪了UTC-3共混体系随时间变化的相分离演变过程,发现CPUA-3/TMPTMA/CER共混体系的相分离行为受各组分的模量、黏度、光聚合速率等多种因素的影响,相分离过程比较复杂。基于以上对自由基/阳离子紫外光固化诱导相分离过程的分析,建立了三角亚稳相图,并提出自由基/阳离子紫外光固化体系的相分离分为以下几个阶段:开始相分离、自由基紫外光固化聚合主导期、模量控制相分离的自由基/阳离子紫外光固化共同聚合期、阳离子紫外光固化聚合主导期和相分离终止。
     5.紫外光固化UTC-3和低分子量含硅丙烯酸酯KH570共混改性涂膜中,KH570与共混体系UTC-3存在一定的相容性。当KH570的质量分数低于1.0wt.%o时,四者能够混溶。含单双键的低分子量丙烯酸酯KH570以侧链的形式进入交联网络,降低了交联密度,为光引发剂,未反应的低聚物和活性稀释剂提供了流动空间,提高了自由基/阳离子紫外光固化共混体系的聚合速率和最终转化率。由SEM图可以观察到,KH570的空间位阻效应使得紫外光固化涂膜UTC-3的微观形貌由IPN结构变为含有大量空穴和缝隙的复杂结构。但是,随着KH570含量的增加,分子间氢键作用占主导,涂膜液氮淬断面逐渐变得平滑而致密。与UTC-3紫外光固化涂膜相比,UTC-3/KH570紫外光固化共混涂膜的机械性能有所下降,但断裂伸长率增大,阻尼性能和热稳定性有明显提高,润湿性也有所改善。另外,由原子力显微镜(AFM)图和X-射线光电子能谱(XPS)图可知,UTC-3紫外光固化涂膜表面的KH570的含量远高于KH570添加到体系中的含量,表明KH570在光固化过程中会发生分子迁移现象,其体相密度低于涂膜表面密度。
Ultraviolet (UV) curing technology could be used to synthesize high performance vanish coatings because of its rapid prototyping, easy precessing, energy saving, environmental friendly and suitable for large scaled industrial production. In UV-curable coating field, cycloaliphatie polyurethane acrylate (CPUA) oligomer is an important UV-curable resin, which combines advantages of polyurethane and polyacrylate and has good adhesion, flexibility, wear resistance and low temperature resistance. Phenyl group is substituted by cyclohexyl group in its molecule, improving etiolation resistance and weather resistance of its UV-cured film. In this dissertation the effects of four soft segment polyether diols polyethylene glycol1000(PEG1000), polyoxytetramethylene glycol1000(PTMG1000), polypropylene glycol1000(PPG1000), polypropylene glycol2000(PPG2000) on the properties of alicyclic polyurethane acrylate films were discussed, and cycloaliphatic polyurethane acrylate/cycloaliphatic epoxy acrylate(CEA) UV-cured blend films, cycloaliphatic polyurethane acrylate (CPUA)/cycloaliphatic epoxy resin (CER) UV-cured blend films and cycloaliphatic polyurethane acrylate (CPUA)/cycloaliphatic epoxy resin (CER)/small molecular weight silicon-containind acrylate KH570UV-cured blend films were prepared on the basis of polyether cycloaliphatic polyurethane acrylate with the best overall properties, and the relationships between micro-morphologies, phase structures and thermal stabilities, mechanical properties, apparent properties of the UV-cured blend films were investigated. In addition, dynamic genesises and phase separation behaviors of Interpenetrating Polymer Network (IPN) system UTC-3prepared by free-radical/cationic hybrid UV curing technique were carefully analyzed. The main research works and conclusions are as follows:
     1. Four different cycloaliphatic polyether polyurethane acrylate UV-cured films CPUA-1, CPUA-2, CPUA-3and CPUA-4were prepared by using isophorone diisocyanate (IPDI) and hydroxyethyl methacrylate (HEMA) as hard segments and polyether diols PEG1000, PTMG1000, PPG1000and PPG2000as soft segments, respectively. Most of their properies were not obviously different, in which CPUA-1UV-cured film had better pencil hardness due to the regular chain structure and good crystallinity of PEG1000molecule, while higher viscosity, and poor wash-resistant due to its higher content of ether bonds; UV-cured film CPUA-3showed the best comprehensive properties especially lower viscosity of its oligomer because PPG1000molecule with side methyl groups reduced the crystallinity of UV-cured film, more suitable for large scale industrial production. According to the analyses of relationship between molecular structure of polyether diols and the properties of corresponding polyurethane acrylates UV-cured films, the content and structure of soft segment could be considered as determined important factors:the softer the soft segment, the easier the crystallization, the better the hardness and heat resistance; the greater molecular weight of soft segment, the lower content of hard segment, the poor hardness.
     2. In cycloaliphatic polyurethane acrylate and cycloaliphatic epoxy acrylate modified blend UV-cured films, CPUA-3, CEA and reactive diluent TMPTMA with excellent compatibility, copolymerized with each other by free-radical mechnism, surffering no obvious phase separation. Scanning Electron Microscope (SEM) pictures showed the cross section of film UEAT-2(the mass ratio of CPUA-3, CEA and TMPTMA is30:20:50), prepared by liquid nitrogen quenching, presented long fault zones, smooth fault surface, indicatng good flexibility of the film. Moreover, the film had the best comprehensive properties with good pencil hardness, pendulum hardness, tensile properties and heat resistance and smooth surface without defects.
     3. In cycloaliphatic polyurethane acrylate and cycloaliphatic epoxy resin modified blend UV-curable systems, cycloaliphatic urethane acrylate CPUA-3, the alicyclic epoxy resin CER and reactive diluent trimethylolpropane triacrylate (TMPTMA) had good compatibility. During the UV curing process, CPUA-3and TMPTMA reacted via free-radical copolymerization with relatively higher polymerization rate; CER was polymerized via cationic photopolymerization with relatively lower polymerization rate. Two different types of photo-polymerization initiated micro-phase separation, and the system exhibited an obvious two-phase structure. When the weight percentages of CER were in the range from50%to70%, the two phases formed into IPN structures. UV-cured film UTC-3(the mass ratio of CPUA-3, TMPTMA and CER was15:15:70) with IPN structure exhibited the best overall performance, including better mechanical properties, thermal stability and surface properties, because of synergistic effect of the dual-phase polymers. There were a lot of hydrogen bonds between the two cross-linked network polymer molecular chains, leading to good compatibility between the two phases, which was proved by the performance of Dynamic Thermomechanical Analysis (DMA) curve with a single peak situation.
     4. In the free-radical/cationic modified blend UV-curable systems initiated by photopolymerization-induced phase separation, Differential Scanning Calorimetry (DSC) curves of the unreacted systems, corresponding glass transition temperature Tg, viscous flow temperature Tf and initial polymerization temperature Ti were investigated, and temperature change phase diagram of the blend systems was established. With the increase of CER content, the phase structures went through three stages:sea-islands structure (Ⅰ), bicontinuous structure and sea-islands structure (Ⅱ). Due to the different viscosity of CPUA and CER, the phase transition process was asymmetry. The UV-cured IPN film UTC-3with best properties was considered as the research object and SEM photos was used to track evolution of phase separation process of UTC-3blend system which was changed with time. It was found that the phase separation behavior of CPUA-3/TMPTMA/CER blend system was affected by the modulus, viscosity, curing reaction rates of two phase polymers. Based on the above analysis of the free-radical/cationic UV curing induced phase separation process, a triangle metastable phase diagram was established, and a conclusion was proposed that the phase separation process of free-radical/cationic UV-curable system was divided into several stages:starting phase separation, UV-curable free-radical photo-polymeric dominant period, modulus controlled phase separation period of UV-curable free-radical/cationic co-photopolymerization, UV-curable cationic photo-polymeric dominant period, phase separation termination.
     5. In UV-curable UTC-3and a small molecule silicon-containing acrylate KH570modified blend UV-curable systems, KH570had certain compatibility with UTC-3modified system. When mass percentage of KH570is less than1.0wt.%o, four components could be miscible with each other. The introduction of additive KH570with single double bond decreased the density of cross-linked networks, provided flowing space for photo-initiators, oligomers and unreacted monomers, accelerated the polymerization rate of free-radical/cationic hybrid curing systems, and increased the final conversions. As observed in SEM images, microstructure of UV-cured IPN film became complicated structures containing a large number of holes and gaps, which was attributed to the steric effect of KH570. However, with the increase of the content of KH570, hydrogen bond effect between molecules was dominant, and the cross section become smooth and contact. Compared with the UTC-3UV-cured film, the mechanical properties of UTC-3/KH570blend UV-cured systems were decreased, while breaking elongation was increased, damping properties and thermal stability has obviously been improved, wetting resistance was also improved. Furthermore, as shown in the Atomic Force Microscope (AFM) images and X-ray Photoelectron Spectroscopy (XPS) spectra, the content of KH570on the surface of UTC-3UV-cured film was much higher than the addition ratio to the unreactive systems, indicating that the migration phenomenon during photopolymerization process, and the bulk density was lower than the density of UV-cured film surface.
引文
[1]王德海,江棂.紫外光固化材料-理论与应用[M].北京,科学出版社.2001
    [2]金养智.光固化材料性能和应用手册[M].北京,化学工业出版社.2010
    [3]付锴,周集义.紫外光固化聚氨酯丙烯酸酯研究进展[J].化学推进剂与高分子材料.2009,7(2):6-14
    [4]Turro N. J. Modern molecular photochemistry[M]. Beijing, Science Publishing.1987:214(姚绍明译.现代分子光化学[M].北京,科学出版社.1987:214)
    [5]张强宇,肖新颜.国内紫外光固化涂料的发展及应用[J].合成材料老化与应用.2004,33(2):26-29
    [6]James V. Crivello. The discovery and development of onium salt cationic photoinitiators[J]. Journal of Polymer Science Part A:Polymer Chemistry.1999,37 (23):4241-4254
    [7]周晓燕,马家举,江棂.紫外光固化涂料的组成及研究[J].化工新型材料.2003,31(7):20-23
    [8]杨建文,曾兆华,王志明等.紫外光固化水性涂料的发展概况[J].信息记录材料.2001,2(1):32-35
    [9]郑耀臣,魏无际.光固化涂料用光引发剂的进展[J].涂料工业.2002,32(1):31-35
    [10]曹靖,阳年发,杨立文等.一种O-双酰基-α,-氧代肟的制备及光引发性能研究[J].化学研究与应用.2005,17(4):535-537
    [11]崔天放,王敬涛,王思林等.光聚合引发剂2-甲基-2-羟基-1-苯基丙酮的研制[J].化学世界.2005,8:483-485,488
    [12]Angiolini L., Caretti D., Carlini C., et al. Polymeric Photoinitiators Having Benzoin Methyl Ether Moieties Connected to The Main Chain Through the Benzyl Aromatic Ring and Their Activity For Ultraviolet Curable Coatings[J]. Polymer.1999,40 (26): 7197-7207
    [13]Stoyanova E., Stoychev D. Electrochemical aspects of the immersion treatment of aluminium[J]. Journal of Applied Electrochemistry.1997,27(6):685-690
    [14]谢川,李海燕.4,4’-二乙酰胺基二苯基碘六氟磷酸盐的合成[J].精细化工.2006,23(3):212-214
    [15]Yu X. Y., Chen J., Yang J. W., et al. Preparation of a Series of Photoinitiators and Their Use in the Thermal Curing of Epoxide and Radical Polymerization of Acrylate[J]. Polymer.2005,46 (15):5736-5745
    [16]李海燕,谢川.阳离子光引发剂进展[J].信息记录材料.2004,5(4):37-41
    [17]Mauguiere-Guyonnet F., Burget D., Fouassier J. P. Photopolymerization of Wood Coatings under Visible Lights[J]. Progress in Organic Coatings.2006,57:23-32
    [18]Bongiovanni R., Montefusco F., Priola A., et al. High Performance UV-Cured Coatings for Wood Protection[J]. Progress in Organic Coatings.2002,45:359-363
    [19]Chang S. T., Chou P. L. Photodiscoloration Inhibition of Wood Coated with UV-Curable Acrylic Clear Coatings and its Elucidation[J]. Polymer Degradation and Stability.2000,69:355-360
    [20]Ha C. S., Junc S. J., Kim E. S., et al. Properties of UV-Curable Polyurethane Acrylates Using Nonyellowing Polyisocyanate for Floor Coating[J]. Journal of Applied Polymer Science.1996,62:1011-1021
    [21]陈文,杨双明,彭学军等.水性UV固化木地板涂料的研制[J].表面技术.2005,34(3):51-53
    [22]Oprea S., Vlad S., Stanciu A., et al. Epoxy Urethane Acrylate[J]. European Polymer Journal.2000,36:373-378
    [23]Viengkhou V., Ng L. T., Carnett J. L. Role of Additives on UV Curable Coatings on Wood[J]. Journal of Applied Polymer Science.1996,61(13):2361-2366
    [24]Nobel M. L., Picken S. J., Mendes E.. Waterborne Nanocomposite Resins for Automotive Coating Applications[J]. Progress in Organic Coatings.2007,58:96-104
    [25]Maag K., Lenhard W., Loffles H. New UV Curing Systems for Automotive Applications [J]. Progress in Organic Coatings.2000,40:93-97
    [26]Stropp J. P., Wolff U., Kernaghan S., et al. UV Curing Systems for Automotive Refinish Applications[J]. Progress in Organic Coatings,2006,55:201-205
    [27]滕菁,左光汉.紫外光固化聚氨酯丙烯酸酯[J].现代塑料加工应用.2001,13(4):28-31
    [28]康小孟.UV固化聚氨酯丙烯酸酯体系在涂料中的应用及发展[J].工程技术与应用.2010,7:21-25
    [29]Truc T. A., Pebere N., Hang T. T. X., et al. Evaluation of Corrosion Performance of a UV-Cured Polyurethane Coating in the Presence of Organic Phosphorous Compounds[J]. Progress in Organic Coatings.2004,49 (1):130-136
    [30]Benfarhi S., Decker C., Keller L., et al. Synthesis of Clay Nanocomposite Materials by Light-Induced Crosslinking Polymerization[J]. European Polymer Journal.2004, 40(3):493-501
    [31]Chartier T., Hinczewski C., Corbel S. UV Curable Systems for Tape Casting[J]. Journal of the European Ceramic Society.1999,19:67-74
    [32]Farsari M., Huang S., Young, R. C. D., et al. Four-Wave Mixing Studies of UV Curable Resins for Microstereolithography[J]. Journal of Photochemistry and Photobiology A:Chemistry.1998,115:81-87
    [33]Wang W. Z., Cheng K. X. Synthesis and Characterization of Ultraviolet Light-Curable Resin for Optical Fiber Coating[J]. European Polymer Journal.2003,39:1891-1897
    [34]Kim Y. B., Kim H. K., Yoo J. K., et al. UV-Curable Polyurethane Dispersion for Cationic Electrodeposition Coating[J]. Surface and Coatings Technology.2002,157: 40-46
    [35]Decker C., Zahouily K. Photostabilization of Polymeric Materials by Photoset Acrylate Coatings[J]. Radiation Physics and Chemistry.2002,63:3-8
    [36]Kou H. G., Asif A., Shi W. F. Photopolymerizable Acrylated Hyperbranched polyisophthalesters used for photorefractive materials I. Synthesis and characterization[J]. European Polymer Journal.2002,38:1931-1936
    [37]Masson F., Decker C., Andre S., et al. UV-Curable Formulations for UV-Transparent Optical Fiber Coatings. I. Acrylic Resins[J]. Progress in Organic Coatings.2004,49: 1-12
    [38]Blanc D., Last A., Franc J., et al. Hard UV-Curable Organo-mineral Coatings for Optical Applications[J]. Thin Solid Films.2006,515:942-946
    [39]Tey J. N., Soutar A. M., Mhaisalkar S. G., et al. Mechanical Properties of UV-Curable Polyurethane Acrylate Used in Packaging of MEMS Devices[J]. Thin Solid Films. 2006,504:384-390
    [40]Crivello J. V., Song K. Y., Ghoshal R. Synthesis and Photoinitiated Cationic Polymerization of Organic-Inorganic Hybrid Resins[J]. Chemistry of Material.2001, 13(5):1932-1942
    [41]Soulimane S., Casset F., Charvet P. L., etal. Soulimane S., Casset F., Charvet P. L., et al. Planarization of Photoresist Sacrificial Layer for MEMS Fabrication[J]. Microelectronic Engineering.2007,84:1398-1400
    [42]洋领庆,马晓鸥,司徒伟生.紫外光固化聚氨酯丙烯酸酯玻璃涂料的研制[J].涂料工业.2005,35(2):15-17
    [43]张强宇,肖新颜.国内紫外光固化涂料的发展及应用[J].合成材料老化与应用.2004,33(2):26-29
    [44]Zhu S., Shi W. Flame Retardant Mechanism of Hyperbranched Polyurethane Acrylates Used for UV-Curable Flame Retardant Coatings[J]. Polymer Degradation and Stability. 2002,75 (3):543-547
    [45]Kahraman M. V., Kayaman-Apohan N., Arsu N., et al. Flame Retardance of Epoxy Acrylate Resin Modified with Phosphorus Containing Compounds [J]. Progress in Organic Coatings.2004,51:213-219
    [46]Liang H. B., Ding J., Shi W. F. Kinetics and Mechanism of Thermal Oxidative Degradation of UV Cured Epoxy Acrylate/Phosphate Triacrylate Blends [J]. Polymer Degradation and Stability.2004,86:217-223
    [47]Zhu S. W., Shi W. F. Flame Retardance of UV Cured Epoxy Acrylate Blended with Different States of Phosphated Methacrylate[J]. Polymer Degradation and Stability. 2003,82:435-439
    [48]Chen X. L., Hu Y., Jiao C. M., etal. Preparation and Thermal Properties of a Novel Flame-retardant Coating[J]. Polymer Degradation and Stability.2007,92:1141-1150
    [49]Park M. S., Kim B. K., Kim J. C. Reflective Mode of HPDLC with Various Structures of Polyurethane Acrylates[J]. Polymer.2003,44:1595-1602
    [50]Jung J. A., Kim B. K. Controls of Solubility Parameter and Crosslinking Density in Polyurethane Acrylate Based Holographic Polymer Dispersed Liquid Crystal[J]. Optics Communications.2005,247 (1-3):125-132
    [51]Cho Y. H., Kim B. K. Effect of Monoacrylate Type in UV Curable PU Acrylate Based Bicontinuous Polymer/Liquid Crystal Networks[J]. Journal of Polymer Science Part B: Polymer Physics.1998,36(8):1393-1399
    [52]Kim B. K., Cho Y. H., Lee J. S. Effect of Polymer Structure on the Morphology and Electro-optic Properties of UV Curable PNLCs[J]. Polymer.2000,41 (4):1325-1335
    [53]Sepeur S., Kunze N., B. Werner, et al. UV Curable Hard Coatings on Plastics[J]. Thin Solid Films.1999,351 (1-2):216-219
    [54]刘长利,吴文健,张学鹜等.光固化有机硅材料研究进展[J].材料导报.2006,20(40):44-48
    [55]Qi Y. S., Meng X., Yang J. W., etal. Synthesis and Properties of Ultraviolet/Moisture Dual-Curable Polysiloxane Acrylates[J]. Journal of Applied Polymer Science.2005, 96:846-853
    [56]Trevor Burke F. J. Amalgam to Tooth-Coloured Materials-implications for Clinical Practice and Dental Education:Governmental Restrictions and Amalgam-Usage Survey Results[J]. Journal of Dentistry.2004,32(5):343-350
    [57]晏爱琴.新型光致聚合物的全息存储性能评价及存储机理研究[D].北京工业大学,2007
    [58]山西省化工研究所.聚氨酯弹性体手册[M].北京,化学工业出版社.2001:53-57,67-69,109-112
    [59]Song M. E., Kim J. K., Suh K. D. Preparation of UV-Curable Emulsions Using PEG-Modified Urethane Acrylates and their Coating Properties[J]. Journal of Coatings Technology.1996,68 (862):43-50
    [60]Daries W. D., HUTC-3hinson I. Co-polymerizable Photo-initiators[A]. Radtech 98 North America UV/EB Conference Proceedings, Chicago.1998,20-27.
    [61]Kim J. W., Suh K. D. Amphiphilic Urethane Acrylate Hydrogels Having Heterophasic Gel Structure:Swelling Behaviors and Mechanical Properties[J]. Journal of Macromolecule Science Chemistry.1998, A35(9):1587-1601
    [62]Kim Y. B., Kim H. K., Yoo J. K., et al. UV-Curable Polyurethane Dispersion for Cationic Electrodeposition Coating[J]. Surface and Coatings Technology.2002,157: 40-46.
    [63]Meixner J., Kremer W.15th international conference on organic coatings and technology [J]. Athens, Greece.1989,7:489-506.
    [64]徐自力,王莲芝,石高峰.聚氨酯丙烯酸树脂的合成与光固化涂料的性能研究[J].化工新型材料.2001,29(3):28-30
    [65]韩仕雄,金养智等.紫外光固化水性聚酯型聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报.2001,28(4):19-22
    [66]齐贵亮,孙海洋,田立云等.光固化聚氨酯丙烯酸酯胶粘剂的研究[J].粘接剂.2001.22(5):16-18
    [67]倪惠琼,高凤彩.UV固化聚氨酯丙烯酸酯树脂的合成及其性质[J].涂料工 业.2001(1):5-7
    [68]石翔,徐冬梅,匡敏等.紫外光固化聚氨酯丙烯酸酯树脂的合成及流变行为研究[J].高分子材料科学与工程.2003,1(19):124-127
    [69]杨政险,张爱清.光固化聚氨酯丙烯酸酯预聚物合成工艺的探讨[J].聚氨酯工业.2004,19(4):41-44
    [70]陈志明,尹辉军.UV固化脂族聚氨酯丙烯酸酯合成动力学研究[J].涂料工业.2004,34(4):15-17
    [71]杜秀英,梁兆熙.光固化丙烯酸化聚氨酯的合成及力学性能[J].高分子材料科学与工程.1995,11(2):27-31
    [72]杜秀英,梁兆熙.光固化丙烯酸化异氰酸酯的合成及聚合反应动力学[J].中山大学学报(自然科学版).1995,34(3):62-66
    [73]王兆平,陈兴娟.UV固化聚氨酯丙烯酸酯预聚体的合成及其性质[J].化学工程师:科研与开发.2004,5:13-14
    [74]郑耀臣,郁文鹏,陈芳.光固化涂料用多官能聚氨酯丙烯酸酯预聚物的合成[J].涂料工业.2003,33(10):17-19
    [75]Zamyatin A. A., Makovetskii A. N., Milyavskii Y. S. A Procedure for Measuring the Viscosity of Formulations Based on Oligourethane Acrylates for UV-Curable Protective Coatings of Fiber Light Guides[J]. Russian Journal of Applied Chemistry.2002,75 (10):1683-1687
    [76]Uhlrnann D. R., Teowee G Sol-gel Science and Technology:Current State and Future Prospects[J]. Journal of Sol-Gel Science Technology.1998,13:153-162
    [77]张玲,曾兆华,杨建文,陈用烈.溶胶-凝胶法制备光固化聚氨酯丙烯酸酯杂化材料的研究[J].功能高分子学报.2004,17(3):443-446
    [78]泮领庆,马晓鸥,司徒伟生.紫外光固化聚氨酯丙烯酸酯玻璃涂料的研制[J].涂料工业,2005,2(35):15-17
    [79]Oh I. S., Park N. H., Suh K. D. Mechanical and Surface Hardness Properties of Ultraviolet-cured Polyurethane Acrylate Anionomer/silica Composite Film[J]. Journal of Applied Polymer Science.2000,75:968-975
    [80]侣庆法,罗冠鸿,范晓东.紫外光固化聚氨酯丙烯酸酯/蒙脱土纳米复合材料的制备与表征[J].高分子材料科学与工程.2005,3(13):278-281
    [81]Uhl F. M., Davuluri S. P., Wong S. C., et al. Organically Modified Montmorillonites in UV Curable Urethane Acrylate Films[J]. Polymer.2004,45:6175-6187
    [82]Bao F. F., Shi W. F. Synthesis and Properties of Hyperbranched Polyurethane Acrylate Used for UV Curing Coatings[J]. Progress in Organic Coatings.2010,68:334-339
    [83]Srba Tasic, Branislav Bozic, Branko Dunjic. Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-Curable coatings[J]. Progress in Organic Coatings.2004,51:321-328
    [84]孙芳,黄毓礼,夏兰英.引发体系对聚氨酯丙烯酸酯混杂光固化体系感光性能的 影响[J].辐射研究与辐射工艺学报.2004,22(1):19-22
    [85]丁伟,马家举,江灵.紫外光和热双重固化对涂料性能的研究[J].淮北煤炭师范学院学.2004,25(1):27-30
    [86]Kamlesh G. Dual Curing on Formal Coatings[P]. US5523443.1996
    [87]Gunton J. D., Miguel M. S., Sahni P. S. Phase Transitions and Critical Phenomena[M]. New York, Academic Press.1983
    [88]Cahn J. W., Hilliard J. E. Free Energy of a Nonuniform System Ⅰ. Interfacial Free Energy[J]. Joumal of Chemical Physics.1958,28 (2):258-267
    [89]Cahn J. W., Hilliard J. E. Free Energy of a Nonuniform System Ⅲ. Nucleation in a Two-Component Incompressible Fluid[J]. Journal of Chemical Physics.1959,31 (3): 688-699
    [90]Cahn J. W. Phase Separation by Spinodal Decomposition in Isotropic Systems[J]. Journal of Chemical Physics.1965,42 (1):93-99
    [91]Furukawa H. Dynamics-scaling Theory for Phase Separating Unmixing Mixtures: Growth Rates of Droplets and Sealing Properties of Autocorrelation Functions[J]. Pysica A.1984,123 (2-3):497-412
    [92]Furukawa H. Long-Range K-d Correlation Among Droplets in Quenched Systems in d Dimension[J]. Physical Review B.1986,33 (1):638-640
    [93]殷敬华,莫志深.现代高分子物理学(上)[M].北京,科学出版社.2001:245
    [94]孟凡良.热固性聚合物中具有纳米尺度上微结构的形成:反应诱致的微相分离机制[D].上海交通大学.2006
    [95]Flory P. J. Principles of Polymer Chemistry[M]. Ithaca and London, Cornell University Press.1953
    [96]Bardin J.M., Patterson D. P. Lower Critical Solution Temperature of Polyisobutylene Plus Isomeric Alkanes[J]. Polymer.1969,10:247-255.
    [97]Patterson D. Free Volume and Polymer Solubility:A Qualitative review[J]. Macromolecules.1969,2 (2):672-677
    [98]Rowlinson J. S. Lower Critical Points in Polymer Solutions[J]. Polymer.1960,1(1): 20-26
    [99]Tanaka H. Universality of Viscoelastic Phase Separation in Dynamically Asymmetric Fluid Mixtures[J]. Physical Review Letters.1996,76 (5):787-790
    [100]Hohenberg P. C, Helperin I. Theory of dynamic critical Phenomena[J]. Reviews of Modern Physics.1977,49 (3):435-479
    [101]Taniguchi T., Onuki A. Network Domain Structure in Viscoelastic Phase Separation[J]. Physical Review Letter.1996,77 (24):4910-4913
    [102]Tanaka H. Unusual Phase Separation in a Polymer-solution Caused by a Symmetric Molecular Dynamics [J]. Physical Review Letters.1993,71 (19):3158-3161
    [103]Tanaka H. Viscoelastic Model of Phase Separation in Colloidal Suspensions and Emulsions[J]. Physical Review E.1999,59 (6):6842-6852
    [104]Tanaka H, Viscoelastic Phase Separation[J]. Joumal of Physics Condensed Matter. 2000,12 (15):207-264
    [105]Doi M., Onuki A. Dynamic Coupling Between Stress and Composition in Polymer Solutions and Blends[J]. Journal of Physics Ⅱ France.1992,2 (8):1631-1656
    [106]Onuki A. and Taniguchi T. Viscoelastic Effects in Early Stage Phase Separation in Polymeric Systems[J]. Journal of Chemical Physics.1997,106 (13):5761-5770
    [107]Tanaka H. Viscoelastic Model of Phase Separation[J]. Physical Review E.1997,56 (4):4451-4462
    [108]Yamanaka K., Takagi Y, Inoue T. Reaction-Induced Phase Separation in Rubber-Modified Epoxy Resins[J]. Polymer.1989,60:1839-1844
    [109]Williams R. J. J., Rozenberg B. A., Pascault J. P. Reaction-Induced Phase Separation in Modified Thermosetting Polymers [J]. Advances in Polymer Science.1997,128: 95-156
    [110]Glotzer S. C., Dimarzio E. A., Muthukumar M. Reaction-controlled Morphology of Phase-Separating Mixtures[J]. Physical Review Letters.1995,74 (11):2034-2037
    [111]Inoue T. Reaction-Induced Phase Decomposition in Polymer Blends[J]. Progress in Polymer Science.1995,20 (1):119-153
    [112]Tanaka H. Viscoelastic Phase Separation[J]. Journal of Physics:Condensed Matter. 2000,12 (15):207-264
    [113]Furukawa H. Pattern Formations in Unstable Network Model for Cross-linked Polymer Chains[J]. Journal of the Physical Society of Japan.1994,63 (11):3919-3922
    [114]Kyu T., Lee J. H. Nucleation Initiated Spinodal Decomposition in a Polymerizing System[J]. Physics Review Letter.1996,76 (20):3746-3749
    [115]Kim B.S., Chiba T., Inoue T. Morphology Development via Reaction-Induced Phase Separation in Epoxy/Poly(ether sulfone) Blends:Morphology Control Using Poly(ether sulfone) with Functional End-groups[J]. Polymer.1995,36 (1):43-47
    [116]Bucknall C. B., Gilbert A. H. Toughening Tetrafunctional Epoxy Resins Using Polyetherimide[J]. Polymer.1989,30 (2):213-217
    [117]Yamanaka K., Inoue T. Structure Development in Epoxy Resin Modified with Poly(ether sulophone)Polymer[J].1989,30 (4):662-667
    [118]Yamanaka K., Takagi Y, Inoue T. Reaction-Induced Phase Separation in Rubber-Modified Epoxy Resins[J]. Polymer.1989,30 (10):1839-1844
    [119]Lal J., Bansil R. Light-scattering Study of Kinetics of Spinodal Decomposition in a Polymer Solution[J]. Macromolecules.1991,24:290-297
    [120]Cunmming A., Wiltzius P., Bates F.S., Rosedale J. H. Light-scattering Experiments on Phase-separation Dynamics in Binary Fluid Mixtures[J]. Physics Review A.1992,45 (2):885-897
    [121]Rong M. Z., Zeng H. M. Polycarbonate-epoxy Semi-interpenetrating Polymer Network:2. Phase Separation and Morphology [J]. Polymer.1997,38 (2):269-277
    [122]Giannotti M. I., Mondragon I., Galante M. J., Oyanguren A. Reaction-Induced Phase Separation in Epoxy/polysulfone/Poly(ether imide) Systems. Ⅱ. Generated Morphologies[J]. Journal of Polymer Science Part B:Polymer Physics.2004,42 (21): 3964-3975
    [123]Ruseckaite R. A., Hu L. J., Riccardi C. C., Williams R. J. J. Castor-Oil-Modified Epoxy Resins as Model Systems of Rubber-Modified Thermosets 2:Influence of Cure Conditions on Morphologies Generate[J]. Polymer International.1993,30 (3): 287-295
    [124]Inoue T. Reaction-Induced Phase-Decomposition in Polymer Blends [J]. Progress in Polymer Science.1995,20 (1):119-153
    [125]Martinez I., Martin M. D., Eceiza A., et al. Phase Separation in Polysulfone-Modified Epoxy Mixtures:Relationships between Curing Conditions, Morphology and Ultimate Behavior[J]. Polymer.2000,41 (3):1027-1035
    [126]Chen C. C.,White J. L. Compatibiling Agents in Polymer Blends:Interfacial tension, Phase Morphology and Mechanical Properties [J]. Polymer Engineer Science.1993,33 (14):923-930
    [127]Gramespacher H., Meissner J. Melt Elongation and Recovery of Polymer Blends, Morphology and Influence of Interfacial Tension[J]. Journal of Rheology.1997,41 (1): 27-44
    [128]Xie X. M., Xiao T. J., Zhang Z. M., et al. Effect of Interfacial Tension on the Formation of the Gradient Morphology in Polymer Blends[J]. Journal of Colloid and Interface Science.1998,206(1):189-194
    [129]Liang H., Favis B. D., Yu Y. S., et al. Correlation between the Interfacial Tension and Dispersed Phase Morphology in Interfacially Modified Blends of LLDPE and PVC[J]. Macromolecules.1999,32(5):1637-1642
    [130]Li Z. H., Zhang X. M., Tasaka S., et al. The Interfacial Tension and Morphology of Reactive Polymer Blends[J]. Material Letters.2001,48 (2):81-88
    [131]Kim H., Char K. Effect of Phase Separation on Rheological Properties during the Curing of Epoxy Toughened with Thermoplastic Polymer[J]. Industrial and Engineering Chemistry Research.2000,39 (4):955-959
    [132]Kim S. C., Ko M. B., Jo W. H. The Effect of the Viscosity of Epoxy Prepolymer on the Generated Morphology in Rubber-toughened Epoxy Resin[J]. Polymer.1995,36 (11):2189-2195
    [133]Oyanguren P. A., Galante M. J., Williams, R.J.J., et al. Development of Bicontinuous Morphologies in Polysulfone-epoxy Blends[J]. Polymer.1999,40 (19):5249-5255
    [134]Galante M. J., Borrajo J., Williams R J. J., Double Phase Separation Induced by Polymerization in Ternary Blends of Epoxies with Polystyrene and Poly(methyl methacrylate)[J]. Macromolecules.2001,34 (8):2686-2694
    [135]Tang X. L., Zhang L. X., Wang T., et al. Hydrodynamic Effect on Secondary Phase Separation in an Epoxy Resin Modified with Polyethersulfone[J]. Macromolecular Rapid Communication.2004,25 (15):1419-1424
    [136]Murata K., Sachin J., Etori H., et al, Photopolymerization-Induced Phase Separation in Binary Blends of Photocurable/Linear Polymers[J]. Polymer.2002,43 (9):2845-2859
    [137]Gan W. J.. Yu Y. F., Wang M. H., et al. Viscoelastic Effects on the Phase Separation in Thermoplastics-Modified Epoxy Resin[J]. Macromolecules.2003,36 (20):7746-7751
    [138]Gan W. J., Yu Y. F., Wang M. H., et al. Morphology Evolution during the Phase Separation of Polyether-lmide/epoxy Blends[J]. Macromolecular Rapid Communication.2003,24 (16):952-956
    [139]Chen J. L., Chang F. C. Phase Separation Process in Poly(ε-caprolactone)-epoxy Blends[J]. Macromolecules.1999,32 (16):5348-5356
    [140]Yu Y. F., Wang M. H., Gan W. J., et al. Polymerization-Induced Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems[J]. Journal of Physical Chemistry B.2004,108 (20):6208-6215
    [141]Nwabunma D., Chiu H. W., Kyu T. Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives[J]. Macromolecules.2000,33 (4):1416-1424
    [142]Lee J., Yandek G. R., Kyu T. Reaction Induced Phase Separation in Mixtures of Multifunctional Polybutadiene and Epoxy[J]. Polymer.2005,46 (26) 12511-12522
    [143]Montina T., Wormald P., Hazendonk P. C.13C Solid-State NMR of the Mobile Phase of Poly(vinylidene fluoride)[J]. Macromolecules.2012,45 (15):66002-6007
    [144]Chen D., Pascault J. P. Sautereau H., et al. Rubber-Modified Epoxides 2. A Reaction-Induced Phase Separation Observed In-situ and a Posteriori with Different Methods. Polymer International.1993,32 (4):369-379
    [145]Junker M., Alig I., Frisch H. L., et al. Small Angle X-ray Scattering by Simultaneous Interpenetrating Polymer Networks:Composition and Temperature Dependence [J]. Macromolecules.1997,30 (7):2085-2091
    [146]Gan W. J., Yu Y. F., Wang M. H., et al. Viscoelastic Effects on the Phase Separation in Thermoplastics-Modified Epoxy Resin[J]. Macromolecules,2003,36 (20):7746-7751
    [147]M. Beltzung, Herz J., Picot C. Investigation by Small Angle Neutron Scattering of the Chain Conformation in Equilibrium-Swollen Poly(dimethylsiloxane) Networks [J]. Macromolecules.1983,16 (4):580-584
    [148]Lauger J., Laubner C., Gronski W. Correlation between Shear Viscosity and Anisotropic Domain Growth during Spinodal Decomposition under Shear Flow[J]. Physical Review Letters.1995,75(19):3576-3579
    [149]张剑文,严栋,周红卫.时间分辨激光光散射测量系统[J].高等学校化学学报.1996,17(5):800-804
    [150]Tao Q. S., W. J. Gan, Y. F. Yu, et al. Viscoelastic Effects on the Phase Separation in Thermoplastics Modified Cyanate Ester Resin[J]. Polymer.2004,45 (10):3505-3510
    [151]Zhan G. Z., Yu Y. F., Tang X. L., et al. Further Study of the Viscoelastic Phase Separation of Cyanate Ester Modified with Poly(ether imide)[J]. Journal of Polymer Science Part B:Polymer Physics.2006,44 (3):517-523
    [152]Yu Y. F., Wang M. H., Gan W. J., et al. Polymerization-Induced Viscoelastic Phase Separation in Polyethersulfone-Modified Epoxy Systems[J]. Journal of Physical Chemistry B.2004,108 (20):6208-6215
    [153]梁敬魁.相图与相结构(上册):相图的理论、实验和应用[M].北京,科学出版 社.1993
    [154]张琳琳,莫键华,甘志伟等.一种新型脂环族环氧树脂丙烯酸酯的紫外光固化[J].高分子材料科学与工程.2005,21(6):243-246
    [155]Yong H., Ming X., Wu F. P., et al. Photopolymerization Kinetics of Cycloaliphatic Epoxide-Acrylate Hybrid Monomer[J]. Polymer International.2007,56 (10):1292-1297
    [156]Barbeau P. H., Gerard J. F., Magny B., et al. Morphological Analysis of Photocured Polyurethane Acrylate Networks. Correlation with Viscoelastic Properties [J]. Journal of Polymer Science Part B:Polymer Physics.1999,37 (9):919-937
    [157]Tryagi A. K., Choudhary V., Vama I. K. Effect of Reactive Diluents on Curing Behavior and Thermal Stability of Urethane Methacrylate[J]. Die Angewandate Makromolekulare Chemie.1991,189(1):105-115
    [158]Courret D., Brosse J. C., Chevalier S. New Functionalization Method for Radiation Curable Polyurethane Containing Pendant Acrylate Groups[J]. European Polymer Journal.1991,27 (2):193-197
    [159][168]In-Seok O. H., No-Hyung P., Kyung-Do S. Mechanical and Surface Hardness Properties of Ultraviolet Cured Polyurethaneacrylate Anionomer/Silica Composite Film[J]. Journal of Applied Polymer Science.2000,75 (7):968-975
    [160]Schwahn R., Haussling L., Reich W., etal. Tuning the Mechanical Properties of UV Coatings towards Hard and Flexible Systems[J]. Progess in Organic Coatings.1997, 32(2):191-196
    [161]Coleman M. M., Lee K. H., Skrovanek D. J., et al. Hydrogen Bonding in polymer 4. Infrared Macromolecules Temperature Studies of a Simple Polyurethane [J]. Macromolecules.1986,19 (8):2149-2157
    [162]Shen D. Y. Application of Infrared Spectroscopy in Polymer Science[M]. Beijing, Science Press.1982
    [163]吴启保,吕维忠,刘波等.水性聚氨酯合成的红外光谱研究[J].广州化工.2009,37(1):42-45
    [164]Zhang C. X., Ren Z. Y., Yin Z. G.,et al. Amide Ⅱ and Amide Ⅲ Bands in Polyurethane Model Soft and Hard Segments[J]. Polymer Bulletin.2008,60:97-101
    [165]汪金花,张兴元,戴家兵.不同软段聚氨酯的红外光谱定量分析[J].分析化学研究报告.2007,35:964-968
    [166]Chang C. C., Chen K. S., Yu T. L., et al. Phase Segregation of Polyester Based-polyurethanes[J]. Polymer Journal.1999,31 (12):1205-1210
    [167]Seymour R. W., Cooper S. L. Thermal Analysis of Polyurethane Block Polymers[J]. Macromolecules.1973,6 (1):48-53
    [168]江治,袁开军,李疏芬等.聚氨酯的FTIR光谱与热分析研究[J].光谱学与光谱分析.2006,26(4):624-628
    [169]Tao Z. Q., Yang S. Y., Chen J. S., et al. Synthesis and Characterization of Imide Ring and Siloxane-Containing Cycloaliphatic Epoxy Resins[J]. European Polymer Journal. 2007,43(4):1470-1479
    [170]Zhang X. H., Xu W. J., Chen F. C., et al. Synthesis and Thermal Stability of a Novel Cycloaliphatic Epoxy Resin System[J]. Journal of Applied Polymer Science.2008, 108(1):518-522
    [171]Liu W. S., Wang Z. G. Silicon-containing Cycloaliphatic Epoxy Resins with Systematically Varied Functionalities:Synthesis and Structure/Property Relationships[J]. Macromolecular Chemistry and Physics.2011,212 (9):926-936
    [172]黎朝,祁元春,张彦庆等.紫外光固化脂环族环氧丙烯酸酯涂料的制备及性能[J].功能高分子学报.2012,25(1):62-67
    [173]谢文峰,葛曷一,赵亮,周洁.环氧丙烯酸酯紫外光固化涂料性能研究[J].山东建材.2007,28(4):28-30
    [174]侣庆法,范晓东.环氧丙烯酸/聚氨酯丙烯酸酯共混体系的紫外光固化及力学性能的研究[J].西北工业大学学报.2004,22(2):256-259
    [175]Decker C. Kinetic Study and New Applications of UV Radiation Curing [J]. Macromolecule Rapid Communication.2002,23,1067-1093.
    [176]田志高,陈红艳紫外光固化改性环氧丙烯酸酯涂料的研制材料科学与工程学报2004,22(1):95-97
    [177]吕素平,漆宗能.韧性聚合物材料断面分维与断裂韧性[J].高分子学报.1994,(2):249-252
    [178]Sperling L. H., Interpenetrating Polymer Networks and Related Materials[M]. New York, Plenum Press.1981
    [179]Roffey C. Photogeneration of Reactive Species for UV-Curing[M]. New York, Wiley. 1997
    [180]Decker C. Kinetic Study and New Applications of UV Radiation Curing[J]. Macromolecular Rapid Communications.2002,23 (18):1067-1093
    [181]Studer K., Decker C., Beck E., et al. Redox and Photoinitiated Crosslinking Polymerization:I. Dual-cure Isocyanate-Acrylate System[J]. Progress in Organic Coatings.2005,53 (1):126-133
    [182]Sangermano M., Malucelli G, Priola A., et al. Synthesis and Characterization of Acrylat-Oxetane Interpenetrating Polymer Networks through a Thermal-UV Dual Cure Process[J]. Progress in Organic Coatings.2006,55 (3):225-230
    [183]Jansen J. U., Machado L. D. B. A New Resin For Photocurable Electrical Insulating Varnishes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2005,236 (1-4):546-551.
    [184]Studer K., Decker C., Beck E., et al. Thermal and Photochemical Curing of Isocyanate and Acrylate Functionalized Oligomers[J]. European Polymer Journal.2005,41: 157-167
    [185]Simic S., Dunjic B., Tasic S., Bozic B., Et al. Synthesis And Characterization of Interpenetrating Polymer Networks with Hyperbranched Polymers through Thermal-UV Dual Curing[J]. Progress in Organic Coatings.2008,63 (1):43-48
    [186]Noh S. M., Lee J. W., Nam J. H., et al. Dual-Curing Behavior and Scratch Characteristics of Hydroxyl Functionalized Urethane Methacrylate Oligomer for Automotive Clearcoats[J]. Progress in Organic Coatings.2012,74 (1):257-269
    [187]Park Y. J., Lim D. H., Kim H. J., et al. UV-and Thermal-Curing Behaviors of Dual-Curable Adhesives Based on Epoxy Acrylate Oligomers[J]. International Journal of Adhesion & Adhesives.2009,29 (7):710-717
    [188]Yang J., Winnik M. A., Ylitalo D., et al. Polyurethane-Polyacrylate Interpenetrating Networks.1. Preparation and Morphology [J]. Macromolecules.1996,29 (22): 7047-7054
    [189]Zhi J., He Y, Xiao M., et al. Preparation and Properties of Dual-Cure Polyurethane Acrylate[J]. Progress in Organic Coatings.2009,66 (1):35-39
    [190]Pappas S. P. UV Curing:Science and Technology[M]. Technology Marketing Corporation.1985
    [191]Fouassier J. P., Radbek J. F. Radiation Curing in Polymer Science and Technology[M]. New York, Elsevier Applied Science.1993
    [192]洪啸吟.混杂光固化体系的原理及应用[C].面向21世纪中国辐射固化技术与市场研讨会论文集.2000,21
    [193]陈明,陈其道,肖善强等.混杂光固化体系的原理及应用[J].感光科学与光化学.2001,19(3):208-216
    [194]刘红波,吴宗南.混杂紫外光固化研究进展[J].热固性树脂.2009,24(4):50-54
    [195]Decker C. Kinetic Study and New Applications of UV Radiation Curing[J]. Macromolecular Rapid Communication.2002,23 (18):1067-1093
    [196]刘志民.天然橡胶丙酮抽出物测定方法的比较[J].广州化工.2012,40(18):79-80
    [197]Olabisi O., Rebeson L. M., Shaw M. T. Polymer-Polymer Miscibility[M]. New York, Academic Press.1979
    [198]Decker C., Viet T. N. T., Decker D., et al. UV-radiation Curing of Acrylate/epoxide System[J]. Polymer.2001,42 (13):5531-5541.
    [199]Guenthner A. J., Hess D. M., Cash J. J. Morphology Development in Photopolymerization-Induced Phase Separated Mixtures of UV-Curable Thiol-Ene Adhesive and Low Molecular Weight Solvents[J]. Polymer.2008,49 (25):5533-5540
    [200]Coleman M. M., Lee K. H., Skrovanek D. J., et al. Painter Hydrogen Bonding in Polymers.4. Infrared Temperature Studies of a Simple Polyurethane [J]. Macromolecules.1986,19 (8),2149-2157
    [201]Duan J. K., KimC., Jiang P. K. On-line Monitoring of Cycloaliphatic Epoxy/Acrylate Interpenetrating Polymer Networks Formation and Characterization of Their Mechanical Properties[J]. Journal of Polymer Research.2009,16 (1):45-54
    [202]Chen X. L., Hu Y., Song L., et al. Preparation And Thermal Properties Of A Novel UV-Cured Star Polyurethane Acrylate Coating[J]. Polymers for Advanced Technologies.2008,19 (4):322-327
    [203]Zhu M., Gu A., Liang G., Yuan L. High-Performance Transparent Solvent-Free Silicone Resins with Stable Storage and Low Viscosity Based on New Hyperbranched Polysiloxanes[J]. High Performance Polymers.2013,25 (5):594-608
    [204]Chattopadhyay D. K., Sreedhar B., Raju K. V. S. N. Effect of Chain Extender on Phase Mixing and Coating Properties of Polyurethane Ureas [J]. Industrial & Engineering Chemistry Research.2005,44 (6):1772-1779
    [205]Yoon T., Kim B. S., Lee D. S. Structure Development via Reaction-Induced Phase Separation in Tetrafunctional Epoxy/Polysulfone Blends[J]. Journal of Applied Polymer Science.1997,66 (12):2233-2242
    [206]Swier S., Mele B. V. In Situ Monitoring of Reaction-Induced Phase Separation with Modulated Temperature DSC:Comparison Between High-Tg and Low-Tg Modifiers[J]. Polymer.2003,44 (9):2689-2699
    [207]Peng M., Li D. S., Chen Y., et al. Effect of an Organoclay on the Reaction-Induced Phase-Separation Kinetics and Morphology of a Poly(ether imide)/Epoxy Mixture[J]. Journal of Applied Polymer Science.2007,104 (2):1205-1214
    [208]Wang M. H., Yu Y. F., Li S. J. Polymerization-Induced Phase Separation in Polyether-Sulfone Modified Epoxy Resin Systems:Effect of Curing Reaction Mechanism[J]. Science in China Series B:Chemistry.2007,50(4):554-561
    [209]张瑞丰,张乐乐,龙能兵.反应诱导相分离过程的超声波在线跟踪[J].高分子学报.2009,1(3):195-202
    [210]Alwattari A. A., Lloyd D. R. Microporous Membrane Formation via Thermally-Induced Phase Separation. VI. Effect of Diluent Morphology and Relative Crystallization Kinetics on Polypropylene Membrane Structure[J]. Journal of Membrane Science.1991,64 (1-2):55-68
    [211]Li W., Ryan A. J. Morphology Development via Reaction-Induced Phase Separation in Flexible Polyurethane Foam[J]. Macromolccules.2002,35 (13):5034-5042
    [212]Zheng S. X., Gao R., Li J. H., et al. Epoxy Resin Containing the Poly(Sily ether): Preparation, Morphology, and Mechanical Properties[J]. Journal of Applied Polymer Science.2003,89(2),505-512
    [213]吴洋,罗炎,韩静.反应诱导相分离法制备环氧树脂微球的研究[J].桂林电子科技大学学报.2008,28(1):27-30
    [214]Vaz N. A., Smith G. W., Montgomery G. P. A Light Control Film Composed of Liquid Crystal Droplets Dispersed in a UV-Curable Polymer[J]. Molecular Crystals and Liquid Crystals.1987,146 (1):1-15
    [215]Vaz N. A., Smith G. W. Liquid Crystal Droplets Dispersed In Thin Films Of UV-Curable Polymers[P]. US 4728547.1988
    [216]Nwabunma D., Chiu H. W., and Kyu T. Morphology Development and Dynamics of Photopolymerization-Induced Phase Separation in Mixtures of a Nematic Liquid Crystal and Photocuratives[J]. Macromolecules.2000,33 (4),1416-1424
    [217]Duran H., Meng S., Kim N., et al. Kinetics of Photopolymerization-Induced Phase Separation and Morphology Development in Mixtures of a Nematic Liquid Crystal and Multifunctional Acrylate[J]. Polymer.2008,49 (2):534-545
    [218]Nataj N. H., Jannesari A., Mohajerani E.,et al. Photopolymerization Behavior and Phase Separation Effects in Novel Polymer Dispersed Liquid Crystal Mixture Based on Urethane Trimethacrylate Monomer[J]. Journal of Applied Polymer Science.2012, 126(5):1676-1686
    [219]Lovinger A. J., Amundson K. R., Davis D. D. Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials[J]. Chemistry of Materials.1994,6 (10):1726-1736
    [220]Kyu T., Chiu H. W. Morphology Development During Polymerization-Induced Phase Separation In A Polymer Dispersed Liquid Crysatal[J]. Polymer.2001,42 (21): 9173-9185
    [221]Mishra V., Sperling L. H. Metastable Phase Diagrams for Simultaneous Interpenetrating Networks of A Polyurethane and Poly(Methyl Methacrylate)[J]. Polymer.1995,36 (18):3593-3595
    [222]Mishra V., Prez F. E. D., Gosen E., et al. Simultaneous Interpenetrating Networks of a Polyurethane and Poly(Methyl Methacrylate).1. Metastable Phase Diagrams[J]. Journal of Applied Polymer Science.1995,58(2):331-346
    [223]Mishra V., Sperlinc H. Simultaneous Interpenetrating Networks of a Polyurethane and Poly([Methyl Methacrylate]-Stat-[N,N-Dimethylacry Lamide])[J]. Journal of Polymer Science Part B:Polymer Physics.1996,34 (5):883-892
    [224]刘少杰,孙明宇,李于佐等.硅氧烷表面活性剂(Ⅳ)(续3):涂料添加剂[J].日用化学工业.1998,(4):49-53
    [225]刘少杰,孙明宇,李于佐等.硅氧烷表面活性剂(Ⅴ)(续4):作为表面改性剂在聚合物中的应用[J].日用化学工业.1998,(5):47-52
    [226]Yang Z. H., Ni A. Q., Wang J. H. Synthesis and Characterization of Novel Ultraviolet-Curing Polyurethane Acrylate/Epoxy Acrylate/SiO2 Hybrid Materials via Sol-Gel Reaction[J]. Journal of Applied Polymer Science.2013,127 (4),2905-2909
    [227]Liu H. B., Chen M. C., Huang Z. T.; et al. The Influence of Silicon-Containing Acrylate as Active Diluent on the Properties of UV-Cured Epoxydiacrylate Films[J]. European Polymer Journal.2004,40 (3),609-613
    [228]Bayramoglu G., Kahraman M. V., Apohan N. K., et al. Synthesis And Characterization Of UV-Curable Dual Hybrid Oligomers Based On Epoxy Acrylate Containing Pendant Alkoxysilane Groups[J]. Progress in Organic Coatings.2006,57 (1):50-55
    [229]Park H. S., Kim S. R., Park H. J., et al. Preparation and Characterization of Weather Resistant Silicone/Acrylic Resin Coatings[J]. Journal of Coatings Technology.2003, 75 (936):55-64
    [230]Huang W., Zhang Y., Yu Y. Z., et al. Studies on UV-Stable Silicone-Epoxy Resins [J]. Journal of Applied Polymer Science.2007,104 (6),3954-3959
    [231]Sangermano M., Bongiovanni R., Malucelli G., et al. Siloxane Additive as Modifier in Cationic UV Curable Coatings [J]. Progress in Organic Coatings.2006,57(1),44-49
    [232]Liu P., Gu A. J., Liang G Z., et al. Preparation and Properties of Novel High Performance UV-Curable Epoxy Acrylate/Hyperbranched Polysiloxane Coatings [J]. Progress in Organic Coatings.2012,74 (1):142-150
    [233]Wang W. Z. Synthesis and Characterization of UV-Curable Polydimethylsiloxane Epoxy Acrylate [J]. European Polymer Journal.2003,39 (6):1117-1123
    [234]Hong J. W., Kim H. K. Surface and Dielectric Properties of Oriental Lacquer Films Modified by UV-Curable Silicone Acrylate [J]. Macromolecular Research.2006,14 (6):617-623
    [235]Tang C. Y., Liu W. Q. Syntheses of Novel Photosensitive Polysiloxanes and Their Effects on Properties of UV-Cured Epoxy Methacrylate Coatings[J]. Journal of Coatings Technology and Research.2010,7 (5):651-658
    [236]Connell J. W., Crivello J. V., Bi D. Effect of Low Earth Orbit Atomic Oxygen Exposure on Epoxy Functionalized Siloxanes[J]. Journal of Applied Polymer Science. 1995,57 (10):1251-1259
    [237]Chiang C. L., Ma C. C. M., Wang F. Y., et al. Thermo-Oxidative Degradation of Novel Epoxy Containing Silicon and Phosphorous Nanocomposites[J]. European Polymer Journal.2003,39 (4):825-830
    [238]Braun H., Yagci Y, Nuyken O. Copolymerization of Butyl Vinyl Ether and Methyl Methacrylate by Combination of Radical and Radical Promoted Cationic Mechanisms[J]. European Polymer Journal.2002,38 (1):151-156
    [239]Hill R. M. Siloxane Surfactants. In Surfactant Science. Series 86. New York, Marcel Dekker.1999
    [240]Neo W. K., Chan-Park M. B., Gao J. X., et al. Effects of Silicone Acrylate on Morphology, Kinetics, and Surface Composition of Photopolymerized Acrylate[J]. Langmuir.2004,20 (25):11073-11083
    [241]Sultana S.; Matsui J.; Mitani S.; et al. Silicon-containing polymer nanosheets for oxygen plasma resist application[J]. Polymer.2009,50(14):3240-3244
    [242]Wan T., Lin J. H., Li X. J., et al. Preparation of Epoxy-Silica-Acrylate Hybrid Coatings[J]. Polymer Bulletin.2008,59 (6):749-758
    [243]Zhi J., He Y, Xiao M., et al. Preparation and Properties of Dual-Cure Polyurethane Acrylate[J]. Progress in Organic Coatings.2009,66 (1):35-39
    [244]Hagen R., Salmen L., Stenberg B. Effects of the Type of Crosslink on Viscoelastic Properties of Natural Rubber[J]. Journal of Polymer Science:Part B:Polymer Physics. 1996,34(12):199-2006
    [245]Mulazim Y, Kahraman M. V., Apohan N. K., et al. Optical and Structural Properties of Pulsed Laser Ablation Deposited ZnO Thin Film[J]. Journal of Applied Polymer. 2011,257 (6):2298-2302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700