高分子磁体的表面改性与聚二茂铁甲酰芳胺基硫脲及其配合物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在开头部分简单讲述了以下内容了:(1)材料的重要性以及近些年来材料业各个领域的发展;(2)磁性材料的发展史以及磁性材料的分类;(3)有机磁性材料的出现、有机磁性材料的分类和近些年来有机金属磁性材料尤其是二茂铁高分子磁体领域所取得的重要进展;(4)高分子介电材料的发展与现状,对表征材料介电性能的四个重要参数即介电常数、介电损耗、电导率和击穿强度做了比较详尽的论述。
     在高分子磁体的表面改性部分,介绍了用丙烯酸和聚碳酸酯对高分子磁体进行表面改性的实验方法。用红外光谱和X光电子能谱等方法对改性前后的样品进行了分析,重点讨论了改性前后高分子磁体在高频微波下的电磁性能的改变。对改性前后高分子磁体的电磁性能研究结果表明:用丙烯酸或聚碳酸酯对高分子磁体进行表面改性,两种试剂均不影响高分子的磁导率,并且它们均有效地降低了高分子磁体的磁损耗和介电损耗,更有研究意义的足:丙烯酸使高分子磁体在高频微波下的介电常数得到明显提高:从总的方面来说,丙烯酸改性高分子磁体优于用聚碳酸酯改性的高分子磁体。同时,对改性前后高分子磁体的红外光谱和X光电子能谱的研究均表明:用丙烯酸改性高分子磁体是一种化学处理方式,丙烯酸中羰基上的氧原子与高分子磁体中的铁相结合,形成了界面化学键,从而有效地改进了高分了磁体的电磁性能;而聚碳酸酯改性
    
    四川师范少、‘学硕十学位沦迈
    汉是一种物理意义_}二的包覆
     在聚合物的合成部分,木文以二茂铁为原料,经过乙酞化、氧化和氯化,
    将所得的_二甲酞氯二茂铁与硫氰酸钾(KSCN)反应得到二茂铁二异硫氰酸酷,
    叮用产物分别与蔡二胺、邻苯二胺、间苯二胺、对苯二胺、乙二几胺和联苯胺反
    哈近制备了聚合物(I)、(11)、。111)、(IV)、(V)不!l(Vl)。
     在本文的第四部分。简要讨论了聚合物(I)一(VI)的一般性质,对聚合
    物的核磁共振谱、红外光谱、T(卜刃T图以及分子量分布进行了系统研究。
     本文对聚合物(I)、(111)和(砚)的核磁共振谱和红外光谱进行了分析,
    研究结果表明:聚合物中的援基上的氧原子能与芳胺上的氢原子形成分子内氢
    键,使聚合物的分子内出现了一个平面六元环结构,并山于分子内氢键的存在
    !佰缩短了二茂铁基间的距离,增强了结构单元间二茂铁基间的相互作用。
     对聚合物(D和聚合物(l11)的TG一OT研究表明:聚合物(D的开始
    分解温度为220℃,失去的第一个基团为>C=0;聚合物(11工)的开始分解温
    度为!94OC,先失基团为一阳,两者的热解机理不尽相同。
     对聚合物(工工)和聚合物(VD的GPC研究表明:二者的分子量很高,且
    典有一定的多分散性。说明聚合反应中发生了链的支化反应,这是由于高转化
    率时,大分子发生链转移所引起的。(摘要中所出现的聚合物(1)一(V1)的具体
    名称见文中表6)
The first part of this thesis includes the following information: (1) The significance of materials and the progress in every fields of material science in recent years; (2) The history of magnetic material and the classification of magnetic material; (3) The emergency and the classification of organic magnetic materials as well as the significant progress in the field of ferrocene polymeric magnet recently; (4) Introducing die development and the status quo of dielectric polymer and discussing the four parameters which are used to characterize the dielectric beheaviour of material, these parameters mclude dielectric constants dielectric loss^ electric conductivity and breakdown strength.
    In the part of modifying the polymeric magnet. The author has introduced the method of modifying the polymeric magnet by acrylic acid and polycarbonate respectively and analyzed the samples which include non- and modified polymeric magnet in IR spectrum and XPS. This part lias been discussed in detail the differences of the modified polymeric magnet from non-modified one. The result of research into electromagnetic beheaviours of polymeric magnets as follows: all of the two agents (acrylic acid and polycarbonate) can reduce effectively magnetic loss and dielectric loss, moreover, acrylic acid can increase the dielectric constant of the polymeric magnet at high frequency and microwave band. On the whole, the polymeric magnet modified by acrylic acid is preferable. The research of IR spectrum and XPS of the polymeric magnets have showed that modifying polymeric magnet with acrylic acid is a chemical method
    In the part of composing polymer, we have chosen ferrocene as raw stuff. After a series of
    
    
    reactions, an ester which is a derivative of ferrocene is obtained, then using the ester react with 1,8-naphthalenediamme, o - m - , p - phenyleiiediamine,ethylenediamine and 4.4'--biphenyldiamine respectively, polymer(I) (II) (III) (IV) (V) and polymer (VI) are obtained
    At the final part, we have discussed in brief the general properties of polymer (I)-{VI) and analyzed systematically HNMR IR spectrum TG-DT diagram and molecular weight distribution of these polymers.
    The result of research into HNMR and TR spectrum of the polymers have showed: intramolecular hydrogen bond is formed by the oxide atom of carboxide joining with hydrogen atom of arylamine so mat a plane hexatomic ring appears in the molecule; this hydrogen bond has reduced the distance of ferrocene groups and strengthened the interaction of ferrocene groups.
    Researching into TG-DT diagrams, we have concluded as follows: the initial decomposition temperature (IDCT) of polymer (I) is 220C and the first lost group (FLG) Ls carboxide; the IDCT of polymer (HI) is 194Cand the FLG is -NH; so the pyrolysis mechanisms of the two polymers are different.
    The research of molecular weight distribution have indicated mat some polymers have high molecular weight and high polydispersity. According to this, we have deduced that branching reaction must have been happened during the polymerization which has been caused by chain transfer at high conversion rate.
引文
[1] Lin Z R. Advanced Materials, 1999, 11: 153.
    [2] 平郑骅,汪长春.高分子世界[M].上海:复旦大学出版社,2001:187-188.
    [3] 王庭慰,陈逸范,范福康等.聚苯乙烯-钛酸钡复合材料介电性能的研究[J].功能高分子学报.1996,19(1):31-38.
    [4] 张光元,古川猛夫.功能高分子学报.1995,8(1):15-21.
    [5] Kremer. F. Poly Prep. 1992,33(1):96-97.
    [6] Lin Z R, Hu H J. Progress in Nature Sci, 1996, 6: 120.
    [7] Maron Rosenblam, Woodward R B. J Am chem. Soc., 1958, 80, 5443-9.
    [8] Knobloch F W. Cordersation polymers of Ferrocene Derivatives[J]. J Poly Sci. 1961, 54: 651-656.
    [9] 董炎明:高分子材料实用剖析技术[M].北京:中国石化出版社.1997:217-222
    [10] 林展如:金属有机(高分子)磁性材料的研究及应用[A].钱延龙等.金属有机化学与催化[C].北京:化学工业出版社.1997.
    [11] 安全长,彭华乔,林云等.丙稀酸改性二茂铁型高分子磁型高分子磁体的电磁性能研究[J].四川师范大学学报(自然科学版),2002,25(5):500-502.
    [12] 林展如:磁性高分子及其应用[A].何天白,胡汉杰.功能高分子与新技术[C].北京:化学工业出版社,2001:86-94.
    [13] 林展如,倪训铭.宽温有机磁性材料的制造方法[P].中国专利(保密):91110991.9,1993-03-31.
    [14] 林展如.金属有机聚合物[M].四川:成都科技大学出版社,1987:77-86.
    [15] 彭华乔,安全长,林云等.3种1.1’—二羰基二茂铁化合物的系统表征[J].四川师范大学学报(自然科学版),2003,26(4):393-396.
    [16] 顾振军,王寿泰.聚合物的电性和磁性[M].上海:上海交通大学出版社,1991:1-18.
    [17] 文学敏,文翠兰,李昶.新材料及其应用[M].北京:科学技术文献出版社,1998:1-5.
    [18] 徐诅耀,李鹏兴.材料科学导论[M].上海:上海科学技术出版社,1986:1-20.
    [19] 肖纪美,材料学海拾贝[J].材料科学与工程,1993(1):1
    [20] 陈克强.材料科学基础与电真空材料[M].北京:清华大学出版社,1988:162-168.
    [21] 冯文麒,姚中栋.工程材料与化学[M].北京:高等教育出版社,1989:74-83.
    
    
    [22] Dunmur D, Toriyama K. Magnetic properties of liquid crystals[,l]. Phys Prop Liq Cryst, 1999: 102-112.
    [23] Morales R, Perez G T, Alameda J M. Influence of the film in homogeneity on local magnetization processes in amorphous thin films having perpendicular an isotropy[J]. J Magn Magn Matter, 1999: 196-197, 807-809.
    [24] Ataie A, Hadian A M, Ponton C B. Magnetic properties of strontium hexaferrite as a Tunction of co-precipitation conditions[J].Proc Int Symp, 1998:233-241.
    [25] Aoyama T,Enomoto S, Yoshinaka M. Electric and magnetic properties of low-temperature sintering Mn-Zn ferrite by addition of lithium borosilicate glass[J]. J Mater Sci Lett, 1999, 18(6):497-499.
    [26] Landut D P, Krecht M. Spin dynamics simulations of classical ferro-and antiferromagnetic model systems: comparison with theory and experiment[J].J Phys:Condens Matt, 1999, 11 (18): 179-213.
    [27] Bhushan B. Macro-and microtribology of magnetic storage devices[J].Tribot Ser, 2000, 38: 183-194.
    [28] Castano F J, Prados C, Hernando A. Development of a tensile-stress-induced anisotropy in amorphous magnetic thin films[J]. J Magn Magn Matt. 2000, 220(2-3): 152-160.
    [29] Khizroev S, Kryder M H, Litvinov D. Direct observation of magnetization switching in focused-ion-beam-fabricated magnetic nanotubes[J]. Appl Phy Lett, 2002, 81 (12):2256-2257.
    [30] motomura S, Ishimasa T, Hirai I. Magnetic properties of F2M-type Al-Pd-Mn quasicrystals[J]. J Allo Comp, 2002, 342(1-2) 393-396.
    [31] Yakhmi J V. Magnetism as a functionality at the molecular level[J].Phy B:Condens Matt, 2002, 321 (1-4):204-212.
    [32] Sellmyer D J, Skomski PR. Magnetism of nanophase composites[J].Scrip Mater, 2002, 47 (8):531-535.
    [33] Peng D L, Hihara T, Sumiyama K. Structural and magnetic characteristics of mono-dispersed Fe and oxide-coated Fe cluster assemblies[J]. J Appl
    
    Phy, 2002, 92 (6): 3075-3083.
    [34] Agazzi L, Bennett S, Berry F J. Magnetic interactions and interface properties in Co/Fe multi-layers[J]. J Appl Phy, 2002, 92 (6):3231-3234.
    [35] 耿文范.神奇的现代新材料[M].北京:兵器工业出版社,1991:25-42.
    [36] 乔松楼,乐俊淮,苏雨生.新材料技术[M].北京:中国科学技术出版社,1994:77-80.
    [37] Miller J S, Epste in A.J. Organometallic magnets [J]. Coord Chem Rew, 2000: 651-660.
    [38] 殷之文.电介质物理学[M].北京:科学出版社,2003:57-65.
    [39] Padovan B, Agnes M. Low dielectric constant porous spin-on glass for microelectronic applications [J]. Diss Abstr Int (B), 2002, 63 (3): 1461.
    [40] Traeholt C, Veje E, Tonnesen O. Electromagnetic losses in a three phase high-temperature superconducting cable determined by calorimetric measurements[J], Phys C: superconductivity and Its applicatins, 2002: 1564-1566.
    [41] Kusunoki M, inadomaru M, Ohshisma S. Dielectric loss tangent of sapphire single crystal, produced by edge-defincd film-fed growth method[J], Phys C: superconductiviy and Its Applications, 2002, 377 (3):313-318.
    [42] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988:67-89.
    [43] 朱善农.高分子材料的剖析[M].北京:科学出版社,1988:259-274.
    [44] 高家武.高分子材料近代测试技术[M].北京:北京航空航天大学出版社,1994:1-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700