基于受激布里渊散射的水体特征参数测量及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激布里渊散射(stimulated Brillouin scattering, SBS)作为非线性光学中的一个重要研究方向,有很长的研究历史,已被广泛应用于相位共轭、脉宽压缩、放大、慢光以及布里渊激光雷达海洋遥感探测中。然而,有关受激布里渊散射的一些基本特性仍然缺少相应的实验研究,比如温度依赖性。本论文主要围绕介质温度对受激布里渊散射特性的影响做了相关的研究,包括脉宽、线宽、阈值及增益系数等;并利用受激布里渊散射脉宽及线宽的温度依赖特性,实验测量水的体粘滞系数及水中的声速、温跃层;以及分析环境参数(温度、湿度、大气压强)对激光在水中传输时衰减系数的影响。
     布里渊散射的激光雷达系统目前已有几套比较成熟的系统装置,如:基于扫描法布里-珀罗干涉仪的布里渊激光雷达系统,基于边缘探测技术的探测系统等。这几套布里渊激光雷达系统有其自身的优点,但由于它们都是建立在自发布里渊散射的基础上,所以存在着一些不足之处,如散射信号弱并且有较强的信号串扰,降低了目标探测的分辨率。而受激布里渊散射具有很好的位相共轭特性,散射信号强度远远大于自发布里渊散射信号强度,所以基于受激布里渊散射的激光雷达系统能大幅度提高雷达的探测性能。其中,利用柱透镜和法布里-珀罗标准具及ICCD为主要探测器件的受激布里渊散射激光雷达系统,实现了散射光谱由环状谱到点状谱的变化,使得干涉条纹中每一级圆环上的能量集中到两个对称的点上,在相同回波信号强度下,大大提高了接收信号的强度和信噪比,从而提高了受激布里渊激光雷达系统的探测性能。
     脉宽、线宽、阈值及增益系数是布里渊散射的几个重要参数,目前的研究主要集中在室温条件下,而对于变温条件下的温度依赖特性,则缺少相应的实验研究。本论文主要从理论分析及实验结果两方面来介绍介质温度变化对受激布里渊散射的脉宽、线宽、阈值、增益系数等基本特性的影响。实验结果表明,受激布里渊散射脉宽随着温度的降低而变窄,温度越低脉宽压缩效应越明显,而受激布里渊散射线宽则随着温度的降低而变宽。受激布里渊散射阈值及增益系数也同样受介质温度变化的影响,随着温度的升高,阈值呈现指数下降趋势,而增益系数则呈现指数上升趋势。
     受激布里渊散射激光雷达研究的最终目的是用来进行实际的遥感探测。本论文在理论分析的基础上,介绍了基于受激布里渊散射的水中特征参数测量,包括声速、粘滞系数以及温跃层等。在对声速的测量研究中,给出了纯水及不同盐度海水中声速的理论计算值,在理论计算的基础上,实验测量了纯水及35‰盐度海水中的声速,实验测量值与理论计算值比较吻合。针对受激布里渊散射脉宽及线宽的温度特性,并根据线宽与脉宽成傅里叶变换的关系,提出了通过测量脉宽来计算线宽及测量水体粘滞系数的新方法。同时,详细介绍了利用受激布里渊散射测量水中温跃层的基本方法,并分析了温跃层的基本分布规律及特点,在实验测量的基础上,通过对热传导方程在特殊条件下的模拟分析,总结得出了温跃层分布的时间特性。
     为了进一步提高受激布里渊散射激光雷达的探测性能,本论文还研究了不同大气环境条件下532nm激光在水中的衰减系数。在同一地点实验测量时间跨度超过一年,实验结果显示大气环境对激光的衰减系数有着重要的影响。当气压高并且温度低时,激光在水中的衰减系数最小;当气压低并且温度高时,衰减系数最大,最大衰减系数值是最小衰减系数的三倍。最后讨论了衰减现象出现的物理机制,研究结果对分析水中声波的传输也具有重要意义。
Stimulated Brillouin scattering (SBS) is an important subject in nonlinear optics, theresearch of SBS has a long history. SBS has been widely used in several applications,especially in phase conjugation, pulse duration compression, amplification, and slow ligh,even in Brillouin lidar for remote sensing of the ocean. However, some basic properties ofthe parameters of SBS have still been seldom studied experimentally, such as thetemperature dependence. In this thesis, the influence of temperature on the properties ofSBS (pulse duration, linewidth, threshold value and gain coefficient) has been investigated.Then, some parameters include sound velocity, bulk viscosity and thermocline weremeasured based on the temperature dependence of SBS. Moreover, the influence ofatmosphere environment (air pressure, air temperature and air humidity) on the attenuationcoefficient of light in water has been analyzed.
     Brillouin lidar system has been developed for a long period,there are some maturesystems,such as a Brillouin lidar based on Fabry-Perot scanning interferometer, and edgedetection technique, etc.. However, the lidar system based on spontaneous Brillouinscattering has some disadvantages in applications. The major problem is that thespontaneous signal is uncontrollable, and the crosstalk of signal from different depthsmakes a relatively low depth resolution in detecting. Compared with spontaneous scattering,SBS is easier to detect due to its phase conjugation property and strong scattering signal. So,the technique based on stimulated Brillouin scattering can improve the performance of lidarsystem greatly. In this paper, a SBS system which composed of cylinder lens, Fabry-Perotetalon and ICCD is made to boost the performance of lidar. Using this system, theinterference ring shaped by F-P etalon can be concentrated to two spots, therefore, thedetecting intensity and the signal-to-noise ratio (SNR) can be improved significantly.
     As the several important parameters, the pulse duration, line-width, threshold valueand gain coefficient of SBS, only the properties at room temperature were given for somematerials. It must be addressed that this temperature dependence is actually important, andhas great significance in applications. However, the temperature dependence of theseparameters is not clear now, even little work was reported. In this paper, the influence oftemperature on the properties of SBS has been investigated theoretically and experimentally. The results indicate that, the measured pulse duration of SBS decreases with the decrease oftemperature; the lower of the temperature is, the more obvious of the pulse compressioneffect is. The line-width of SBS increases with the decrease of temperature. Moreover, theresults also show that the threshold value of SBS decreases exponentially with an increaseof temperature, whereas the gain coefficient increases with the increase of temperature.
     The ultimate aim for developing the SBS lidar is used for remote sensing in ocean. Inthis paper, the measurement of underwater parameters (sound velocity, bulk viscosity andthermocline) based on SBS was conducted. In the study of sound velocity, the theoreticalvalues were given respectively in the pure water and seawater with different salinities.Based on the theoretical analysis, the sound velocities were measured respectively in thepure water and seawater with the salinity of35‰experimentally. Based on the temperaturedependence of pulse duration and line-width of SBS, this paper details a new method formeasuring the bulk viscosity of water which using the Fourier transform of pulse duration.Meanwhile, the measurement of thermocline in water has been done using SBS method.The distribution and features of the thermocline have been analyzed. On the basis ofexperiment, the time response of thermocline has been presented by simulating the thermalequation with some special conditions.
     In order to improve the detecting performance of SBS lidar, the attenuation coefficientof532nm light in water under different atmospheric conditions was investigated.Measurements were made over more one year period at the same location and show that theattenuation coefficient is significantly influenced by the atmospheric environment. It islowest when the atmospheric pressure is high and temperature is low, and is highest whenthe atmospheric pressure is low and temperature is high. The maximum attenuationcoefficient of pure water in these studies was about three times the minimum value. Themechanism of the phenomena is discussed. These results are also important in underwateracoustics.
引文
[1] L. Brillouin. Diffusion de la lumière par un corps transparent homogène. Compt.Rend,1914,158(3):1331-1340
    [2] E.Gross. Have not to attempts to measure the spectrum of light scattered by Quctua-tions. Nature,1930,126(2):201-206
    [3]周义,郁青安,周丽.反隐身飞机技术发展.国防科技,2002,2(14):30-32
    [4]杨红娟.雷达隐身与反隐身技术的发展与现状.火控雷达技术,2002,31(2):67-71
    [5]刘发来.雷达隐身与反隐身.航空电子技术,1995,81(4):27-34
    [6]李荣福,崔桂华.激光/声在反隐身探潜中的应用.舰船科学技术,1995,2(6):11-14
    [7]焦方金.隐身与反隐身技术的发展动向.国防技术基础,2003,2:33-36
    [8] A. Brignon, J. P. Huignard. Phase Conjugate Laser Physics. New York: John Wiley&Sons,2004.19-62
    [9] J. I.Sakai. Phase Conjugate Optics. New York: McGraw-Hill,1992.56-58
    [10] Hong Jin Kong, Seong Ku Lee, Dong Won Lee, et al. Phase control of a stimulatedBrillouin scattering phase conjugate mirror by a self-generated density modulation.Appl. Phys. Lett.,2005,86(5):051111
    [11] David T. Hon. Pulse compression by stimulated Brillouin scattering. Opt. Lett.,1980,5(12):516-518
    [12] D. A. Leonard. Experimental field measurements of subsurface water by Ramanspectroscopy. Washington: Pacific Marine Environmental Laboratory,1980.45-51
    [13] D. A. Leonard, H. E. Sweeney. Remote sensing of ocean physical properties: acomparison ofRaman and Brillouin techniques. Proe. SPIE,1988,925:407-414
    [14] D. A. Leonardo, B. Caputo, F. E. Hoge. Experimental remote sensing of subsurfacetemperature in natural ocean water. Geographical Research Lett.,1977,4(7):279-281
    [15] D. A. Leonardo, B. Caputo, F. E. Hoge. Remote sensing of subsurface watertemperature by Raman scattering. Appl. Opt.,1979,18(11):1732-1745
    [16] J. L. Guagliardo, H. L. Dufilho. Range-resolved Brillouin scattering using a pulsedlaser. Rev. Sci. Instrum.,1980,51(7):79-81
    [17] J. G. Hirseberg, J. D. Byrne, A. W. Wouters, et al. Speed of sound and temperature inthe ocean by Brillouin scattering. Appl. Opt.,1984,23(15):2624-2628
    [18] J. G. Hirseberg, J. D. Byrne. Rapid underwater ocean measurement using Brillouinscattering. Proc. SPIE,1984,489:270-276
    [19] D. A. Leonard, H. E. Sweeney. A Comparison of Stimulated and Spontaneous LaserRadar Methods for the Remote Sensing of Ocean Physical Properties. Ocean OpticsX, R. W. Spinrad, ed, Proc. SPIE,1990,1302:568-582
    [20] K. Schorstein, E. Fry, T. Walther. Depth-resolved temperature measurements of waterusing the Brillouin lidar technique. Appl. Phys.B,2009,97(4):931-934
    [21] E. S. Fry, J. w. Katz. Temperature dependence of the Brillouin linewidth in water. J.Modern Opt,2002,49(3):411-418
    [22] Y. Emery, E. Fry. Laboratory development of LIDAR for measurement of soundvelocity in the ocean using Brillouin scattering. Proc. SPIE, Ocean Optics XIII.1996,2963:210-215
    [23] T. Walther, J. Katz, D. Liu, et al. Temperature dependence of the Brillouin linewidth.Number1044in Ocean Optics XIV,1998.114-123
    [24] E. S. Fry, Y. Emery, X. Quan, et al. Accuracy limitation on Brillouin lidarmeasurements of temperature and sound speed in the ocean. Appl. Opt.,1997,36(27):6887-6894
    [25] A. Popescu, K. Schorstein, T. Walther. A novel approach to a brillouin-LIDAR forremote sensing of the ocean temperature.Appl. Phys. B,2004,79(8):955-961
    [26] A. Popescu, D. Walldorf, K. Schorstein, et al. On an Excited State FaradayAnomalous Dispersion Optical Filter at Moderate Pump Powers for a Brillouin-LIDAR Receiver System. Opt. Comm.,2006,264(2):475-481
    [27] K. Schorstein, G. Scheich, A. Popescu, et al. A Fiber Amplifier and an ESFADOF:Developments for a Transceiver in a Brillouin LIDAR. Laser Physics,2007,17(7):975-982
    [28] A. Popescu, T. Walther. On an ESFADOF edge-flter for a range resolvedBrillouin-lidar: The high vapor density and high pump intensityregime. Appl. Phys.B,2010,98(4):667-675
    [29] A. Rudolf, T. Walther. ABrillouin-lidar for remote sensing of the temperature profilein the ocean: Progress towards the implementation, OCEANS,2011.6003502
    [30] Y. Asahara, M. Murakami, Y. Ohishi, et al. Sound velocity measurement in liquidwater up to25GPa and900K: implications for densities of water at lower mantleconditions. Ear. and Plan. Sci. Lett.,2010,289(34):479-485
    [31]刘大禾.用布里渊散射实现海水中声速的实时遥测.声学学报,1998,23(2):184-188
    [32]徐建锋,李荣胜,周静等.用布里渊散射测量水的体粘滞系数.光学学报,2001,21(2):1112-1115
    [33] D. Liu, J. Xu, R. Li, et al. Measurements of sound speed in the water by Brillouinscattering using pulsed Nd: YAG laser. Opt. Commun.,2002,203(3):335-340
    [34] J. Xu, R. Dai, W. Gong, et al. Analyzing statistical errors for measurements ofBrillouin scattering by the edge technique. Appl. Phys. B,2004,79(1):131-134
    [35] R. Dai, W. Gong, J. Xu, et al. The edge technique as used in Brillouin lidar forremote sensing of the ocean. Appl. Phys. B,2004,79(2):245-248
    [36] W. Gong, R. Dai, Z. Sun, et al. Detecting submerged objects by Brillouin scattering.Appl. Phys. B,2004,79(5):635-639
    [37] J. Shi, G. Li, W. Gong, et al. A lidar system based on stimulated Brillouin scattering.Appl.Phys.B,2007,86(1):177-179
    [38] J. Shi, M. Ouyang, W. Gong, et al. A Brillouin lidar system using F–Petalon ICCDfor remote sensing of the ocean. Appl. Phys. B,2008,90(3):569-571
    [39] J. Shi, X. Chen, M. Ouyang, et al. Amplification of stimulated Brillouin scattering oftwo collinear pulsed laser beams with orthogonal polarizations. Appl. Opt.,2009,48(17):3233-3238
    [40]陈旭东,石锦卫,欧阳敏等.光学单池中受激布里渊散射的双光束共轴放大.物理学报,2009,58(7):308-312
    [41]陈旭东,石锦卫,刘娟等.同轴正交偏振双脉冲序列受激布里渊散射泵浦放大的实现方法.物理学报,2010,59(2):116-120
    [42]张威,杨克成,夏珉等.基于模糊度量的激光水下图像复原的盲去卷积方法.光学与光电技术,2011,2(9):27-32
    [43] F. Fan, K. Yang, M. Xia, et al. Comparative study on several blind deconvolutionalgorithms applied to underwater image restoration. Opt. Rev.,2010,17(3):123-129
    [44]郑毅,杨克成,夏珉等.脉冲能量对水下激光雷达性能的影响.光学与光电技术,2011,2(9):33-35
    [45]马泳,梁琨,林宏等.基于布里渊后向散射的海水温度与盐度同步测量研究.光学学报,2008,28(8):1508-1512
    [46]梁琨,马泳,程飞等.采用边缘探测技术的海表温度测量精度及误差分析.光电工程,2008,35(9):92-96
    [47] W.L.J. HASI, X. GUO, H. LU, et al. Investigation on effect of medium temperatureupon SBS and SBS optical limiting. Laser and Particle Beams,2009,27(4):733
    [48]哈斯乌力吉,吕志伟,何伟明等.光学击穿对受激布里渊散射特性的影响.物理学报,2005,54(12):5654-5658
    [49]哈斯乌力吉,吕志伟,李强等.受激布里渊散射介质光学击穿的研究.物理学报,2006,55(10):5252-5256
    [50] J. Shi, X. He, K. Yang, et al. Temperature dependence of threshold and gaincoefficientof stimulated Brillouin scattering in water. Appl. Phys. B2012,108(12):717-720
    [51] J. Shi, W. Chen, X. He, et al. Experimental investigation on the compete-tionbetween wideband stimulated Brillouin scattering and forward stimulated Ramanscattering in water. Opt. Lett.2012,37(14):2988-2990
    [52] J. Shi, X. He, K. Yang, et al. Optical suppression of second-order stimulatedBrillouin scattering in a simple focused beam cell. Appl. Phys. B.2012,107(12):379-383
    [53] J. Shi, X. He, K. Yang, et al. Unconventional physical mechanisms betweenstimulated Brillouin scattering and backward stimulated Raman scattering in liquidwater. J. Opt.2011,13:075201
    [54] X. He, H. Wei, J. Shi, et al. Experimental measurement of bulk viscosity of waterbased on stimulated Brillouin scattering. Opt. Commun.2012,285(20):4120-4124
    [55]何兴道,夏健,史久林等.水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响.物理学报,2011,60(5):054207
    [56]沈元壤.非线性光学.顾世杰.北京:科学出版社,1987.214-220
    [57]费浩生.非线性光学.北京:高等教育出版社,1990.116-117
    [58]张明生.激光光散射谱学.北京:科学出版社,2008.09-11
    [59]石顺祥,陈国夫,赵卫等编著.非线性光学.西安:西安电子科技大学出版社,2003.262-273
    [60] M. J. Damzen, V.I.Vlad.. Stimulated Brillouin Scattering: Fundamentals andApplications. New York: John Wiley&Sons,2003.1-37
    [61] P. A. Fleury, R.Y. Chiao. Dispersion of Hypersonic Waves in Liquids. J. Acoust. Soc.Am.1966,39(8):751-752
    [62] I. L. Fabelinskii, I. L. Chistyi. New methods and advances of high-resolutionspectroscopy. Sov. Phys. Usp.,1976,19(3):597-617
    [63] R. W. Boyd. Nonlinear Optics. Singapore: Elsevier,2010.436-440
    [64]刘大禾,汪华英,周静.布里渊散射法测量盐度及温度不同的海水中的声速.中国激光,2000,27(4):381-384
    [65] C. L. Krob, B. M. Gentry, C. Y. Weng. Edge technique: theory and application to thelidar measurement of atmospheric wind. Appl. Opt.,1992,31(21):4202-4213
    [66] P. Piironen, E. W. Eloranta. Demonstration of a high-spectral-resolution lidar basedon iodine an optical beating technique. Rev. Sci. Instrum.,1993,64(36):2136-2138
    [67] D. T. Hon. Pulse compression by stimulated Brillouin scattering. Opt. Lett.,1980,5(2):516–518
    [68] S. Afshaarvahid, V. Devrelis, J. Munch. Nature of intensity and phase modulations instimulated Brillouin scattering. Phys. Rev. A1998,57(5):3961-3965
    [69] E. HAGKNLOCKER, R. MINCK, W. RADO. Effects of Phonon Lifetime onStimulated Optical Scattering in Gases. Phys. Rev. A,1967,154(2):226-231
    [70] R. W. Boyd, K. Rzazewski. Noise initiation of stimulated Brillouin scattering. Phys.Rev. A,1990,42(9):5514
    [71] J. Xu, X. Ren, D. Liu, et al. Measurement of the Bulk Viscosity of Liquid byBrillouin Scattering. Appl. Opt.,2003,42(33):6704-6710
    [72] W. Gao, X. Hu, D. Sun, et al. Simultaneous generation and Brillouin amplification ofa dark hollow beam with a liquid-core optical fiber. Opt. Express,2012,20(18):20715
    [73] Y. Okawachi, S. Bigelow M, E. Sharping, et al. Numerical study of all-opticalslow-light delays via stimulated Brillouin scattering in an optical fiber. Phys. Rev.Lett.,2005,94(11):153902
    [74] J. Bai, J. Shi, D. Liu, et al. Method for measuring the threshold value of stimulatedBrillouin scattering in water. Opt. Lett.,2008,33(13):1539
    [75] M. J. Weber. Handbook of Laser Science and Technology, Supplement2: OpticalMaterials. CRC Press,1995.358-360
    [76] J. Shi, X. Chen, D. Liu, et al. Theoretical investigation on the threshold value ofstimulatedBrillouin scattering in terms of laser intensity. Appl. Phys. B,2009,95(4):657
    [77] N. M. Kroll. Excitation of Hypersonic Vibrations by Means of Photoelastic Couplingof High Intensity Light Waves to Elastic Waves. J.Appl. Phys.,1965,36(1):34-43
    [78] R. C. Weast. Handbook of Chemistry and Physics,52nd ed. Ohio: The ChemicalRubber Co.,1971.36-44
    [79] A. S. Dukhin, P. J. Goetz. Bulk viscosity and compressibility measurement usingacoustic spectroscopy. J. Chem. Phys.,2009,130(12):0124519
    [80] M. Holmes, N. Parker, M. Povey. Temperature dependence of bulk viscosity in waterusing acoustic spectroscopy. J. Phys.: Conference Series.2011,269:012011
    [81] J. Lamb. Thermal relaxation in liquids in Physical Acoustics. New York: Academic,1965.203-209
    [82] J. Rouch, C. Lai, H. Chen. Brillouin scattering studies of normal and supercooledwater. J. Chem. Phys.,1976,65(10):4016-4021
    [83] O. Reynolds. On the theory of lubrication and its application to Mr. BeauchampTower's experiments, including an experimental determination of the viscosity ofolive oil. Philosophical Transactions of the Royal Society of London,1886,177(8):157-234
    [84] J. D. Woods. The Physics of Thermocline Ventilation. Chapter34in: Coupledocean-atmosphere models. Elsevier Oceanography Series,1985.543-590
    [85] J. A. Whitehead. Thermocline Ocean Processes and Models. Annu. Rev. Fluid Mech.,1995,27(13):89-113
    [86] Q. Zheng, V. Klemas, X. Yan, et al. Nonlinear evolution of ocean internal solitonspropagating along an inhomogeneous thermocline. J. geophys. Res.,2001,106(7):14083-14094
    [87] Y. You. Seasonal variations of thermocline circulation and ventilation in the IndianOcean. J. Geophys. Res.,1997,102(7):10391-10422
    [88] J. C. Hermes, J. C. Reason. Annual cycle of the South Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. geophys. Res.,2008,113(4):C04035.
    [89] E. L. McDonagh, H. L. Bryan, R. Marsh, et al. Decadal Changes in the South IndianOcean Thermocline. Journal of Climate,2005,18(10):1575-1590
    [90] J. Abell, S. Emerson, P. Renaud. Distributions of TOP, TON and TOC in the NorthPacific subtropical gyre: Implications for nutrient supply in the surface ocean andremineralization in the upper thermocline. Journal of Marine Research,2000,58(2):203-222
    [91] P. N. Vinayachandran, B. N. Goswami, N. H. Saji, et al. Adipole mode in the tropicalIndian Ocean. Nature: International weekly journal of science,1999,401:360-363
    [92] J. Ruiz, I. Cordery, A. Sharma. Impact of mid-Pacific Ocean thermocline on theprediction ofAustralian rainfall. Journal of Hydrology,2006,317(2):104-12
    [93] D. J. Andreasen, A. C. Ravelo. Tropical Pacific Ocean thermocline depthreconstructions for the last glacial maximum. Paleoceanography,1997,12(3):395-413
    [94] C. H. Gibson. Turbulence Mixing and Heat Flux in the Ocean Main Thermoclin. J.geophys. Res.,1991,96(11):403-420
    [95] M. H. Alford. Observations of Overturning in the Thermocline: The Context ofOcean Mixing. J. Phys. Oceanogr.,2000,30(5):805-832
    [96] J. R. Toggweiler, K. Dixon. The Peru Upwelling and the Ventilation of the SouthPacific Thermocline. J. Geophys. Res.,1991,96(11):20467-20497
    [97] Y. You, M. Tomczak. Thermocline circulation and ventilation in the Indian Oceanderived from water mass analysis. Deep Sea Research Part I,1993,40(1):13-56
    [98] J. Sallée, K. Speer, S. Rintoul, et al. Southern Ocean Thermocline Ventilation. J. Phys.Oceanogr.,2010,40(3):509-529
    [99] W. Sturges, B. G. Hong. Wind Forcing of the Atlantic Thermocline along32oN atLow Frequency. J. Phys. Oceanogr.,1995,25(7):1706-1715
    [100] P. Florenchie, J. Lutjeharms, M. Rouault, et al. The source of Benguela Ninos in theSouthAtlantic Ocean. Geophys. Res. Lett.,2003,30(10):1505
    [101] E.lyardi, A. Wittenberg, A. Fedorov, et al. UNDERSTANDING EL NI O INOCEAN–ATMOSPHERE GENERAL CIRCULATION MODELS: Progress andChallenge. American Meteorological Society BAMS,2009.325-340
    [102] L. Resplandy, J. Vialard, M. Levy, O. Aumont, et al. Seasonal and intraseasonalbiogeochemical variability in the thermocline ridge of the southern tropical IndianOcean. J. Geophys. Res.,2009,114(7): C07024
    [103] M. Siderius, M. B. Porter, P. Hursky, et al. Effects of ocean thermocline variabilityon noncoherent underwater acoustic communications. J. Acoust. Soc. Am.,2007,121(4):1895-1908
    [104]张勐宁,刘金芳,毛可修等.中国海温度跃层分布特征概况.海洋预报,2006,23(4):51-58
    [105] A. De Giacomo, M. Dell'Aglio, O. De Pascale, et al. From single pulse to doublepulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis ofaqueous solutions and submerged solid samples. Spectrochimica Part B,2007,62(8):721-738
    [106] Y. S. Cheng, E. B. Barr, B. J. Fan, et al. Detection of biaoaerosols using multi-wavelength UV fluorescence spectroscopy. Aerosol Sci. Tech.,1999,31(2):409-421
    [107] L. M. Mayer, L. L.Schick, T. C. Loder. Dissolved protein fluorescence in two mainestuaries. Marine Chemistry,1999,64(3):171-179
    [108] Z. S. Kolber, C.L. VanDover, R. A. Niederman, et al. Bacterial photosynthesis insurface warter of the open ocean. Nature,2000,407:177-179
    [109] Z. S. Kolber, F. G. Plumley, A. S. Lang, et al. Contribution of Aerobic Photo-heterotrophic Bacteria to the Carbon Cycle in the Ocean. Science,2001,292:2492-2495
    [110] F. M. Sogandares, E. S. Fry. Absorption spectrum (340-640nm) of pure water. I.Photothermal measurements. Appl. Opt.,1997,36(30):8699-8700
    [111] R. M. Pope, E. S. Fry. Absorption spectrum (380-700nm) of pure water. II.Integrading cavity measurements. Appl. Opt.,1997,36(33):8710-8723
    [112] X. Zhang, M. Lewis, B. Johnson. Influence of bubbles on scattering of light in theocean. Appl. Opt.,1998,37(27):6225-6536
    [113] E. J. Terrill, W. K. Melville, D. Stramski. Bubble entrainment by breaking waves andtheir influence on optical scattering in upper ocean. J. Geophys. Res.,2001,106(C8):16815-16823
    [114] M. Twardowski, X. Zhang, S. Vagle, et al. The optical volume scattering function ina surf zone inverted to derive sediment and bubble particle subpopulations. J.Geophys. Res.,2012,117(C7): C00H17
    [115] J. H. Carpenter. NEW MEASUREMENTS OF OXYGEN SOLUBILITY IN PUREAND NATURAL WATER. Limnology and Oceanography,1966,11(2):264-277
    [116] A. Schumpe. The estimation of gas solubilities in salt solutions. ChemicalEngineering Science,1993,48(1):153-158
    [117] R. Battino, T. R. Rettich, T. Tominaga. The Solubility of Nitrogen and Air in Liquids.J. Phys. Chem. Ref. Data,1984,13(8):563-600
    [118] D. K. Woolf. Encyclopedia of Ocean Sciences. S.A. Thorpe and K.K. Turekian,2001.352-357
    [119] P. Gennes, F. Brochard-Wyart, D. Quere. Capillarity and Wetting Phenomena: drops,bubbles, pearls, waves. New York: Springer,2004.291-298
    [120] R. Wanninkhof. Relationship Between Wind Speed and Gas Exchange Over theOcean. J. Geophys. Res.,1992,97(C5):7373-7382

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700