陕北黄土坡面微地形土壤质量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕北黄土区由于地形高低起伏改变而形成了大小不等、形状各异的微地形,同时造成了坡面内局部土壤物理性状的差异,这种差异又造成了地表植被生长状况的差别,而地形和地表覆盖的共同作用影响着土壤理化状况的分布和运动,形成各种微地形特有的生境条件。
     本研究根据黄土区实际情况,对黄土坡面的微地形进行了研究,划分了浅沟、切沟、塌陷、缓台和陡坎五种微地形。本研究对不同微地形的土壤的质量进行了分析,探讨不同微地形的土壤在植被恢复过程中的演变,研究结果如下:
     (1)对自然恢复下的不同微地形土壤质量进行研究发现,微地形不同,其土壤理化性质也不同。其中,塌陷的土壤质量是最好的,切沟、缓台和浅沟居中,陡坎的土壤质量最差。塌陷和切沟的植被也得到了较好的恢复,并出现了马如子、锦鸡儿等小灌木。陡坎的土壤质量最差,其植被的盖度、高度也比较差。
     (2)在人工造林条件下,不同微地形的土壤质量与自然恢复下也不相同。切沟和缓台在人工造林下土壤质量最好,而自然恢复下土壤质量最好的塌陷,在人工造林状态下,其土壤质量比其他微地形差。
     (3)不同恢复方式对比发现,浅沟在三个土层中的,自然恢复和人工造林效果互有大小,但差值很小。自然恢复和人工造林土壤质量效果相当。切沟在0-20cm土层中,自然恢复的效果要好于人工造林,但在20-40cm和40-60cm人工造林要高于自然恢复。塌陷在0-20cm、20-40cm、40-60cm三个土层中不论是物理性质、化学性质还是酶活性自然恢复均比人工造林效果好,并且相差幅度比较大。缓台在0-20cm自然恢复的效果稍好于人工造林,在20-40cm和40-60cm土层人工造林高于自然恢复,但其差值很小。陡坎在0-20cm和40-60cm自然恢复对土壤质量好于人工造林,但差别极小,在20-40cm人工造林的对土壤质量高于自然恢复,差值不大
     (4)自然恢复条件下,恢复年限不同,地表植被也不同,对土壤质量的影响也不同。自然恢复50年后,地表植被形成了乔灌草相结合的结构类型,土壤的各项理化性质和酶活性都比自然恢复11年有了更大的提高,而且植被对土壤质量的影响也向更深土层发展。
     (5)不同植被配置的土壤进行土壤质量分析发现,油松纯林、沙棘纯林和油松沙棘混交林的土壤质量比较好,而山杏沙棘混交林和不采取任何恢复措施的对照较差。在0-20cm、20-40cm和40-60cm三个土层中,油松纯林的土壤质量是最好的,因此在黄土高原植被恢复的早期,可以种植油松林来促进植被的恢复。当然考虑到以后的森林健康和可持续发展,可以在植被恢复的不同时期进行其他林种的栽植,实现物种的多样性和适生性。
     综上所述,进行黄土高原植被恢复时,可根据具体情况采取不同的方法。切沟和塌陷的土壤质量在自然恢复下好于人工造林后,浅沟、缓台和陡坎的土壤质量自然恢复下和人工造林后差别不大。在进行植被恢复时,缓台和浅沟便于人工操作,进行人工植树种草难度比较小,因此可以采取人工造林的方式;陡坎建议自然恢复,这样还可以省去人工造林的人力、物力和财力。在人工造林中植被配置类型的选择上,可以考虑油松、沙棘以及油松沙棘混交的模式。
In the Loess Plateau in northern shananxi, the wavy change of terrain in the hilly-gully region consequently forms the micro-topography of varying shapes and sizes, at the same time, causes the differences in physical property of the local soil on slope surface.It is these differences that result in the distinction of growth condition of the vegetation.What's more,the joint action of both terrain and surface coverage affects the distribution and movement of the physical and chemical properties of the soil, forming the unique habitat condition for various micro-topographies.
     Based on the actual situation of the hilly-gully region, the research studied the micro-topography on the loess slope. divideing it into five types such as ephemeral gully, gully, collaps, eplatform and scarp.In this study,the different qualities of soil in micro-topography are analyzed to explore the evolution of soil in the process of revegetation.The results are as follows:
     1.According to the study on the soil quality of the different micro-topographys in natural recovery, it is found that different micro-topography has different physical and chemical properties of soil. Among them,the soil quality of collapse is the best, gully,platform and ephemeral gully are the worse, scarp is the worst. The vegetation of collapse and gully has been well restored and even appeared Maru Zi, Caragana and some other small shrubs in those years. The soil quality of scarp is worst, so are the vegetation of coverage and height.
     2.Under the artificial afforestation condition,the soil quality of different micro-topography is distinguished from that of the natural recovery. Under the artificial afforestation condition,the soil quality of gully and platform is the best,however,The soil quality of the collapse,which is the best performer in natural recovery,is poorer than the other terrains.
     3.Through the comparison of different recovery modes, in three soil layers,the effection of the natural recovery and the artificial afforestation is similar. The soil quality of ephemeral gully in natural recovery is better than that in artificial afforestation. Gully in the 0-20cm soil layer achieves better results in natural recovery than that in artificial afforestation. However, it is just opposite in the 20-40cm and 40-60cm. The natural restoration of Collapse performs better whether in physical property,chemical property or enzyme activity in the 0-20cm,20-40cm and 40-60cm and the balance is relatively large. Platform receives effect slightly better in natural recovery in the 0-20cm but the artificial one wins with small difference in the 20-40cm and 40-60cm.Both of natural restoration and artificial afforestation play an equal role in progressing the soil quality for Platform, but artificial afforestation is conducive to improve the soil quality of deeper layers. The natural recovery of scarp reaches greater improvement in the 0-20cm and 40-60cm than the other one, but the balance is extremely small. In 20-40cm, the artificial beats the natural with narrow gap,which turns out that the scrap is in the same case of the platform.
     4.Under the conditions of natural recovery, Soli quality was affected by dfferernt type of their restored years and vegetation. After 50 years of natural recovery, the structure type of trees brushes and graaaes was formed, and the soil quality of physical and chemical properties was much greater than of 11 years',with soil recovery developing from the shallow soil layer to the deeper one.
     5.The study on soil quality The study on the soil quality cllocated by different vegetation shows that,the soil quality restores perfectly in chinese pine fores、hippophae rhamnoides forest and mixed forest of pine and hippophae rhamnoides.On the contrary,the soil in apricot and hippophae rhamnoides forest along with the vegetation lacking of recovery measures is relatively poor.At layer 0-20cm、20-40 cm and 40-60cm, chinese pine forest is the best,so in the early vegetation restoration, recovery can be promoted with its help.Considering the healthy and sustainable development of forest in the future, some other species can be planted to fit for the different stage of restoration.
     In conclusion,different approaches corresponding to the specific circumstances can be adopted to restore vegetation in the Loess Plateau. The soil quality of gully and collapsed under the natural recovery is better than in artificial afforestation, ephemeral gully(EG)、platform and scarp is not significant. During the vegetation recovery, platform and ephemeral gully(EG) can be taken artificial afforestation, because of the easy manual,planting trees and grass; Scarp suggests natural recovery,and it will save human、material and financial resources. In the choice of the type of vegetation collocation, chinese pine、hippophae rhamnoidesand or the mixed mode of chinese pine and hippophae rhamnoidesand can be taken into consideration.
引文
[1]安韶山,常庆瑞,李壁成,等.不同林龄植被培肥改良土壤效益研究[J].水土保持通报,2001,21(3):75-77.
    [2]安韶山,黄懿梅,郑粉莉.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(03):233-237.
    [3]包维楷,陈庆恒.退化山地植被恢复与重建的基本理论和方法[J].长江流域资源与环境,1998,(4):370-377.
    [4]包维楷,王春明.岷江上游山地生态系统退化机制[J].山地学报,2000,18(1):57-62.
    [5]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,2001.
    [6]蔡强国.植被覆盖度对降雨侵蚀的影响.黄河粗泥沙来源及侵蚀的机理论文集[C].北京:气象出版社:1988.48-56.
    [7]曹慧,孙辉,杨浩.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物报,2003,9(1):105-109.
    [8]曹世雄,李德,陈莉,等.黄土丘陵区不同土壤地类人工林土壤物理性状的监测分析[J].水土保持通报.2005,25(3):61-64.
    [9]曹志洪.继承传统土壤学的成果--促进现代土壤学的发展[J].中国基础科学,2000,(10):11-16.
    [10]曹志洪.解译土城质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展.2001.23(3):28-32.
    [11]曹志洪.土壤质量演变规律与持续利用研究的进展[J].中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学会交流研讨会论文集[C].2004:354-364.
    [12]查小春,唐克丽.黄土丘陵林区开垦地土壤抗冲性的时间变化研究[J].水土保持通报,2001,21(2):8-11.
    [13]查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响研究[J].水土保持通报,1992,12(2):52-58.
    [14]常庆瑞,安韶山,刘京,等.黄土高原恢复植被防止土地退化效益研究[J].土壤侵蚀与水土保持学报,1999,5(4):6-9.
    [15]常庆瑞,安韶山,刘京,等.陕北农牧交错带土地荒漠化本质特性研究[J].土壤学报,2003,40(4):518-523.
    [16]陈奇伯,王克勤.金沙江干热河谷不同类型植被改良土壤效应研究[J].水土保持学报,2003,17(2):67-70.
    [17]陈隆亨,李福兴.中国风沙[M].北京:科学出版社,1998.
    [18]陈奇伯,王克勤,李艳梅,等.金沙江干热河谷不同类型植被改良土壤效应研究[J].水土保持学报,2003,17(2):109-113.
    [19]程积民,万惠娥.中国黄土高原植被建设与水土保持[M].北京:中国林业出版社,2002.
    [20]戴全厚,刘国彬,薛萐,等.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响[J].水土保持研究.2008,15(3),61-64
    [21]丁秋祎,白军红,高海峰,等.黄河三角洲湿地不同植被群落下土壤养分含量特征[J].农 业环境科学学报,2009,28(10):2092-2097.
    [22]杜峰,山仑,梁宗锁.陕北黄土丘陵区撂荒演替研究[J].草地学报,2005,13(4):328-333.
    [23]杜相革,董民,曲再红,等.有机农业和土壤生物多样性[J].中国农学通报,2004,20(4):80-81.
    [24]冯云,马克明,张育新,等.东灵山辽东栋林木本植物多样性的研究[J].植物生态学报,2008,32(3):568-573.
    [25]傅伯杰,陈利顶.黄土丘陵区小流域土地利用方式对土壤肥力影响的研究[J].地理学报,1999,54(3):241-246.
    [26]葛宝明,程宏毅,郑祥,等.浙江金华不同城市绿地大型土壤动物群落结构与多样性[J].生物多样性,2005,13(3):197-203.
    [27]葛振鸣,王天厚,施文或,等.崇明东滩围垦堤内植被快速次生演替特征[J].应用生态学报,2005,16(9):1677-1681.
    [28]耿玉清,白翠霞,赵铁蕊,等.北京八达岭地区土壤酶活性及其与土壤肥力的关系[J].北京林业大学学报,2006,28(5):7-11.
    [29]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296.
    [30]郝文芳,梁宗锁,韩蕊莲,等.黄土高原不同植被类型土壤特性与植被生产力关系研究进展[J].西北植物学报,2002,22(6):1545-1550.
    [31]侯喜禄,白岗栓,曹清玉.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验[J].水土保持学报,1995,9(3):90-95.
    [32]胡建忠.山杨混交类型生产力及土壤质量综合评价[J].水土保持研究,1995,2(1):44-50.
    [33]胡江波,杨改河,张笑培,等.不同植被恢复模式对土壤肥力的影响[J].河南林业科学2007,(3):69-72.
    [34]胡素英,刘豫明.广州地区园林土壤质量现状分析[J].广东农业科学,2003(5):36-38.
    [35]胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报,2002,22(3):51-53.
    [36]胡月明,吴谷丰,江华,等.基于GIS与灰关联综合评价模型的土壤质量评价[J].西北农林科技大学学报(自然科学版),2001,29(4):39-42.
    [37]蒋定生.黄土抗冲性研究[C].陕西省土壤学会1978年学术年会论文集,1978.
    [38]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997,45-64.
    [39]孔祥斌,张凤荣,齐伟.集约化农区土地利用变化对土壤养分的影响--以河北省曲周县为例[J].地理学报,2003,58(3):333-342.
    [40]李绍良,陈有君.土壤退化与草地退化关系的研究[J].干旱区资源与环境,2002,16(1):92-95.
    [41]李艳梅,王克勤,刘芝芹,等.云南干热河谷微地形改造对土壤水分动态的影响[J].浙江林学院学报,2005,22(3):259-265.
    [42]李勇,朱显谟,田积莹.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):390-393.
    [43]李瑜琴,赵景波.过度放牧对生态环境的影响与控制对策[J].中国沙漠,2005,25(3):404-408.
    [44]李裕元,邵明安.黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J].应用生态学 报,2005,16(12):2321-2327.
    [45]利新荣.干旱沙漠地区土壤微生物结皮及其对固沙植被的影响研究[J].中国沙漠,1999,(19):165-169.
    [46]梁杰明,林建平,陈海平,等.珠海建设迹地岩土坡植被恢复的生态效应研究[J].水土保持研究,2004,11(3):175-177.
    [47]凌青根.土壤质量研究与可持续发展[J].华南热带农业大学学报,2002.8(1):54-56.
    [48]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学特性研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    [49]刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程--Ⅱ.植被恢复不同阶段土壤抗冲性特征[J].水土保持研究,1997,4(5):122-128.
    [50]刘世梁,傅伯杰,陈利顶,等.两种土壤质量变化的定量评价方法比较[J].长江流域资源与环境,2003,12(5):422-426.
    [51]刘世梁,傅伯杰,刘国华,等.我国土壤质量及其评价研究的进展[J].土壤通报,2006,37(1):137-143.
    [52]刘晓冰,邢宝山,Stephen J. Herbert土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(2):109-112.
    [53]刘增进,李宝萍,李远华.豫西黄土丘陵区植被恢复与重建的理论基础及技术体系[J].山地学报,2004,22(4):393-399.
    [54]刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3)902-913.
    [55]卢铁光,杨广林,王立坤.基于相对土壤质量指数法的土壤质量变化评价与分析[J].东北农业大学学报,2003,34(1):56-59.
    [56]路保昌,薛智德,朱清科,等.干早阳坡半阳坡微地形土壤水分分布研究[J].水土保持通报,2009,29(1):62-65.
    [57]吕锋,崔晓辉.多目标决策灰色关联投影法及其应用[J].系统工程理论与实践,2002,(1):103-107.
    [58]吕国红,周广胜,赵先丽,等.土壤碳氮与土壤酶相关性研究进展[J].辽宁气象,2005,(2):6-8.
    [59]马强,宇万太,赵少华,等.黑土农田土壤肥力质量综合评价[J].应用生态学报,2004,15(10):1916-1920.
    [60]潘成忠,上官周平,刘国彬.黄土丘陵区退耕草地土壤质量演变[J].生态学报,2006,26(3):691-696.
    [61]潘学标,龙步菊,苏艳华,等.黄土高原北部坡梁地微地形气候的温度变化特征研究[J].中国农学通报,2005,22(12):367-371.
    [62]彭少麟,赵平.以理论深入推进恢复生态学的自然与社会实践--2000年恢复生态学国际大会综述[J].生态学报,2000,11(5):799-800.
    [63]彭少麟.恢复生态学与植被重建[J].生态科学,1996,15(2):26-31.
    [64]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤侵蚀的时空变异及其影响因子[J].自然科学进展2004,14(3),294-299.
    [65]石国进,吴丹雯,樊冰.灰色关联投影法及其在多目标评价中的应用[J].武汉理工大学学 报·信息与管理工程版,2002,24(5):97-103.
    [66]宋述军,李辉霞,张建国.黄土高原坡地单株植物下的微地形研究[J].山地学报,2003,21(1):106-109.
    [67]孙波,赵其国,张桃林,等.土壤质量与持续环境.Ⅲ:土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [68]谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理,2005,25(4):307-311.
    [69]唐玉妹,魏朝富,颜廷梅,等.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157-163.
    [70]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964,12(3):286-296.
    [71]万运帆,高清竹,林而达.西藏那曲地区草地植被及土壤养分调查[J].草业科学,2006,23(5):7-11.
    [72]汪超.不同种植年代油松林植物多样性及土壤养分变化[J].生态学杂志,2007,26(8):1182-1186.
    [73]王国梁,刘国彬,刘芳,等.黄土沟壑区植被恢复过程中植物群落组成及结构变化[J].生态学报,2003,23(12):2550-2557.
    [74]王恒俊,张淑光.黄土高原地区土壤资源及其合理利用[M].北京:中国科学技术出版社,1991,160-173.
    [75]王克勤,王斌瑞.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    [76]王堃.草地植被恢复与重建[M].北京:化学工业出版社,2004.
    [77]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):11-20.
    [78]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-148.
    [79]王效举,龚子同.亚热带小区域水平上土壤质量时空变化的定量化评价[J].土壤与环境,1996,5(4):229-231.
    [80]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,(04):11-16.
    [81]王月玲,蔡进军,张源润,等,半干旱退化山区不同生态恢复与重建措施下土壤理化性质的特征分析[J].水土保持研究,2007,14(1),11-14
    [82]温仲明,焦峰,刘宝元,等.黄土高原森林草原区退耕地植被自然恢复与土壤养分变化[J].应用生态学报2005,16(11):2025~2029
    [83]魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报,2007,22(6):946-953.
    [84]吴斌,温俊宝,骆有庆,等.多树种合理配置抗御光肩星天牛灾害的效益评估及决策[J].北京林业大学学报,2006,28(3),128-132.
    [85]吴钦孝,李勇.黄土高原植物的根系提高土壤抗冲性能的研究(Ⅱ)--草本植物根系提高表层土壤抗冲刷力的试验分析[J].水土保持学报,1990.4(1):11-16.
    [86]吴钦孝,赵鸿雁.植被保持水土的基本规律和总结[J].水土保持学报,2001,15(4):13-16.
    [87]熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005,27(1):71-75.
    [88]徐宪立,马克明,傅伯杰.植被与水土流失关系研究进展[J].生态学报,2006,26(9):3137-3143.
    [89]许明祥,刘国彬,卜崇峰.黄土丘陵区人工林地土壤肥力评价[J].西北植物学报,2003,23(8):1367-1371.
    [90]杨吉华,张光灿,刘霞,等.紫花苜蓿保持水土效益的研究[J].土壤侵蚀与水土保持学报,1997,3(2):91-96.
    [91]杨永川,达良俊,宋永昌,等.浙江天童国家森林公园微地形与植被结构的关系[J].生态学报,2005,25(11):2830-2840.
    [92]余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科技出版社,1997.
    [93]袁金国,王卫.京津风沙治理区森林动态遥感监测研究[J].安徽农业科学,2005,33(3):479-481.
    [94]岳庆玲,常庆瑞,刘京,等.黄土高原不同土地利用方式对土壤养分与酶活性的影响[J].西北农林科技大学学报(自然科学版),2007,35(12):103-108.
    [95]翟瑞常,张之一.耕作对土壤生物碳动态变化的影响[J].土壤学报,1996.33(2):201-210.
    [96]张成娥,陈小利.黄土氏陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997,5(3):195-200.
    [97]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.
    [98]张红,吕家珑,赵世伟,等.不同植被覆盖下子午岭土壤养分状况研究[J].干旱地区农业研究.2006,24(2):66-69.
    [99]张俊华,常庆瑞,贾科利,等.黄土高原植被恢复对土壤肥力质量的影响研究[J].水土保持学报,2003,17(4):38-41.
    [100]张俊华.渭北黄土高原植被恢复过程土壤肥力质量研究[D].陕西杨陵,西北农林科技大学.2004.
    [101]张磊,苏芳莉,郭成久,等.灰色关联分析在不同生态修复模式土壤质量评价中的应用[J].沈阳农业大学学报,2009,40(6):703-707.
    [102]张庆费,宋永吕,由文辉.浙江大童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174-178.
    [103]张庆利,潘贤章,王洪杰,等.中等尺度上土壤肥力质量的空间分布研究及定量评价[J].土壤通报,2003,34(6):493-497.
    [104]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究,1990,8(4):325-334.
    [105]张全发.植物群落演替与土壤发育之间的关系[J].武汉植物学研究.1990,8(4):325-334.
    [106]张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999, (1):1-7.
    [107]张贤明,董闻达,李德荣.红壤坡地果园水土保持处理效益之研究[J].中华水土保持学报,2001,32(2):79-85.
    [108]张笑培,杨改河,胡江波等.不同植被恢复模式对黄土高原丘陵沟壑区土壤水分生态效应的影响[J].自然资源学报,2008,23(4):635-642.
    [109]张玉斌,吴发启,曹宁等.泥河沟流域不同土地利用土壤养分分析[J].水土保持通报, 2005,25(2):23-26.
    [110]张源润,蔡进军,火勇,等.半干旱退化山区坡地改造工程对土壤理化性质的影响[J].水土保持通报,2005,25(5)1-4.
    [111]张贞,魏朝富,高明,等.土壤质量评价方法进展[J].土壤通报,2006,37(5):999-1006.
    [112]赵广琦,杜增平.陕北西阳湾植被恢复的特点初探[J].西北林学院学报,2002,17(2):10-13.
    [113]赵哈林,赵学勇,张铜会,等.2002.北方农牧交错区沙漠化的生物过程研究[J].中国沙漠,22(4):309-315.
    [114]赵荟,朱清科,秦伟,等.黄土高原干旱阳坡微地形土壤水分特征研究[J].水上保持通报,2010,30(3):64-68.
    [115]赵荟,朱清科,秦伟,等.黄土高原沟壑区干旱阳坡的地域分异特征[J].地理科学进展,2010,29(3):327-334.
    [116]赵其国,刘良梧.人类活动与土地退化.中国科协学会部编.中国土地退化防治研究[M].北京:中国科学技术出版社,1990.
    [117]赵其国,孙波,张桃林.土壤质量与持续环境--土壤质量的定义及评价方法[J].土壤,1997.29(3):113-120.
    [118]赵其国,孙波,张桃林.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [119]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131-134.
    [120]周厚成,任海,向言词,等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104-112.
    [121]周佩华,刘炳武,王占礼,等.黄土高原土壤侵蚀特点与植被对土壤侵蚀影响的研究[J].水土保持通报,1991,11(5):26-31.
    [122]周印东,吴金水.子午岭植被演替过程中土壤剖面有机质与持水性能变化[J].西北植物学报,2003,23(6):895-900.
    [123]朱祖祥.土壤学(上册)[M].北京:农业出版社,1983.
    [124]庄作权,简宣裕.百喜草覆盖与敷盖对坡地肥力之影响[J].中华水土保持学报,1978.9(1):57-66.
    [125]Arshad M A, Martin S. Identifying critical limits for soil quality indicators in agro-ecosystem [J]. Agric. Ecosyst. Environ.,2002,88:153-160.
    [126]Berebdse F. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystem [J]. Journal of ecology,1990,78:413-427.
    [127]Bhatt V, Soni P. Revegetation and ant colonization relationships in reclaimed rock phosphatemines[J]. Trop. Ecol.1992,33(2):223-230.
    [128]Blurn W E H, Santelies A A. A concept of sustainability and resilience based on soil functions. Soil Resilience and Sustainable Land Use[M]. CAB International Wallingford, UK.1994,535-542.
    [129]Bradshaw A D. The reeonstruetion of ecosystems[J]. JOurnal of APPlied Eeology,1983,20: 1-17.
    [130]Brock MA, Nielsen DL, Crossle K. Changes in biotic communities developing from freshwater wetland under experimental salinity and water regimes[J]. Freshwater biology,2005,50: 1376-1390.
    [131]Brye K R, N A Slaton, M C Savin, R J Norman, and D M Miller. Short-term effects of landleveling on soil physical properties and microbial biomass[J]. Soil Soc. Am. J,2003,67: 1405-1417.
    [132]Cairns J Jr. Restoration ecology[J]. Encyclopedia of Evironmental Biology,1995.
    [133]Castellanos AE, Martinez MJ, Halvorson WL, et al. Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico [J]. Journal of Arid Environments,2005,60: 437-455.
    [134]Doran J W and T B Parkin. Defining and assessing soil quality[J]. In:Doran J. W. eds. Defining soil quality for a sustainable environment. SSSA Spec. Publ.35, Madison, USA,1994,3-21
    [135]Doran J W, Zeiss M R. Soil health and sustainability:managing the biotic component of soil quality[J]. Applied Soil Ecology,2000,15:3-11.
    [136]Doran, J. W., Parkin, T. B. Defining and assessing soil quality, In:Doran J W eds. Defining Soil Quality for A Sustainable Environment[J]. SSSA Spec. Publ.35. SSSA and ASA, Madison,1994,3-21.
    [137]Doran, J. W., Parkin, T. B. Defining and assessing soil quality, In:Doran J W eds. Defining Soil Quality for A Sustainable Environment [J]. SSSA Spec. Publ.35. SSSA and ASA, Madison, 1994,3-21.
    [138]Elhottova D, T Szili-Kovacs, and J Triska. Soil microbial community of abandoned sand fields[J]. Folia Microbiol.2002,47(4):435-440.
    [139]Ericksen P J, Ardon M. Similarities and differences between farmer and scientist views on soil quality issues in central Honduras[J]. Geoderma,2003,111:233-248.
    [140]Evrendilek F., Celik L, Kilic S.. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey, Journal of Arid Environments.2004, (59):743-752.
    [141]Filip Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture, Ecosystems&Enviroment, Special Issue,2002,88(2):169-174.
    [142]GB De Deyn, CE Raaijmakers, HR Zoomer, MP Berg, PC de Ruiter, A Verhoef, TM Bezimer, and WH van der Putten. Soil invertebrate fauna enhances grassland succession and diversity [J]. Nature.2003,422(6933):711-713.
    [143]Gregorich E G, Carter M R, Angers D A, etal. Towards a minmum data set to assess soil organic matter quality in agricultural soils[J]. Canadian Journal of Soil Science,1994,74:67-385.
    [144]Herrick J E. Soil quality:an indicator of sustainable land management? Appl. Soil. Ecol. 2000,15:75-83.
    [145]Islam KR, Weil RR. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J]. Agriculture, Ecosystems and Environment 2000, (79):9-16.
    [146]Jackman R H. Accumulation of organic matter in some New Zealands under permanent pasture. NZJAR,1964,7:445-447.
    [147]Jenkinson D. S., Brookes P. C., Powlson D. S. Measuring soil microbial biomass [J]. Soil Biology& Biochemistry,2004,36:5-7.
    [148]Johnannes M H K, David T. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment [J]. Ecology,2000,81(1):88-99.
    [149]Karlen D L, Ditzler C A, Andrews S S. Soil quality:why and how? [J]. Geoderma,2003, 114:145-156.
    [150]Karlen D L, Scott D E. A f ramework for evaluating physical and chemical indicators of soil quality[A]. In:Dorman J W. et al. ed. Defining Soil Quality for a Sustainable Environment [M]. Soil Science Society of American Publication No35. Inc, Madison, Wisconsin, USA, 1994,53-72.
    [151]Karlen DL, Ditzler CA, Andrewsss. Soil quality: why and how how?[J]. Geoderma.2003, 114:145-156.
    [152]Karlen DL, Mausbach MJ, Doran JW, et al. Soil quality:a concept, definition, and framework for evaluation(a guest editorial). SSSA,1997,61:4-10.
    [153]Karlen, D. L., Diane, E. S. A framework for evaluating physical and chemical indicators of soil quality [M]. Soil Science Society of America, Inc., Madison, Wisconsin, USA,1994: 53-72.
    [154]Larson W E, Pierce FJ. In:Defining soil quality for a sustainable environment. Soil Science Society of America, Inc., Madison, Wisconsin USA.1994,37-52.
    [155]Larson W E, Pierce F J. The dynamics of soil quality as a measure of sustainble management. In: Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc. Madison, Wisconsin, USA,1994,37-52.
    [156]Larson, W. E., Pierce, F. J. Conservation and enhancement of soil quality. In Proc. Of the Int. Workshop on evaluation for sustainable land management in the developing world. International Board for Soil Resource and Management(IBSRAM). Proceeding no.123 vol.2. Bangkok, Thailand,1991.
    [157]Leason W E, Clapp C E. Effect of increasing amount of organic residues on continues crops. Amer Soc, Agron.1972,64.
    [158]Levy G J, Levin J, Shainberg I. Seal formation and interrill soil erosion[J]. Soil Sci Soc A m J 1994,58:203-209.
    [159]Nambiar K K M, Gupta A P, Fu Q L, et al. Biophysical, chemical and socio-economic indicators for assessing agricutural sustainability in the Chinese coastal zone[J]. Agriculture, Ecosystems and Environment,2001,87:209-214.
    [160]Parr, J. F. R. I. Papendick, S. B. Homick, and R. E. Meyer. Soil quality:Attributes and relationship to alternative and sustainable agriculrure. Am. J. Altern. Agric.1992, (7): 5-11.
    [161]Power, J. F., and R. J. K. Myers. The maintenance or improvement of farming systems in MorthAmerica and Australia. In J. W. B. Stewart(ed.). Soil quality in semi-arid agriculture. Proc. of anInt. Cong. Sponsored by the Canadian Int. Development Agency, Saskatoon, Saskatchewan, Canada,1989,9:11-16
    [162]Powers Jennifer S.. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. [J]. Ecosystems,2004, (7):134-146.
    [163]Pulido J S, Bocco G. The traditional farming system of a Mexican indigenous community:the case of Nuevo San Juan Parangaricutiro, Michoacan, Mexico[J]. Geoderma,2003,111: 249-265.
    [164]Robortson G P, Vitowsck P M. Nitrification potentials in primary and secondary succession [J]. Ecology,1981,62:376-386.
    [165]Roming, D. E., Garlynd, M. J., Harris, R. F., et al. How farmers assess soil health and quality[J]. J SoilWater Conser,1995,50:229-236.
    [166]Ross. D J. Measurement of microbial biomass C and N in grassland soils by fumigation-incubation procedures:Influence of inoculums size and control [J]. Soil Biol Biochem,1990, 22:289-294.
    [167]Shugart H H. A Theory of Forest Dynamics, the Ecological Implications of Forest Succession Models [M]. New York:Springer,1984.
    [168]Sims J T, Cunningham S D. Sumner M E. Assessing soil quality for environmental purposes: Roles and challenges for soil scientists. J Environ Qual,1997,11:29-30.
    [169]Singh B B, Jones J P. Phosphorus sorption and desorption characteristics of soil as affected by organic residues. SSSAP,1976,40:389-394.
    [170]Singh J. S., Raghubanshi A. S., Singh R. S., et al. Microbial biomass acts a source of plant nutrients in dry tropical forest and savanna [J]. Nature,1989,338:499-500.
    [171]Smith J L, Halvorson J J, Papendick R I. Using multiple variable indicators Kriging for evaluating soil quality[J]. Soil Sci. Soc. Am. J,1993,57:743-749.
    [172]Smith, J. L., Halvorson, J. J., Papendick, R. I. Multiple variable indicator Kriging:a procedure for integrating soil quality indicators[A]. In:Defining soil quality for a sustainable environment [C]. Soil Science Society of America, Inc., Madison, Wisconsin, USA,1994,149-157.
    [173]Srivastava S. C., Singh J. S. Microbial C, N and P in dry tropical soils:effects of alternate land-uses and nutrient flux[J]. Soil Biol Biochem,1991,23(2):117-124.
    [174]Taha A, Gresillon J M. Modelling the link between hillslope water movement and stream flow: application to a small Mediterranean forest watershed [J]. J Hydrol,1997,203:11-20.
    [175]Taksin Oztas, Ali Koc, Binali Comakli. Changes in vegetation and soil properties along the slope and on overgrazed and eroded rangelands [J]. Journal of Arid Environment,2003,55:93-100.
    [176]Tolberta VR, Todd Jr. DE, Mann LK, et al. Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bioenergy crop production[J]. Environmental Pollution,2002, (116):597-5106.
    [177]Turchin, P. Does population ecology have generallaws [J]. Oikos,2001,94:17-26.
    [178]Turco R F, et al. Microbial Indicators of Soil Quality, in:Defining Soil Quality for a Sustainable Environment[J], Soil Science Society of America, Inc., Madison, Wisconsin, USA,1994, 73-90.
    [179]Vitousek, P. M, Hobbie, S. Heterotrophic nitrogen fixation in decomposing litter:patterns and regulation [J]. Ecology.2000,81:2366-2376.
    [180]Wang, X. J., Gong, Z. T. Assessment and analysis of soil quality change after eleven years ofreclamation in subtropical China[J]. Geoderma,1998,81(3-4):339-355.
    [181]Warkentin B P. The Changing Concept of Soil Quality. Journal of Soil and Water Conservation, 1995,50(3):226-228.
    [182]Wu. J, Brookes P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil [J]. Soil Biology & Biochemistry,2005, 37:507-515.
    [183]Zalidis G, Stamatiadis S, Takavaoglou V, et al. Impact s of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology[J]. Agriculture, Ecosystems and Environment,2002,88:137-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700