喀斯特地区土壤侵蚀模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球环境变化的人文因素计划(IHDP)和国际地圈生物圈计划(IGBP)提出的“土地变化科学(Land Change Science, LCS)框架下,土地退化和其影响因素研究是重要问题之一。中国西南喀斯特地区生态环境脆弱,人口压力和不合理的土地利用方式使得当地以土壤侵蚀为特征的土地退化问题严峻。因此对贵州喀斯特区域土壤侵蚀现状和机理进行研究,确定影响土壤侵蚀的主控因子,并建立流域土壤水蚀预报模型,可以为区域综合治理等宏观政策提供帮助,对当地防止土壤退化和减少洪涝灾害具有重要的现实意义。本文选取贵州省境内乌江流域为研究对象,运用遥感、GIS技术、小波分析方法、神经网络技术、RUSLE模型和多元统计分析方法,分析了乌江流域土壤侵蚀的尺度效应和土壤侵蚀主控因子的影响机制,模拟预测了乌江流域的土壤侵蚀空间格局,以期为喀斯特地区的水土流失研究和治理提供可靠依据。
     1.土壤侵蚀的尺度效应研究
     (1)时间尺度:利用1980—2000年乌江流域的年径流模数、降雨和输沙模数数据,通过小波分析方法,分析三者变化的周期特性。结果显示,降雨和径流模数序列具有很好的同步性(主周期为16年、次周期为4年);输沙模数的主周期为11年,次周期为5年。在4年和16年这两个尺度上,分别绘制径流、输沙和降雨3个序列的小波变换系数图,发现在这两个尺度上降雨、径流和输沙曲线变化均不同步;这些不同步与不同时期人类对乌江流域的开发特征有关。
     (2)空间尺度:将乌江流域内各水文站点控制区的产沙模数与面积进行回归分析,表明乌江流域在产沙模数与流域面积的关系中存在尺度效应,经对数转换后流域输沙模数与面积之间呈二次函数回归关系,输沙模数随流域面积变化的趋势表现为先增大后减小。通过设定汇流面积阈值(150 km2),在乌江流域内生成189个子流域。将这些子流域作为样本分析5个土壤侵蚀影响因子(降雨侵蚀力因子R、土壤可蚀性因子K、坡长与坡度因子LS、植被覆盖与管理因子C和水土保持措施因子P)与流域面积的回归关系。分析表明侵蚀产沙影响因子中,坡度坡向因子随流域面积先增大后减小,是决定输沙模数与流域面积关系的主要因素。选择对各个子流域的拟合误差比较小的1000 km2作为标准面积,使用普通Kriging插值法制作出整个研究区乌江流域的输沙模数图,以消除尺度效应的影响。
     2.土壤侵蚀主控因子影响机制分析
     (1)降雨:利用1951—2009年降雨资料,计算乌江流域各气象台站降雨侵蚀力,发现乌江流域多年平均降雨侵蚀力变化范围在1751~4349 MJ?mm/(hm2?h?a)之间,平均为2788 MJ?mm/(hm2?h?a),并呈现出南高北低、东高西低的空间分布格局。季节分布上,降雨侵蚀力主要集中在夏季(5—8月),这4个月的降雨侵蚀力占年均降雨侵蚀力的90.42%。1980—2000年,各气象台站降雨侵蚀力倾向率均为正,表明整个乌江流域降雨侵蚀力呈增加趋势。使用“区域重心”概念,计算不同年份降雨侵蚀力重心的变迁及其与坡度等级重心、土地利用重心、区域几何中心和水文站点的空间位置关系,分析了降雨侵蚀力空间分布对土壤流失的影响。
     (2)地形:乌江流域的侵蚀类型为水力侵蚀,根据强度分为微度、轻度、中度、强度、极强五个等级,以微度和轻度侵蚀为主。在2000年土壤侵蚀分布图和30米分辨率的DEM数据叠加分析的基础上,选取海拔、坡度、地表起伏度和粗糙度四个要素对乌江流域土壤侵蚀进行地貌特征分析:从海拔角度看,微度侵蚀和轻度侵蚀呈现明显的单峰现象,主要集中在1100~1300 m之间的黔中石质丘陵盆地区,中度及以上强度侵蚀面积集中分布在500~900 m和1300~1700 m高程左右;中度及中度以下土壤侵蚀空间分布的坡度特征为单调下降趋势,强度和极强度土壤侵蚀的面积比重随着坡度的增加呈现先增大后减小的趋势,15°左右存在一个侵蚀临界坡度;乌江流域的土壤侵蚀随地形起伏度的增加表现为先增加后减小的趋势,存在7~16 m临界起伏度;随地表粗糙度的增加均呈减小趋势,土壤侵蚀强度的变化对地形起伏度和地表粗糙度的变化均不敏感。
     (3)土地利用:通过土壤侵蚀强度与土地利用格局之间耦合关系分析可以得出:不同土地利用类型下的土壤侵蚀程度大小为裸岩石砾地<其他林地<建设用地<有林地<水域<水田<低覆盖度草地<灌木林地<高覆盖度草地<疏林地<中覆盖度草地<旱地。旱地、中覆盖度草地和疏林地是流域发生土壤侵蚀的主要土地利用类型。从不同侵蚀等级的发生区域看,各强度类型侵蚀都集中分布在植被覆盖度50%~60%的地区,侵蚀存在50%~60%的植被覆盖度临界值。喀斯特地区土壤侵蚀发生及强弱受限于土层厚度,与非喀斯特地区随着植被盖度降低,侵蚀强度逐渐增大的规律不同。
     3.土壤侵蚀模拟与预测
     基于GIS平台,应用RUSLE模型计算乌江流域20世纪80年代和90年代的年均土壤侵蚀模数,计算结果和以往土壤侵蚀调查估计的结果比较吻合。但由于RUSLE模型不包括重力侵蚀,因此仍与实测输沙模数有出入。潜在土壤侵蚀模数方面,90年代比80年代为高,潜在土壤侵蚀呈增加趋势,其中三岔河流域和马蹄河/印江河流域年均潜在土壤侵蚀模数最高。三种主要土地覆被类型中,林地的土壤保持量最大,耕地次之,草地最少,这与非喀斯特地区在水土保持效果上通常林地>草地>旱地的结论有所不同。
     构建BP神经网络,基于80年代和90年代土壤侵蚀模数及各影响因子数据,预测乌江流域2001—2010年土壤侵蚀模数。结果显示,21世纪前10年,土壤侵蚀模数大幅降低,流域年均土壤侵蚀模数由90年代的2313 t/(km~2·a)降低为101 t/(km~2·a),年均土壤侵蚀量由115.18×10~6 t/a下降为5.03×10~6 t/a。三岔河流域的水土流失得到了控制,黔西、金沙、息烽、修文、贵阳、平坝、思南、石阡、沿河和松桃等县市应是十二五期间的水土流失重点治理对象。
Land degradation and its factors are among the most important research themes in Land Change Sciences. Karst areas in southwest China, with a large population and local non-sustainable land use, have the most serious land degradation in China and even the whole world. Therefore research on soil erosion in Karst areas in China, analyzing its factors, using model to simulate the soil erosion are quite necessary for regional management. In this article, we adopt methods like RS, GIS, wavelet analysis, neural network, RUSLE model and multivariate analysis to analyze soil erosion in Wujiang River Basin (WRB) in Guizhou Province. This article is constituted by three parts:
     1. Scale effect
     (1) Time scale. Using wavelet analysis method, we calculated the periodicity of annual runoff modulus, precipitation and sediment transport modulus based on their monitoring data from 1980 to 2000. The results show precipitation and runoff modulus data sequences are quite synchronous, which has a primary period of 16 years and a secondary period of 4 years. Sediment transport modulus is a little different, which has a primary period of 11 years and a secondary period of 5 years. We draw the wavelet transform coefficient figures of these three factors using 16-years-peroid and 4-years-period separately. The figures show asynchronization in both two time scales. This is related to different river basin development in different time.
     (2) Space scale. Through constructing relationships between sediment yield and drainage area of hydrological stations in WRB, it is found that there is a quadratic function relationship. 189 sub-river basins are generated from the whole Wujiang River Basin by setting the threshold value of convergence area (150 km2). We analyzed the regression relationship between 5 factors of soil erosion and the area of sub-river basin. The conclusion is that these 5 factors will change along with the changing of sub-river basin area. To eliminate the influence of scale effect, we further use 1000 km2 as standard sub-river basin area to calculate the sediment transport modulus map using Kriging interpolation method.
     2. The effect factors of soil erosion
     (1) Precipitation. The rainfall erosivity for every meteorological station was calculated on the Wujiang River Basin. The results show that the average annual rainfall erosivity changed from 1751 to 4349 MJ?mm/(hm2?h?a), and the mean of it is 2788 MJ?mm/(hm2?h?a) with the distribution of Southern North high-low, East West high-low. The rainfall erosivity is concentrated in summer (May-August), and which account for 90.42% of the annual rainfall erosivity. During 1980-2000, the trend rate of the average rainfall erosivity was positive. It indicates that the rainfall erosivity on the whole Wujiang River Basin is increasing. By using the conception of region gravity center, the change for the gravity center of rainfall erosivity in the different years is estimated as well as relation to the gravity center of slope, land use, geometric and the spatial location. Also, the effect of the distribution of rainfall erosivity on soil erosion is analyzed.
     (2) Topographic features. The type of erosion is water erosion on the Wujiang River Basin. According to the strength, the erosion can be divided into five degree which are less slight, slight, moderate, strength and pole-strength. The less slight and slight erosion are the main erosion. Based on the overlay analysis of soil erosion and DEM in 2000, the elevation, slope, amplitude and surface roughness are selected to analyze the geomorphology of soil erosion. From elevation, the less slight and slight erosion appear single peak which focus on the rocky hills basin areas in Guizhou with the elevation of 1100-1300 meters. The moderate and above degree erosion concentrate on areas with the elevation of 500-900 meters and 1300-1700 meters. From the slope, the distribution of the moderate and below degree erosion decrease. The area scale of the strength and pole-strength erosion increase with the surface rolling increase firstly and then decrease; 15°is a threshold. The erosion first increases and later decreases along with the increase of amplitude, with a threshold of 7-16 meters. The rougher the land surfaces, the lighter soil erosion. Soil erosion intensity is not sensitive to amplitude and surface roughness.
     (3) Land use. Analysis on the relationship between soil erosion and land use suggests that different land use types have different degrees of soil erosion, i.e. barren land < other land < construction land < forest land < water area < paddy field < grassland with low coverage < shrub land < grassland with high coverage < open forest land < grassland with medium coverage < dry land. Among these land use types, dry land, grassland with medium coverage and open forest land are mostly frequently accompanied with soil erosion. All types of soil erosion concentrate on areas with vegetation coverage of 50%-60%. When the vegetation coverage falls to 50%-60%, the most serious soil erosion happens. In Karst areas, the degree of soil erosion is strongly related to soil thickness, which is different with the situation in non-Karst areas where soil erosion intensified along with the degradation of vegetation.
     3. Soil erosion simulation and prediction
     Using GIS platform, we calculated the average annual soil erosion modulus in the 1980s and 1990s. Our results coincide with previous soil erosion investigation. However, difference exists because RUSLE model does not have gravitational erosion included. Potential soil erosion modulus in the 1990s is higher than that in the 1980s, which suggests an increase in potential soil erosion in Wujiang River Basin. San-Cha river basin and Ma-Ti river/Yin-Jiang river have the highest value of potential soil erosion modulus. Among three main land cover types, forest land has the most soil conservation, grassland the least, while farmland in the middle. This is different with non-Karst area where grassland is better than farmland in soil conservation.
     We use BP Neural Network model to calculate soil erosion modulus in the 2000s based on the data in the 1980s and 1990s. The results suggests soil erosion decreases from 2313 t/(km~2·a) in the 1990s to 101 t/(km~2·a) in the 2000s, the amount of soil erosion from 115.18×10~6 t/a to 5.03×10~6 t/a. Soil erosion in San-Cha river is under control. Qianxi, Jinsha, Xifeng, Xiuwen, Guiyang, Pingban, Sinan, Shiqian, Yanhe and Songtao need strict soil management in 12th Five-Year Plan period.
引文
卜兆宏,董勤瑞,周伏建等. 1992.降雨侵蚀力因子算法的初步研究[J].土壤学报, 29(4):408-417.
    蔡崇法,丁树文,史志华等. 2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 14(2): 19-24.
    蔡道明,鄢铁平,廖炜等. 2010.湖北省1957-2009年降水时空变化特征分析[J].水土保持研究, 17(6):237-241.
    蔡煌东,许伟杰. 1993.土壤侵蚀预报的自组织人工神经网络方法[J].计算机农业应用, 4:14-16.
    蔡强国,刘纪根,郑明国. 2007.黄土丘陵沟壑区中大流域侵蚀产沙模型与尺度转换研究[J].水土保持通报, 27(4):131-135.
    蔡强国,陆兆熊. 1996.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报, 61(2):108-117.
    蔡运龙. 1999.中国西南喀斯特山区的生态重建与农林牧业发展:研究现状与趋势[J].资源科学, 21 (5):37-41.
    蔡运龙. 2009.贵州喀斯特高原土地系统变化空间尺度综合的-个研究方案[J].地球科学进展, 24(12):1301-1308.
    陈集中. 2005.应用人工神经网络BP模型预测鸟江流域年平均含沙量[J].水文, 25(4):6-9.
    陈克龙,李双成,周巧富等. 2007.江河源区达日县近50年气候变化的多尺度分析[J]. 地理研究, 26(3):527-532.
    陈松生,许全喜,陈泽方. 2008.乌江流域水沙变化特性及其原因分析[J].泥沙研究, 5:43-48.
    陈洋波,任启伟,徐会. 2010.流溪河模型I原理与方法[J].中山大学学报, 49(1):108-112.
    陈月红,谢崇宝,干平等.流域侵蚀产沙模型研究动态评述[J].泥沙研究, 2007,( 3): 75-81.
    程圣东. 2010.黄土高原文安骚流域植被覆盖与土壤侵蚀分布特征研究[D].西安:西安理工大学硕士学位论文.
    代华龙等. 2008.改进补偿模糊神经网络在坡面产沙模拟预报中的应用[J].四川大学学报, 40(5):45-50.
    丁文荣,周跃,周晓路. 2010.用小波神经网络祸合模型预测流域年均产沙量[J].人民长江, 41(1):74-78.
    丁晓红,陆建林,程吉林等. 2007.蓄满产流模型的改进及应用—以盐城地区为例[J]. 节水灌溉, (5):35-37.
    董婷婷,左丽君,张增祥. 2009.基于ANN-CA模型的土壤侵蚀时空演化分析[J].地球信息科学学报, 11(l):132-135.
    范可旭,贾建伟,张晶. 2008.乌江银盘水电站水文特性分析[J].人民长江, 39(4):10-13.
    冯利华. 1999.基于ANN的土壤侵蚀研究[J].土壤侵蚀与水土保持学报, 5(6):105-109.
    符素华,张卫国,刘宝元等. 2001北京山区小流域土壤侵蚀模型[J].水土保持研究, 8(4):114-120.
    傅伯杰,邱扬,王军等. 2002.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报, 57(6): 717-722.
    傅伯杰,赵文武,陈利顶等. 2006.多尺度土壤侵蚀评价指数[J].科学通报, 51(16): 1936-1943.
    贵州省水利厅. 2005.贵州省水土流失公告(一)[R].贵州
    何长高. 2005.人工神经网络在花岗岩侵蚀坡面产流产沙预测中的应用[J].中国水土保持, 6:41-46.
    贺祥. 2007.喀斯特生态治理区的土壤侵蚀特征空间规律研究[D].贵州:贵州师范大学硕士学位论文.
    洪伟,吴承祯. 1997.闽东南土壤流失人工神经网络预报研究[J].土壤侵蚀与水土保持学报, 3(3):52-57.
    侯建才,李占斌,李勉. 2007.流域次降雨侵蚀产沙的BP神经网络模拟[J].水上保持通报, 27(3):79-83.
    胡尧文,郭磊,唐巨山等. 2008.平原河网区产流实用模型研究[J].中国农村水利水电, 8:22-28.
    黄桔梅,金建德,周治玲等.2009.贵阳喀斯特地区夏旱特征分析[M].安徽农业科学, 37(28):13736-13738.
    黄胜. 2006.长江上游干流区径流变化规律及预测研究[D].四川:四川大学博士学位论文.
    贾仰文,王浩,王建华等. 2005.黄河流域分布式水文模型开发和验证[J].自然资源学报, 20(2):300-308.
    江忠善,王志强,刘志. 1996.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报, 1 (2):1-91.
    颉耀文,陈怀录,徐克斌. 2002.数宇遥感影像判读法在土壤侵蚀调查中的应用[J].兰州大学学报:自然科学版, 38(2): 157–162.
    金鑫,郝振纯,张金良等. 2006.黄河中游分布式水沙耦合模型研究[J].水利水电技术, 37:10-15.
    景可,焦菊英,李林育等. 2010.输沙量_侵蚀量与泥沙输移比的流域尺度关系——以赣江流域为例[J].地理研究, 29(7):1163-1169.
    景可. 2002.长江上游泥沙输移比初探[J].泥沙研究, 1: 53-57.
    赖瑞勋,梁国亭,张晓丽等. 2008.面向对象的黄河水沙数据模型设计与应用[J].人民黄河, 30(11):115-117.
    李程,畅建霞,孙东永. 2010.乌江上游洪家渡站径流变化规律分析[J].水电能源科学,28(3):9-10.
    李程. 2010.乌江流域径流演变规律分析及径流预报模型研究[D].西安:西安理工大学硕士学位论文.
    李传华,潘竟虎. 2009.基于神经网络和GeoCA的土壤侵蚀预测模拟——以庆城县水土保持世行二期贷款项目区为例[J].土壤通报, 40(4):902-906.
    李海娟,夏自强,章洁等. 2010.额尔齐斯河流域年降水量时间序列分析[J].水资源保护, 26(5):29-32.
    李鹏程,李琼芳,蔡涛等. 2010.北京天津地区近51a降水变化特征分析[J].水电能源科学, 28(10):6-9.
    李锐,上官周平,刘宝元等. 2009.近60年我国土壤侵蚀科学研究进展[J].中国水土保持科学,7(5): 1-6.
    李森. 2007. BP神经网络在不同植被产流产沙分析中的应用[J].水土保持通报, 27(6):152-224.
    李生,任华东,姚小华等. 2009.典型石漠化地区不同植被类型地表水土流失特征研究[J].水土保持学报, 23(2):1-6.
    李秀彬.1999.地区发展均衡性的可视化测度[J].地理科学, 19(3):254-257.
    李阳兵,高明,魏朝富等. 2003.土地利用对岩溶山地土壤质量性状的影响[J].山地学报, 21(1):41-49.
    李玉环. 2006.基于RUSLE水蚀模数演算与人工神经网络评价[J].应用生态学报, 17(6):1019-1026.
    刘宝元,谢云,王勇. 2001.土壤侵蚀预报模型[M].北京:中国科学技术出版社.
    龙明忠. 2006.喀斯特峡谷区生态治理的水土保持效应与土壤侵蚀模型[D].贵州:贵州师范大学硕士学位论文.
    路云阁,李双成,蔡运龙. 2004.近40年气候变化及其空间分异的多尺度研究—以内蒙古自治区为例[J].地理科学, 24(4):432-438.
    罗林. 2005.山区河流输沙模数与土地利用的BP神经网络模拟及调控[M].水资源与水工程学报, 16(2):42-45.
    罗志军,张俊. 2007.土壤侵蚀模型的研究现状与展望[J].安徽农业科学, 35(27): 8574-8576.
    马良,姜广辉,左长清等. 2009.江西省50余年来降雨侵蚀力变化的时空分布特征[J].农业工程学报, 25(10):61-68.
    穆振侠. 2007.天山西部山区分布式水文模型的研究[D].乌鲁木齐:新疆农业大学硕士学位论文.
    宁丽丹,石辉. 2003.利用日降雨资料估算西南地区的降雨侵蚀力[J].水土保持研究, 10(4):183-186.
    潘锋,刘方贵. 2009.基于基本单元的沿渡河流域分布式汇流模型[J].水电能源科学, 27(4):11-13.
    彭韬,杨涛,王世杰等. 2009.喀斯特坡地土壤流失监测结果简报[J].地球与环境, 37(2):126-130.
    彭建. 2006.喀斯特生态脆弱区土地利用/覆被变化研究——以贵州猫跳河流域为例[D]. 北京:北京大学博士学位论文.
    彭建,杨明德. 2001.贵州花江喀斯特峡谷水土流失状态分析[J].山地学报,19(6):511-515.
    彭清娥,刘兴年,曹叔尤. 2000.流域年均含沙量的人工神经网络模型[J].水利学报, (11):79-81.
    彭清娥. 2002.坡面产沙BP神经网络模型研究[J].水土保持学报, 16(3):79-82.
    祁伟,曹文洪,郭庆超等. 2004.小流域侵蚀产沙分布式数学模型的研究[J].中国水土保持科学, 2(1):16-21.
    沈晓东,王腊春,谢顺平. 1995.基于栅格数据的流域降雨径流模型[J].地理学报, 50(3):264-271.
    苏维词. 2001.贵州喀斯特山区的土壤侵蚀性退化及其防治[J].中国岩溶, 20 (3): 217- 223.
    孙卫国,黄海仁,程炳岩. 2005. .Ni_o海区冷暖事件的小波功率谱分析[J].热带气象学报, 21(4):436-440.
    孙旭波,王红亚. 2008.贵州鹅项水库沉积物特征及其土壤侵蚀的意义[J].第四纪研究, 28(4):769-778.
    汤立群. 1996.流域产沙模型的研究[J].水科学进展, 7(1):47-53.
    唐洪波,望建成,杨建赞等. 2010.乌江流域气象、水文特性分析[J].贵州水力发电, 24(1):6-9.
    万国江,白占国. 1998.论碳酸盐侵蚀与环境变化—以黔中地区为例[J].第四纪研究, 3:279.
    万军,蔡运龙,路云阁等. 2003.喀斯特地区土壤侵蚀风险评价--以贵州省关岭布依族苗族自治县为例[J].水土保持研究, 10(3):149-153.
    汪文富. 2001.贵州普定后寨河流域土壤侵蚀模型与应用研究[J].贵州地质, 18(2):99-106.
    王万中,焦菊英,郝小品等. 1995.中国降雨侵蚀力R值的计算与分布(I)[J].水土保持学报, 9(4):5-18.
    王协康. 2000.土壤侵蚀产沙量的人工神经网络模拟[J].成都理工学院学报, 27(2):197-201.
    吴仕章. 1995.乌江上、中游河流输沙量变化规律的研究[J].贵州环保科技, 1:5-10.
    吴素业. 1994.安徽大别山降雨侵蚀力简易算法与时空分布规律研究[J].中国水土保持, 4:12-13.
    吴秀芹,蔡运龙. 2003.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展, 22 (6): 576-584.
    吴秀芹,蔡运龙,蒙吉军. 2005.喀斯特山区土壤侵蚀与土地利用关系研究—以贵州省关岭县石板桥流域为例[J].水土保持研究, 12(4): 46-48, 77.
    熊康宁,黎平,周忠发等. 2002.喀斯特石漠化的遥感-GIS典型研究-以贵州省为例[M]. 北京:地质出版社
    熊亚兰,王昌全,张科利等. 2010.北盘江流域降雨量和径流量年际变化研究[J].水土保持研究, 17(5):30-33.
    熊亚兰,张科利,杨光檄等. 2009.贵州省年降雨量和天然年径流量年际变化研究[J]. 水土保持学报, 23(1):36-40.
    徐燕,龙健. 2005.贵州喀斯特山区土壤物理性质对土壤侵蚀的影响[J].水土保持学报, 19(1):157-159.
    徐映雪,任志远.2009.基于重心模型的关中地区1996-2005年生态足迹时空变化分析[J].农业系统科学与综合研究, 25(1):63-68.
    许月卿,蔡运龙,彭建. 2008.土地利用变化的土壤侵蚀效应评价:西南喀斯特山区的一个研究案例[M].北京:科学出版社.
    许月卿,李双成,蔡运龙. 2004.基于小波分析的河北平原降水变化规律研究[J].地球科学, 34(12):1176-1183.
    许月卿,彭建.2008.贵州猫跳河流域土地利用变化及其对土壤侵蚀的影响[J].资源科学,30(8):1218-1225.
    许月卿,邵晓梅. 2006.基于GIS和RUSLE的土壤侵蚀量计算--以贵州省猫跳河流域为例[J].北京林业大学学报, 28(4):67-71.
    闫云霞,许炯心. 2006.黄土高原地区侵蚀产沙的尺度效应研究初探[J].中国科学D辑地球科学, 36(8):767-776.
    杨成波. 2008.人工模拟降雨条件下喀斯特中度石漠化灌从水土流失研究[D].贵州:贵州大学硕士学位论文.
    杨广斌. 2004.基于网格数据的喀斯特山区土壤侵蚀研究[D].贵州:贵州师范大学硕士学位论文.
    杨涛,陈界仁,姚文艺等. 2007.基于DEM的黄土丘壑区动力学流域水沙数学模型应用研究—以黄河中游两个典型小流域为例[J].水动力学研究与进展, 22(5):583-591.
    于浩,张晓萍,李锐. 2008.延河流域径流和输沙周期变化特征的小波分析[J].中国水土保持科学, 6(4):18-22.
    曾凌云. 2008.基于RUSLE模型的喀斯特地区土壤侵蚀研究——以贵州红枫湖流域为例[M].北京:北京大学硕士论文.
    张明波,张新田,余开金. 1999.乌江流域水文气象特性分析[J].水文, 6:53-56.
    张先起,刘慧卿,梁川. 2005.流域产沙量预测的神经网络模型[J].云南水力发电, 21(6):11-14.
    张小峰,许全喜,裴莹. 2001.流域产流产沙BP网络预报模型的初步研究[J].水科学进展, 12(1):17-22.
    张小峰. 2001.流域产流产沙BP网络预报模型的初步研究[J].水科学进展, l2(l):17-22.
    张小琴,包为民,王涛. 2008.水动力学模型初始条件问题浅议[J].水电能源科学, 26(2):62-75.
    张志才,陈喜,石朋等. 2009.喀斯特流域分布式水文模型及植被生态水文效应[J]. 水科学进展, 20(6):806-811.
    赵文武,傅伯杰,郭旭东等. 2008.多尺度土壤侵蚀评价指数的技术与方法[J].地理科学进展, 27(2): 47-52.
    赵文武,傅伯杰等. 2006.多尺度土地利用与土壤侵蚀[J].地理科学进展25(1): 24-33.
    赵洋毅,周运超,段旭. 2008.黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性[J]. 水土保持研究, 15(2):18-21.
    郑粉莉,刘峰,杨勤科等. 2001.土壤侵蚀预报模型研究进展[J].水土保持通报, 21 (6) : 16-18.
    郑粉莉,王占礼,杨勤科. 2008.我国土壤侵蚀科学研究回顾和展望[J].自然杂志143 30(1):12-16.
    周斌,杨柏林,洪业汤等. 2000.基于GIS的岩溶地区水土流失遥感定量监测研究——以贵州省(原)安顺市为例[J].矿物学报, 20(1):14-20.
    朱安国,林昌虎,朱红苏. 1993.乌江中上游产沙规律的分析研究[J].水土保持学报, 7(3):53-57.
    Chorley R. J., Schumm S. A., Sugden D. E. 1984. Geomorphology[M]. London: Methuen. Church M., Slaymaker O. 1989. Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature, 337(6206):452-454
    Favis-Mortlock D.T., Quinton J.N., Dickinson W.T. 1996. The GCTE validation of soil erosion models for global change studies [J]. Journal of Soil and Water Conservation, 51(5):397~403.
    Fisher P., Abrahart R., Herbinger W. 1997. The sensitivity of two distributed non-point source pollution models to the spatial arrangement of the landscape[J]. Hydrological Processes, 11: 241–252.
    GLP (Global Land Project). 2005. Global Land Project: Science Plan and Implementation Strategy[R]. IGBP Report No. 53 / IHDP Report No. 19. IGBP Secretariat, Stockholm, 64. Goovaerts P. 1999. Using elevation to aid the geostatistical mapping of rainfall erosivity[J]. Catena, 34:227-242.
    Govers G., Loch R. 1993. Effects of initial water content and soil mechanical strength on the runoff erosion resistance of clay soils[J]. Australian Journal of Soil Research, 31: 549–566. Holben B.N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data [J]. International Journal of Remote Sensing, (7): 1417-1434.
    Hoyos N., Waylen P.R., Jaramillo A. 2005. Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes[J]. Journal of Hydrology, 314(1/2/3/4):177-191.
    Huang Chi-hua, Zheng Fen-li. 2003.Research Progress on Soil Erosion Process and Erosion Prediction Model in the USA[J]. Bulletin of Soil and Water Conservation, 23(3): 1-5.
    Kheir R.B, Abdallah C., Khawliehur M., et al. 2008. Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS [J]. Engineering Geology, 99(3/4):239-254.
    Kirkby M.J., Mcmahon M.L. MEDRUSH and the Catsop basin the lessons learned[J]. Catena, 1999, 37: 495~506.
    Kirkby M.J., Cox N.J. 1995. A climate index for soil erosion potential(CSEP),Including seasonal factors[J]. Catena, 25:333~352.
    Kirkby M.J, Imeson A.C., Berkamp G., et al. 1996. Scaling up processes and models from the field plot to the watershed and regional areas[J]. Journal of Soil and Water Conservation, 54(3):391~396.
    Kumar P., Foufoula G.E. 1993. A multicomponent decomposition of spatial rainfall fields: 1.segregution of large-and small-scale features using wavelet transforms[J]. WaterResources Research, 29(8):2515-2532.
    Laflen J.M., Lane L.J., Foster, G.R. 1991. WEPP: A new generation of erosion prediction technology [J ]. Journal of Soil and Water Conservation 46, 34–38.
    Lambin E.F. 1997. Modeling and monitoring land-cover change processes in tropical regions[J]. Progress in Physical Geography, 21: 375-393.
    
    Lambin E.F., Baulies X. 1999. Land-Use and Land-Cover Change: Implementation Strategy[R]. IGBP Report No.48/IHDP Report No.10 IGBP Stockholm.
    Li X., Yeh A.G. 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science , 163(4): 23-343.
    Merritt W.S., R.A. Letcher, A.J. Jakeman. 2003 A review of erosion and sediment transport models[J]. Environmental Modelling & Software, 18 : 761–799.
    MEYER L.D. 1984. Evolution of the universal soil loss equation[J]. Journal of Soil and Water Conservation, 39:99-104.
    Moore I., Gallant J. 1991. Overview of hydrologic and water quality modeling[J]. In: Moore, I. (Ed.), Modelling the Fate of Chemicals in the Environment Centre for Resource and Environmental Studies. Australian National University, Canberra, 1–8.
    Morgan R.P.C., Quinton J.N., Smith R.E., et al. 1998. The European soil erosion model (EUROSEM): a process-based approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms 23, 527–544.
    NSERL, 1995. WEPP User Summary Version 95.7[R]. National Soil Erosion Research Laboratory Report No. 11.
    Renard K.G., Foster G.R., Weesies G.A., et al. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. U.S. Department of Agriculture, Agriculture Handbook .703, 404.
    Renard K.G., Freimund J. R. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE[J]. Journal of Hydrology, 157:287-306.
    Rindfuss R.R., Walsh S.J., TurnerⅡB.L., et al. 2004. Developing a science of land change: Challenges and methodological issues [J]. Proceedings of the National Academy of Sciences, 101:13 976-13981.
    Sorooshian S. 1991. and model validation: conceptual type models[J].In: Bowles, D.S., O’Connell, P.E. (Eds.), Recent Advances in the Modelling of Hydrological Systems. Kluwer Academic, 443–467.
    Takken I., Beuselinck L., Nachtergaele J., et al. 1999. Spatial evaluation of a physically based istributed ero sion model (LISEM )[J ]. Catena, 37: 431- 447.
    Thornton P.K., Jones P.G. 1998. A conceptual approach to dynamic agricultural land use modeling[J]. Agricultural System , 57(4): 505-521.
    Veldkamp A., Fresco LO. 1996. CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica[J]. Ecological. Modeling , 91(1-3): 231-248.
    Wheater H.S., Jakeman A.J., Beven K.J. 1993. Progress and directionsin rainfall-runoffmodelling[J]. In: Jakeman A.J., Beck M.B., McAleer M.J. (Eds.), Modelling Change in Environmental Systems. John Wiley and Sons, Chichester, 101–132.
    Williams J.R, Renard. 1983. EPIC-A new method for assessing erosion' s effect on soil productivity[J]. Journal of Soil and Water Conservation, 38:381-383.
    Wischmeier W.H., Smith D.D. 1987. Predicting rainfall erosion loess-a guide to conservation planning,USDA, ARS[M]. Agricultural Handbook,Washington D.C , 537.
    Xu J.X., Yan Y.X. 2005. Scale effects on specific sediment yield in the Yellow River basin and geomorphological explanations[J]. Hydrol, 307(1-4):219-232
    Yin S., Xie Y., Nearing M.A., et al. 2007. Estimation of rainfall erosivity using 5-to 60-minute fixed-interval rainfall data from China[J]. Catena, 70(3):306-312.
    Yu B., Rosewell C.J. 1996. A robust estimator of the R-factor for the Universal Soil Loss Equation[J]. Transaction Society of Agriculture Engineers, 39:559-561.
    Yu B. 1998. Rainfall erosivity and its estimation for Australia’s tropics [J]. Australian Journal of Soil Research, 36:143-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700