低剂量Genistein诱导eNOS/Nrf2-ARE通路对缺血后神经元氧化应激损伤和空间学习记忆缺陷的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:中风不仅是全球第二大主要死亡原因,而且已成为长期致残的首要病因之一。据统计每年新发中风病人约1600万,导致近600万人死亡。然而,目前尚未发现理想的治疗措施。缺血性脑损伤的病理过程极为复杂,其发病机制涉及脑组织能量代谢紊乱、兴奋性氨基酸毒性、自由基损伤、炎症反应等多环节。近些年来,氧化应激学说逐渐成为缺血性脑血管疾病的临床与基础研究的热点。
     染料木黄酮(Genistein,GEN)是从植物中提取的大豆异黄酮类物质,大量研究报道GEN具有抗氧化作用。本研究在大鼠全脑缺血后5min尾静脉注射低剂量GEN,采用形态学、分子生物学、行为学等实验技术观察其对缺血后锥体神经元的保护作用和对大鼠空间学习记忆的影响,并探索其可能的信号转导机制。为探索缺血性脑中风的药物靶点和有效治疗措施提供重要的理论基础和实验依据。
     方法:采用SD大鼠四动脉结扎全脑缺血模型,制备缺血再灌注5d的海马冠状冰冻切片,形态学(NeuN/Fluoro-Jade B、焦油紫染色、TUNEL染色等)实验技术观察海马CA1/3区神经元生存及损伤情况;制备缺血再灌注3d的海马冠状冰冻切片,采用免疫荧光双染或三染色技术观察激酶或蛋白的表达与亚细胞分布,观察海马CA1区神经元氧化应激损伤情况;制备海马CA1区总蛋白及胞浆、胞核组织蛋白匀浆液,采用westernblot技术进行激酶或蛋白如eNOS, p-eNOS, HSP90, Nrf2, HO-1的半定量分析,免疫共沉淀技术观察p-eNOS和HSP90的相互作用;生物素转换法观察Keap1的巯基亚硝基化(S-nitrosation)水平;TransAMTM试剂盒检测Nrf2的DNA结合活性;Morris Water Maze观察大鼠的空间学习记忆功能。
     结果:1. GEN (1mg/kg)通过增加eNOS-HSP90的相互作用减轻缺血后海马CA1区神经元损伤
     1) GEN显著降低全脑缺血诱导的迟发性神经元损伤。与sham组相比,溶剂对照组(缺血再灌注5d+溶剂对照)NeuN阳性细胞数显著减少,而TUNEL阳性细胞数显著增多;另外,缺血后给予GEN组海马CA1区NeuN染色阳性神经元数量较溶剂对照组显著增加,而凋亡样神经元明显减少;NOS抑制剂L-NAME可显著减弱GEN诱导的神经保护作用。
     2) GEN显著增加大鼠海马CA1区神经元eNOS磷酸化水平及HSP90蛋白的表达。Western blot结果显示,与缺血再灌注相同时间点相比,GEN组再灌注30min、1d和3d时间点p-eNOS水平显著升高;HSP90的蛋白表达于再灌注的后期(1d、3d)GEN组较缺血再灌注(ischemia/reperfusion,I/R)组显著升高。
     3) L-NAME显著抑制GEN诱导的p-eNOS水平和HSP90蛋白表达的升高,抑制了二者的相互结合。Western blot结果显示:与溶剂对照组相比(I/R3d+0.9%NaCl),缺血前30min给予1mg/kg L-NAME可显著降低GEN诱导的p-eNOS和HSP90水平的升高;共聚焦结果显示,与缺血再灌注3d组相比,GEN组p-eNOS免疫染色显著增强,主要分布在海马CA1区神经元的细胞浆,L-NAME显著废弃了此作用。与缺血再灌注组相比,GEN组p-eNOS和HSP90的免疫共结合显著升高,而L-NAME显著逆转了GEN的此作用,HSP90的蛋白表达在GEN组和L-NAME组并未发生显著变化。
     4)于大鼠缺血后7-9d实施Morris水迷宫,观察GEN和L-NAME对大鼠寻找水下平台的时间的影响。实验结果显示:sham组和GEN处理组大鼠的潜伏时间随着训练时间的延长而缩短,而I/R组和L-NAME处理组无显著差异,且均较GEN组显著延长。移走水下平台后,I/R组和L-NAME组大鼠在平台原有象限探索的时间较GEN组和sham大鼠探索的时间显著缩短。结果表明GEN可改善大鼠缺血后空间学习记忆缺陷。2.1mg/kg GEN通过上调eNOS活性促进Keap1巯基亚硝基化,激活Nrf2-HO-1抗氧化信号通路,减轻大鼠缺血后氧化应激损伤
     1) GEN显著增加Keap1巯基的亚硝基化。采用生物素不可逆转换方法观察GEN对缺血后大鼠海马CA1区神经元Keap1亚硝基化水平的影响。结果显示:GEN显著升高缺血后3d Keap1的亚硝基化水平,缺血前给予L-NAME可降低此作用;而Keap1的总蛋白和β-actin水平没有显著变化。另外,共聚焦结果显示海马CA1区GEN组亚硝基化总蛋白的免疫染色较I/R组和L-NAME组显著增强,而且主要定位在神经元的细胞浆。
     2) GEN增加了Nrf2的核转位。Western blot结果显示:在缺血再灌注组的后期(1d和3d)GEN显著增加了海马CA1区细胞核中Nrf2的蛋白水平,而其在细胞浆中的表达显著减少;激光共聚焦结果显示GEN组Nrf2和神经元核蛋白NeuN的免疫共定位较缺血再灌注组显著增强;L-NAME显著降低了GEN的此作用。
     3) GEN显著增加海马CA1区Nrf2的DNA结合活性。与缺血再灌注3d组相比,GEN处理组Nrf2的DNA结合活性显著升高,而缺血前给予L-NAME显著废弃了GEN的此作用。
     4) GEN显著增加海马CA1区Nrf2靶基因HO-1的蛋白表达。Westernblot分析显示:与缺血再灌注3d实验组相比,GEN显著增加了海马CA1区HO-1蛋白水平,而L-NAME降低了此作用。免疫荧光染色结果进一步证明,GEN增加了HO-1的荧光强度,其主要与细胞核荧光探针DAPI共定位,提示主要分布在CA1区神经元的细胞核中。
     5) GEN降低脑缺血诱导的氧化应激损伤。采用免疫荧光染色技术观察GEN对脂质过氧化物最终产物4-HNE及DNA氧化损伤的特异性产物8-OHdG水平的影响。结果发现,sham组和GEN处理组海马CA1区4-HNE和8-OHdG免疫荧光的强度较弱,而缺血再灌注3d实验组和L-NAME处理组海马CA1区神经元4-HNE和8-OHdG的免疫染色显著增强。3. GEN可通过诱导海马CA3区Nrf2信号通路调控其神经保护作用
     1) Keap1-tat小肽降低缺血后海马CA1区神经元损伤。焦油紫染色显示,与sham组相比缺血15min再灌注5d实验组和溶剂对照组海马CA1区神经元严重损伤,神经元密度降低;缺血前20min侧脑室注射Keap1-tat小肽(30,50,100μg)能显著增加海马CA1区生存的神经元数量,50μg剂量组生存的神经元数量最多,提示50μg为最佳剂量。
     2) Keap1-tat可显著改善大鼠缺血后空间学习记忆功能。缺血15min再灌注7-9d实施Morris水迷宫试验。结果发现,与sham组相比溶剂对照组和缺血再灌注组大鼠寻找安全平台的潜伏期明显延长,而keap1-tat处理组(50μg)大鼠寻找安全平台的潜伏期较溶剂对照组显著降低;移走安全平台后,与sham组相比,90s内溶剂对照组和缺血再灌注组大鼠于平台所在象限探索的时间明显缩短,而keap1-tat小肽组大鼠在此象限停留时间较溶剂对照组显著延长。
     3) Keap1-tat小肽未显著影响正常大鼠海马CA1区神经元的形态及大鼠的空间学习记忆功能。与sham组相比,脑室注射50μg keap1-tat小肽(sham+keap1-tat组)的正常大鼠海马CA1区神经元存活数量没有显著差异,而且两组大鼠的空间学习记忆功能无显著差异。
     4) Keap1-tat小肽能显著增加细胞核中Nrf2水平。与再灌注同一时间点(I/R)组相比,侧脑室注射50μg keap1-tat小肽组海马CA1区神经元细胞核中Nrf2表达均显著升高。Sham组与sham+keap1-tat组海马CA1区神经元细胞核中Nrf2表达无显著差异。
     5) Keap1-tat具有与GEN相同的神经保护作用。侧脑室(CA3区)微量注射0.4μg/μl (5μl) KA,于第8d焦油紫染色发现海马CA3区神经元大量损伤,而CA1区仅有少量神经元损伤。与单纯KA(0.4μg/μl)处理组相比,KA+Keap1-tat组海马CA3区大量神经元形态正常,少见损伤的神经元,CA1区生存的神经元数量两组无显著差异。缺血10min再灌注5(dI/R)+KA组与单纯KA处理组相似,海马CA3区神经元严重损伤,而CA1区神经元损伤不显著。与I/R+KA处理组相比,缺血前侧脑室注射(CA3区)Keap1-tat小肽后再灌注5d海马CA1和CA3区神经元均无显著损伤;有趣的是,KA+I/R+GEN组可见海马CA3和CA1区神经元严重损伤。结果提示,0.4μg/μl (5μl) KA特异损伤海马CA3区神经元;Keap1-tat可有效降低缺血后CA1区神经元损伤;KA可阻抑GEN对缺血后海马CA1区神经元的保护作用。
     6) Keap1-tat可诱导缺血后海马CA3区Nrf2的核转位,KA可降低此作用。免疫荧光双染色结果显示:缺血后再灌注1d时,CA3区给予Keap1-tat组Nrf2主要分布在神经元细胞核中,胞浆中分布较少;而KA+I/R+GEN处理组Nrf2除主要分布在胞浆外,在细胞核周围及核内也有较少分布。在缺血再灌注3d时,Keap1-tat组Nrf2几乎完全分布在细胞核中;KA+I/R+GEN组Nrf2几乎完全分布在细胞浆中。结果提示,在Keap1-tat处理组Nrf2可能随再灌注时间的延长发生了核转位,而KA阻断了此作用。结论:
     缺血再灌注后给予低剂量GEN可通过上调eNOS-HSP90信号保护海马CA1区神经元,改善缺血后大鼠的空间学习和记忆功能;其分子机制可能是通过Keap1的亚硝基化诱导了Nrf2-HO-1抗氧化信号通路;海马CA3区Nrf2信号可能参与了GEN诱导神经保护作用的调控。我们的研究为临床探索治疗缺血性脑中风的药物研发提供了重要靶点,为临床防治中风的策略提供理论依据。
Objects:Stroke is the second leading cause of mortality and the thirdleading cause of disability worldwide. Approximately16million first-everstrokes occur each year, leading to nearly6million deaths. Nevertheless,currently very few therapeutic options are available. Stroke with complexmechanisms is well known to involve in energy metabolism disorder,excitatory amino acids toxicity, free radicals and inflammation. Considerableevidence implicates oxidative stress in the pathophysiology of ischemic strokehas now become a major of focus of both clinical and basic science research.
     The current study examined the potential beneficial effect and underlyingmechanisms of post-treatment with the naturally occurring isoflavonicphytoestrogen, genistein (GEN), which has been implicated to attenuateoxidative stress. Genistein (1mg/kg) was administered iv5-min afterreperfusion in rats subjected to global cerebral ischemia (GCI), andfurthermore using morphology, molecular biology and behavior methodsobserved the neuro-protective role, special learning and memory function ofGEN-treatment, as well as the possible mechanisms. Our current study willprovide a new insight for exploring drug targets, therapeutic strategy ofischemic stroke.
     Methods: Global cerebral ischemia (GCI) is induced by four-vesselocclusion (4-VO) in SD rats. Coronal frozen sections of5d reperfusion werestaining with NeuN/Fluoro-Jade B, Cresyl Violet staining or TUNEL methodto investigate neuronal survival/death of hippocampal CA1/3region; Coronalfrozen sections of3d reperfusion were used to detect the proteins/kinasesexpression and oxidative stress injury in the hippocampal CA1region;Homogenate (total protein, cytoplasm or nucleus) from hippocampal CA1was for western blot analysis for eNOS, p-eNOS, HSP90, Nrf2, HO-1and forco-immunoprecipitation for HSP90with p-eNOS. Biotin switch technique wasused to investigate S-nitrosation level of Keap1and Nrf2DNA bindingactivity was detected using TransAMTM kit. Morris Water Maze was used toobserve spatial learning and memory function.
     Results:11mg/kg GEN decreases neuronal damage through increasing interaction ofeNOS-HSP90following GCI in hippocampal CA1region
     1) GEN strongly protects the hippocampal CA1region from GCI-induceddelayed neuronal cell death. NeuN and TUNEL staining results showed thatGCI (ischemia10min followed by5d reperfusion) induced a significant loss ofhippocampal CA1region neurons, as indicated by a marked decrease ofNeuN-positive cells compared with sham group. In addition, the number ofTUNEL-positive cell was markedly increased in the hippocampal CA1regionfollowing GCI, compared with sham. More important, GEN post-treatmentstrongly attenuated the delayed neuronal cell death in the hippocampal CA1region, as evidenced by a decreased number of TUNEL-positive cells andincreased number of NeuN-positive cells compared with the vehicle-controlgroup. L-NAME, an inhibitor of eNOS markedly abolished theneuro-protective role induced by GEN-treatment.
     2) GEN induces a significant increase in phospho-eNOS levels and HSP90protein expression in the hippocampal CA1region following GCI. Westernblot analysis revealed that GEN-treatment significantly increased p-eNOSlevels at30min,1d and3d reperfusion, as compared with the I/R group. Inaddition, the protein expression of HSP90was enhanced by GEN at late phaseof ischemia/reperfusion (1d,3d). The levels of total eNOS and β-actin werenot significantly changed between groups.
     3) L-NAME reverses the GEN-induced elevation the levels of e-NOS,HSP90, as well as the interaction between the two proteins. Western blotresults showed that pre-treatment with L-NAME (1mg/kg)30min prior toischemia reversed the GEN-induced elevation of p-eNOS as compared with the vehicle group (I/R3d+0.9%NaCl). Furthermore, confocal result showedthe representative double immunohistochemistry results for NeuN andp-eNOS in the CA1region at reperfusion day3. The results mirror theWestern blot results observed with a robust increase of p-eNOSimmunofluorescence observed in the GEN group, which was abolished byL-NAME pre-treatment. Note that the p-eNOS immunostaining colocalizedwell with NeuN, suggesting the neuronal induction of p-eNOS followinggenistein treatment in the hippocampal CA1region. Additionally, GENmarkedly increased the interaction between p-NOS and HSP90compared withI/R3d group, which was reversed by L-NAME-treatment. While the HSP90protein level was no change between the two groups (GEN group andL-NAME group).
     4) Effect of L-NAME on genistein-induced improvement in spatial learningand memory. Morris water maze that was carried out during7-9d afterischemia results illustrated the effects of genistein and L-NAME treatment onlatency time in finding the hidden platform during latency trials. Latency timein sham-operated and genistein groups became progressively shorter in aday-dependent manner, while there was no significant difference in ischemicvehicle control and L-NAME treated groups that showed a longer timesearching for the hidden platmorm compared to GEN group. In probe trailscharacterized by the removal of the hidden platform, I/R and L-NAME treatedrats spent less time in the goal quadrant, which previously contained theplatform compared to GEN-treated group and sham group, displayedimproved learned bias, as evidenced by spending more time in the goalquadrant.2.1mg/kg GEN enhanced S-nitrosylation of Keap1via up-regulating eNOSactivation, which induced the anti-oxidative stress signaling pathway ofNrf2-HO-1
     1) Genistein induces S-nitrosylation of Keap1in hippocampal CA1region.S-nitrosylation of Keap1was assayed in CA1protein samples at3daysreperfusion using the biotin-switching method. The result showed that GEN markedly induced S-nitrosylation of Keap1as compared with the I/R group,while pre-treatment with L-NAME markedly attenuated this effect. TotalKeap1and β-actin proteins were not significantly changed between groups.Additionally, GEN induced a significant increase of S-nitrosylated proteinimmunostaining in CA1pyramidal neurons that was localized primarily in thecytosol. L-NAME treatment markedly attenuated the effect, implicating a rolefor eNOS in regulating CA1protein nitrosylation.
     2) GEN enhances nuclear accumulation of Nrf2in hippocampal CA1neurons. Western blot analysis revealed that GEN significantly elevated Nrf2levels in the nucleus, with a corresponding decrease in the cytoplasm, at1dand3d reperfusion, suggesting that genistein treatment induced nucleartranslocation of Nrf2at these later time points. Interestingly, L-NAMEpre-treatment markedly attenuated the nuclear translocation of Nrf2at3-daysreperfusion. Furthermore, the Western blot results were confirmed by confocalanalysis of double immunohistochemistry for Nrf2and NeuN, showing higherneuronal Nrf2immunoreactivity in the genistein group, as compared to I/Rgroup and L-NAME-treated groups at3d reperfusion.
     3) GEN enhances DNA binding activity of Nrf2in hippocampal CA1region.DNA binding activity of Nrf2was significantly increased by GEN, ascompared with the ischemic control group (reperfusion3d), an effect that wasreversed by pretreatment with L-NAME.
     4) GEN up-regulates HO-1protein expression in hippocampal CA1region.Western blot analysis showed that HO-1levels were significantly increased byGEN, as compared with control groups at3d reperfusion, and L-NAMEattenuated the increase. In agreement with the results, confocalimmunochemistry analysis showed that genistein significantly enhanced thelevels of HO-1at3d reperfusion, with co-localization mainly with DAPI (anuclear fluorescent probe), indicating that HO-1mainly localized in thenucleus.
     5) GEN attenuates oxidative damage in hippocampal CA1neuronsfollowing GCI. The effects of GEN on oxidative stress were observed using immunostaining analysis at3d reperfusion for4-HNE (marker for lipidperoxidation) and8-OHdG (marker for oxidative DNA damage). The resultsshowed that sham and GEN groups presented very weak straining for4-HNEand8-OHdG in hippcampal CA1region. However, robust increases inimmunostaining intensity for4-HNE and8-OHdG were observed in bothischemic control and L-NAME pre-treated groups.3. Nrf2signaling in CA3region contributes the neuro-protective role inducedby1mg/kg GEN on CA1neurons following GCI
     1) Keap1-tat peptide exerts a robust neuroprotective role against GCI.Histology of hippocampal CA1neurons at5d reperfusion after GCI revealedthat vehicle-treated and ischemia/reperfusion animals that underwent15-minGCI displayed a significant neuronal loss as compared to sham controls.Keap1-tat (30,50,100μg) administered by icv20min prior to GCI couldsignificantly increased the number of survival neuron in the hippocampal CA1region compared to vehicle-treated groups. While among the three differentdoses,50μg keap1-tat peptide exerted the best effect on neuro-protectionagainst GCI insult.
     2) Keap-1-tat peptide enhances cognitive outcome following GCI. Morriswater maze experiment showed that vehicle-treated and ischemia/reperfusionanimals that underwent GCI showed significant longer latencies in finding thesubmerged platform on days7-9after stroke as compared to sham controls. Incontrast, pre-treated with keap1-tat (50μg) had significantly decreasedlatencies to find the submerged platform on day7-9as compared to thevehicle group. Furthermore, when the platform was removed on day9,vehicle-treated and ischemia/reperfusion animals spent significantly less timewithin90s in the quadrant where the submerged platform was located ascompared to sham animals. In contrast, keap1-tat (50μg)-treated rats spentsignificantly greater amount of time in the quadrant where the submergedplatform was located as compared to vehicle group.
     3) Keap1-tat peptide had no significant effects on either histology or speciallearning and memory function of sham group rats. Results in Morris water maze showed that50μg keap1-tat peptide in nonischemic control animals (icvfor5d) markedly unchanged histology of hippocampal CA1neuron and alsounaffected congnitive outcome at7-9d compared with non-ischemic controlsham.
     4) Keap1-tat peptide increased the level of Nrf2in nucleus fraction. Inkeap1-tat pre-treatment groups, Nrf2levels in nucleus fraction markedlyincreased at3h,6h,12h,1d,3d compared with the same time-point animalsthat without keap1-tat administration. Between sham contral animals andsham+keap1-tat groups showed no significant change in Nrf2expression innucleus fraction of hippocampal CA1region.
     5) Similar to GEN, Keap1-tat protected CA1neurons from ischemic insult.0.4μg KA was injected into CA3region by icv, and Cresyl Violet stainingshowed that CA3neuronal loss was observed, while a majority of CA1neurons are intact at8d after treatment with KA. KA with Keap1-tat (injectinto CA3by icv at72h after KA-treatment) had no significant change in thesurvival neuronal number of CA1region, while it markedly decreased CA3neuronal loss compared with KA alone treatment. In addition, treatment withKA72h prior to ischemia resulted in a large of CA3neuronal loss, while CA1neurons were almost survival. Compared with I/R+KA group, administratedthe rats with Keap1-tat (CA3region by icv)20min prior to ischemia perfectlyprotected CA3neurons with intact CA1neuronal histology from GCI insult.Intriguingly, KA significantly abolished the protective role of GEN on CA1neurons following GCI, as evidence by a large number of neurons not only inCA1also CA3regions were lost.
     6) Keap1-tat induced nucleus translocation of Nrf2following GCI and KAabolished the function. Confocal results showed that at1d reperfusion, intreatment with Keap1-tat by icv to CA3region group Nrf2mainly distributedin CA3neuronal nucleus with a little in the cytoplam, while in KA+I/R+GENgroup Nrf2mainly presented in cytoplasm with a little in perinuclear andnuclear. At3d reperfusion, in Keap1-tat-treatment group Nrf2almostpresented in neuronal nuclear of CA3region, while in KA+I/R+GEN group Nrf2practically distributed in the cytoplasm. The results indicated that Nrf2might nucleus translocated from cytoplasm depending on the time ofreperfusion and the KA lesion leading initially to loss of CA3hippocampalneurons blocked Nrf2nucleus translocation induced by GEN.
     Conclusion:
     The current study adds to a growing literature on beneficial effects ofphytoestrogen compounds, and provides important insights into theantioxidant and neuroprotective mechanisms of GEN. Specifically, low doseGEN was demonstrated to exert profound neuroprotection, antioxidant andcognitive function preservation effects in GCI via enhanced eNOS activationand (NO)-mediated thiol modification of Keap1, with subsequentup-regulation of the Nrf2/HO-1antioxidative signaling pathway, which mayinvolve a regulation of Nrf2signaling of CA3on CA1neuronal survivalfollowing GCI.
引文
1Bagheri M, MT Joghataei, S Mohseni, et al. Genistein ameliorates learningand memory deficits in amyloid beta(1-40) rat model of Alzheimer'sdisease Neurobiol Learn Mem,2011,95(3):270-276
    2Liang HW, SF Qiu, J Shen, et al. Genistein attenuates oxidative stress andneuronal damage following transient global cerebral ischemia in rathippocampus Neurosci Lett,2008,438(1):116-120
    3Hong KW, HK Shin, CD Kim, et al. Restoration of vasodilation and CBFautoregulation by genistein in rat pial artery after brain injury Am JPhysiol Heart Circ Physiol,2001,281(1): H308-315
    4Neese SL, VC Wang, DR Doerge, et al. Impact of dietary genistein andaging on executive function in rats Neurotoxicol Teratol,2010,32(2):200-211
    5Luine V, S Attalla, G Mohan, et al. Dietary phytoestrogens enhance spatialmemory and spine density in the hippocampus and prefrontal cortex ofovariectomized rats Brain Res,2006,1126(1):183-187
    6File SE, N Jarrett, E Fluck, et al. Eating soya improves human memoryPsychopharmacology (Berl),2001,157(4):430-436
    7Pan Y, M Anthony, S Watson, et al. Soy phytoestrogens improve radialarm maze performance in ovariectomized retired breeder rats and do notattenuate benefits of17beta-estradiol treatment Menopause,2000,7(4):230-235
    8Zeng H, Q Chen, and B Zhao, Genistein ameliorates beta-amyloid peptide(25-35)-induced hippocampal neuronal apoptosis Free Radic Biol Med,2004,36(2):180-188
    9Zhao L, Q Chen, and R Diaz Brinton, Neuroprotective and neurotrophicefficacy of phytoestrogens in cultured hippocampal neurons Exp Biol Med(Maywood),2002,227(7):509-519
    10Liao W, G Jin, M Zhao, et al. The effect of genistein on the content andactivity of alpha-and beta-secretase and protein kinase C in Abeta-injuredhippocampal neuronsBasic Clin Pharmacol Toxicol,2013,112(3):182-185
    11Qian Y, T Guan, M Huang, et al. Neuroprotection by the soy isoflavone,genistein, via inhibition of mitochondria-dependent apoptosis pathwaysand reactive oxygen induced-NF-kappaB activation in a cerebral ischemiamouse model Neurochem Int,2012,60(8):759-767
    12Valsecchi AE, S Franchi, AE Panerai, et al. The soy isoflavone genisteinreverses oxidative and inflammatory state, neuropathic pain, neurotrophicand vasculature deficits in diabetes mouse model Eur J Pharmacol,2011,650(2-3):694-702
    13Yang LC, QG Zhang, CF Zhou, et al. Extranuclear estrogen receptorsmediate the neuroprotective effects of estrogen in the rat hippocampusPLoS One,2010,5(5): e9851
    14Zhou C, J Tu, Q Zhang, et al. Delayed ischemic postconditioning protectshippocampal CA1neurons by preserving mitochondrial integrity viaAkt/GSK3beta signaling Neurochem Int,2011,59(6):749-758
    15Ogita K and Y Yoneda, Selective potentiation of DNA binding activitiesof both activator protein1and cyclic AMP response element bindingprotein through in vivo activation of N-methyl-D-aspartate receptorcomplex in mouse brain J Neurochem,1994,63(2):525-534
    16Wang RM, QG Zhang, J Li, et al. The ERK5-MEF2C transcription factorpathway contributes to anti-apoptotic effect of cerebral ischemiapreconditioning in the hippocampal CA1region of rats Brain Res,2009,1255:32-41
    17McCarty MF, Isoflavones made simple-genistein's agonist activity for thebeta-type estrogen receptor mediates their health benefits Med Hypotheses,2006,66(6):1093-1114
    18Kuiper GG, B Carlsson, K Grandien, et al. Comparison of the ligandbinding specificity and transcript tissue distribution of estrogen receptorsalpha and beta Endocrinology,1997,138(3):863-870
    19Hulley SB and D Grady, The WHI estrogen-alone trial--do things look anybetter? JAMA,2004,291(14):1769-1771
    20Anderson GL, M Limacher, AR Assaf, et al. Effects of conjugated equineestrogen in postmenopausal women with hysterectomy: the Women'sHealth Initiative randomized controlled trial JAMA,2004,291(14):1701-1712
    21Thorp AA, N Sinn, JD Buckley, et al. Soya isoflavone supplementationenhances spatial working memory in men Br J Nutr,2009,102(9):1348-1354
    22Burguete MC, G Torregrosa, FJ Perez-Asensio, et al. Dietaryphytoestrogens improve stroke outcome after transient focal cerebralischemia in rats Eur J Neurosci,2006,23(3):703-710
    23Taku K, MK Melby, J Takebayashi, et al. Effect of soy isoflavone extractsupplements on bone mineral density in menopausal women:meta-analysis of randomized controlled trials Asia Pac J Clin Nutr,2010,19(1):33-42
    24Imhof M, S Molzer. Effects of soy isoflavones on17beta-estradiol-inducedproliferation of MCF-7breast cancer cells Toxicol In Vitro,2008,22(6):1452-1460
    25Sbarouni E, EK Iliodromitis, A Zoga, et al. The effect of the phytoestrogengenistein on myocardial protection and preconditioning inhypercholesterolemia Cardiovasc Drugs Ther,2007,21(5):399-400
    26Dixon RA and D Ferreira, Genistein Phytochemistry,2002,60(3):205-211
    27Rimbach G, PD Weinberg, S de Pascual-Teresa, et al. Sulfation ofgenistein alters its antioxidant properties and its effect on plateletaggregation and monocyte and endothelial function Biochim Biophys Acta,2004,1670(3):229-237
    28Turner R, T Baron, S Wolffram, et al. Effect of circulating forms of soyisoflavones on the oxidation of low density lipoprotein Free Radic Res,2004,38(2):209-216
    29Huang YH, QH Zhang, Genistein reduced the neural apoptosis in the brainof ovariectomised rats by modulating mitochondrial oxidative stress Br JNutr,2010,104(9):1297-1303
    30Choi EJ, BH Lee, Evidence for genistein mediated cytotoxicity andapoptosis in rat brain Life Sci,2004,75(4):499-509
    31Jones DN, JC Barnes, DL Kirkby, et al. Age-associated impairments in atest of attention: evidence for involvement of cholinergic systems JNeurosci,1995,15(11):7282-7292
    32Lee YB, HJ Lee, MH Won, et al. Soy isoflavones improve spatial delayedmatching-to-place performance and reduce cholinergic neuron loss inelderly male rats J Nutr,2004,134(7):1827-1831
    33Valeri A, P Fiorenzani, R Rossi, et al. The soy phytoestrogens genisteinand daidzein as neuroprotective agents against anoxia-glucopenia andreperfusion damage in rat urinary bladder Pharmacol Res,2012,66(4):309-316
    34Rodrigo R, R Fernandez-Gajardo, R Gutierrez, et al. Oxidative Stress andPathophysiology of Ischemic Stroke: Novel Therapeutic OpportunitiesCNS Neurol Disord Drug Targets,2013
    35Tuttolomondo A, R Di Sciacca, D Di Raimondo, et al. Neuron protectionas a therapeutic target in acute ischemic stroke Curr Top Med Chem,2009,9(14):1317-1334
    36Kahles T, RP Brandes. NADPH oxidases as therapeutic targets in ischemicstroke Cell Mol Life Sci,2012,69(14):2345-2363
    37Orozco-Ibarra M, AM Estrada-Sanchez, L Massieu, et al. Hemeoxygenase-1induction prevents neuronal damage triggered duringmitochondrial inhibition: role of CO and bilirubin Int J Biochem Cell Biol,2009,41(6):1304-1314
    38Gilgun-Sherki Y, Z Rosenbaum, E Melamed, et al. Antioxidant therapy inacute central nervous system injury: current state Pharmacol Rev,2002,54(2):271-284
    39Xu J, J Zhu, C Shi, et al. Effects of genistein on hippocampalneurodegeneration of ovariectomized rats J Mol Neurosci,2007,31(2):101-112
    40Donzelli A, D Braida, A Finardi, et al. Neuroprotective effects of genisteinin Mongolian gerbils: estrogen receptor-beta involvement J Pharmacol Sci,2010,114(2):158-167
    41Vina J, MC Gomez-Cabrera, C Borras. Fostering antioxidant defences:up-regulation of antioxidant genes or antioxidant supplementation? Br JNutr,2007,98Suppl1: S36-40
    42Zhang QG, D Han, RM Wang, et al. C terminus of Hsc70-interactingprotein (CHIP)-mediated degradation of hippocampal estrogenreceptor-alpha and the critical period hypothesis of estrogenneuroprotection Proc Natl Acad Sci U S A,2011,108(35): E617-624
    43Raz L, QG Zhang, CF Zhou, et al. Role of Rac1GTPase in NADPHoxidase activation and cognitive impairment following cerebral ischemiain the rat PLoS One,2010,5(9): e12606
    44Brass LM.Hormone replacement therapy and stroke: clinical trials reviewStroke,2004,35(11Suppl1):2644-2647
    45Kreijkamp-Kaspers, S L Kok, DE Grobbee, et al. Effect of soy proteincontaining isoflavones on cognitive function, bone mineral density, andplasma lipids in postmenopausal women: a randomized controlled trialJAMA,2004,292(1):65-74
    46Schreihofer, DA, L Redmond, Soy. Phytoestrogens are neuroprotectiveagainst stroke-like injury in vitro Neuroscience,2009,158(2):602-609
    47Linford NJ, DM Dorsa.17beta-Estradiol and the phytoestrogen genisteinattenuate neuronal apoptosis induced by the endoplasmic reticulumcalcium-ATPase inhibitor thapsigargin Steroids,2002,67(13-14):1029-1040
    48Liu K, Q Li, L Zhang, et al. The dynamic detection of NO during strokeand reperfusion in vivo Brain Inj,2009,23(5):450-458
    49Wei G, VL Dawson, JL Zweier. Role of neuronal and endothelial nitricoxide synthase in nitric oxide generation in the brain following cerebralischemia Biochim Biophys Acta,1999,1455(1):23-34
    50Hara H, PL Huang, N Panahian, et al. Reduced brain edema and infarctionvolume in mice lacking the neuronal isoform of nitric oxide synthase aftertransient MCA occlusion J Cereb Blood Flow Metab,1996,16(4):605-611
    51Hu Z, X Bian, X Liu, et al. Honokiol protects brain againstischemia-reperfusion injury in rats through disrupting PSD95-nNOSinteraction Brain Res,2013,1491:204-212
    52Cui X, M Chopp, A Zacharek, et al. Role of endothelial nitric oxidesynthetase in arteriogenesis after stroke in mice Neuroscience,2009,159(2):744-750
    53Park SH, JH Kim, SJ Park, et al. Protective effect of hexane extracts ofUncaria sinensis against photothrombotic ischemic injury in mice JEthnopharmacol,2011,138(3):774-779
    54Mariucci G, E Taha, M Tantucci, et al. Intravenous administration ofpravastatin immediately after middle cerebral artery occlusion reducescerebral oedema in spontaneously hypertensive rats Eur J Pharmacol,2011,660(2-3):381-386
    55Kim JH, SH Park, YW Kim, et al. The Traditional Herbal Medicine,Dangkwisoo-San, Prevents Cerebral Ischemic Injury through NitricOxide-Dependent Mechanisms Evid Based Complement Alternat Med,2011,2011:718302
    56Mun CH, WT Lee, KA Park, et al. Regulation of endothelial nitric oxidesynthase by agmatine after transient global cerebral ischemia in rat brainAnat Cell Biol,2010,43(3):230-240
    57Endres M, U Laufs, JK Liao, et al. Targeting eNOS for stroke protectionTrends Neurosci,2004,27(5):283-289
    58Hendrick JP, FU Hartl, Molecular chaperone functions of heat-shockproteins Annu Rev Biochem,1993,62:349-384
    59Gething MJ, J Sambrook, Protein folding in the cell Nature,1992,355(6355):33-45
    60Pratt WB, DO Toft. Regulation of signaling protein function andtrafficking by the hsp90/hsp70-based chaperone machinery Exp Biol Med(Maywood),2003,228(2):111-133
    61Young JC, I Moarefi, FU Hartl. Hsp90: a specialized but essentialprotein-folding tool J Cell Biol,2001,154(2):267-273
    62Brouet A, P Sonveaux, C Dessy, et al. Hsp90and caveolin are key targetsfor the proangiogenic nitric oxide-mediated effects of statins Circ Res,2001,89(10):866-873
    63Gratton JP, J Fontana, DS O'Connor, et al. Reconstitution of an endothelialnitric-oxide synthase (eNOS), hsp90, and caveolin-1complex in vitroEvidence that hsp90facilitates calmodulin stimulated displacement ofeNOS from caveolin-1J Biol Chem,2000,275(29):22268-22272
    64Yang SH, R Liu, Y Wen, et al. Neuroendocrine mechanism for toleranceto cerebral ischemia-reperfusion injury in male rats J Neurobiol,2005,62(3):341-351
    65Frick KM, MG Baxter, AL Markowska, et al. Age-related spatial referenceand working memory deficits assessed in the water maze Neurobiol Aging,1995,16(2):149-160
    66Zhang QG, RM Wang, E Scott, et al. Hypersensitivity of the hippocampalCA3region to stress-induced neurodegeneration and amyloidogenesis in arat model of surgical menopause Brain,2013
    67Raz L, QG Zhang, D Han, et al. Acetylation of the pro-apoptotic factor,p53in the hippocampus following cerebral ischemia and modulation byestrogen PLoS One,2011,6(10): e27039
    68Joffe H, JE Hall, S Gruber, et al. Estrogen therapy selectively enhancesprefrontal cognitive processes: a randomized, double-blind,placebo-controlled study with functional magnetic resonance imaging inperimenopausal and recently postmenopausal women Menopause,2006,13(3):411-422
    69Gibbs RB. Long-term treatment with estrogen and progesterone enhancesacquisition of a spatial memory task by ovariectomized aged ratsNeurobiol Aging,2000,21(1):107-116
    1Zhang, QG, L Raz, R Wang, et al. Estrogen attenuates ischemic oxidativedamage via an estrogen receptor alpha-mediated inhibition of NADPHoxidase activation J Neurosci,2009,29(44):13823-13836
    2Zhao H, RM Sapolsky, GK Steinberg. Interrupting reperfusion as a stroketherapy: ischemic postconditioning reduces infarct size after focalischemia in rats J Cereb Blood Flow Metab,2006,26(9):1114-1121
    3Maddahi A, LS Kruse, QW Chen, et al. The role of tumor necrosisfactor-alpha and TNF-alpha receptors in cerebral arteries followingcerebral ischemia in rat J Neuroinflammation,2011,8:107
    4Koh K, J Kim, YJ Jang, et al. Transcription factor Nrf2suppressesLPS-induced hyperactivation of BV-2microglial cells J Neuroimmunol,2011,233(1-2):160-167
    5Liu R, L Zhang, X Lan, et al. Protection by borneol on cortical neuronsagainst oxygen-glucose deprivation/reperfusion: involvement ofanti-oxidation and anti-inflammation through nuclear transcription factorkappaappaB signaling pathway Neuroscience,2011,176:408-419
    6Shih AY, P Li, TH Murphy. A small-molecule-inducible Nrf2-mediatedantioxidant response provides effective prophylaxis against cerebralischemia in vivo J Neurosci,2005,25(44):10321-10335
    7Ungvari Z, Z Bagi, A Feher, et al. Resveratrol confers endothelialprotection via activation of the antioxidant transcription factor Nrf2Am JPhysiol Heart Circ Physiol,2010,299(1): H18-24
    8Tian X, L Zhang, J Wang, et al. The protective effect of hyperbaric oxygenand Ginkgo biloba extract on Abeta25-35-induced oxidative stress andneuronal apoptosis in rats Behav Brain Res,2013,242:1-8
    9Rodrigues J, M Assuncao, N Lukoyanov, et al. Protective effects of acatechin-rich extract on the hippocampal formation and spatial memory inaging rats Behav Brain Res,2013,246C:94-102
    10Moi P, K Chan, I Asunis, et al. Isolation of NF-E2-related factor2(Nrf2),a NF-E2-like basic leucine zipper transcriptional activator that binds to thetandem NF-E2/AP1repeat of the beta-globin locus control region ProcNatl Acad Sci U S A,1994,91(21):9926-9930
    11Tao RR, JY Huang, XJ Shao, et al. Ischemic injury promotes Keap1nitration and disturbance of antioxidative responses in endothelial cells: apotential vasoprotective effect of melatonin J Pineal Res,2013,54(3):271-281
    12Um HC, JH Jang, DH Kim, et al. Nitric oxide activates Nrf2throughS-nitrosylation of Keap1in PC12cells Nitric Oxide,2011,25(2):161-168
    13Zheng FL, JH Zhao, and HP Zhang,[The action of PI3K/AKT duringgenistein promoting the activity of eNOS] Zhonghua Xin Xue Guan BingZa Zhi,2012,40(4):327-331
    14Joy S, RC Siow, DJ Rowlands, et al. The isoflavone Equol mediates rapidvascular relaxation: Ca2+-independent activation of endothelialnitric-oxide synthase/Hsp90involving ERK1/2and Akt phosphorylation inhuman endothelial cells J Biol Chem,2006,281(37):27335-27345
    15Paige JS, G Xu, B Stancevic, et al. Nitrosothiol reactivity profilingidentifies S-nitrosylated proteins with unexpected stability Chem Biol,2008,15(12):1307-1316
    16Doulias PT, M Tenopoulou, JL Greene, et al. Nitric oxide regulatesmitochondrial fatty acid metabolism through reversible proteinS-nitrosylation Sci Signal,2013,6(256): rs1
    17Agalliu I, Z Wang, T Wang, et al. Characterization of SNPs Associatedwith Prostate Cancer in Men of Ashkenazic Descent from the Set ofGWAS Identified SNPs: Impact of Cancer Family History and CumulativeSNP Risk Prediction PLoS One,2013,8(4): e60083
    18Tang LJ, C Li, SQ Hu, et al. S-nitrosylation of c-Src via NMDAR-nNOSmodule promotes c-Src activation and NR2A phosphorylation in cerebralischemia/reperfusion Mol Cell Biochem,2012,365(1-2):363-377
    19Hu SQ, JS Ye, YY Zong, et al. S-nitrosylation of mixed lineage kinase3contributes to its activation after cerebral ischemia J Biol Chem,2012,287(4):2364-2377
    20Fourquet S, R Guerois, D Biard, et al. Activation of NRF2by nitrosativeagents and H2O2involves KEAP1disulfide formation J Biol Chem,2010,285(11):8463-8471
    21Nakamura T, SA Lipton. Preventing Ca2+-mediated nitrosative stress inneurodegenerative diseases: possible pharmacological strategies CellCalcium,2010,47(2):190-197
    22Yu HM, J Xu, C Li, et al. Coupling between neuronal nitric oxide synthaseand glutamate receptor6-mediated c-Jun N-terminal kinase signalingpathway via S-nitrosylation contributes to ischemia neuronal deathNeuroscience,2008,155(4):1120-1132
    23Shahani N, A Sawa. Protein S-nitrosylation: role for nitric oxidesignaling in neuronal death Biochim Biophys Acta,2012,1820(6):736-742
    24Shi ZQ, CR Sunico, SR McKercher, et al. S-nitrosylated SHP-2contributes to NMDA receptor-mediated excitotoxicity in acute ischemicstroke Proc Natl Acad Sci U S A,2013,110(8):3137-3142
    25Di JH, C Li, HM Yu, et al. nNOS downregulation attenuates neuronalapoptosis by inhibiting nNOS-GluR6interaction and GluR6nitrosylationin cerebral ischemic reperfusion Biochem Biophys Res Commun,2012,420(3):594-599
    26Lau A, SA Whitman, MC Jaramillo, et al. Arsenic-mediated activation ofthe Nrf2-Keap1antioxidant pathway J Biochem Mol Toxicol,2013,27(2):99-105
    27Copple IM. The Keap1-Nrf2cell defense pathway--a promisingtherapeutic target? Adv Pharmacol,2012,63:43-79
    28Joshi G, JA Johnson. The Nrf2-ARE pathway: a valuable therapeutictarget for the treatment of neurodegenerative diseases Recent Pat CNSDrug Discov,2012,7(3):218-229
    29Canning P, CD Cooper, T Krojer, et al. Structural Basis for Cul3ProteinAssembly with the BTB-Kelch Family of E3Ubiquitin Ligases J BiolChem,2013,288(11):7803-7814
    30Keum YS. Regulation of the Keap1/Nrf2system by chemopreventivesulforaphane: implications of posttranslational modifications Ann N YAcad Sci,2011,1229:184-189
    31Lee DF, HP Kuo, M Liu, et al. KEAP1E3ligase-mediated downregulationof NF-kappaB signaling by targeting IKKbeta Mol Cell,2009,36(1):131-140
    32Park SH, JH Kim, GY Chi, et al. Induction of apoptosis and autophagy bysodium selenite in A549human lung carcinoma cells through generationof reactive oxygen species Toxicol Lett,2012,212(3):252-261
    33Kang CH, MJ Kim, MJ Seo, et al.5-Hydroxy-3,6,7,8,3'4'-hexamethoxyflavone inhibits nitric oxideproduction in lipopolysaccharide-stimulated BV2microglia viaNF-kappaB suppression and Nrf-2-dependent heme oxygenase-1inductionFood Chem Toxicol,2013
    34Terazawa R, N Akimoto, T Kato, et al. A kavalactone derivative inhibitslipopolysaccharide-stimulated iNOS induction and NO production throughactivation of Nrf2signaling in BV2microglial cells Pharmacol Res,2013,71C:34-43
    35Bryan HK, A Olayanju, CE Goldring, et al. The Nrf2cell defence pathway:Keap1-dependent and-independent mechanisms of regulation BiochemPharmacol,2013,85(6):705-717
    36Mitsuishi Y, H Motohashi, and M Yamamoto, The Keap1-Nrf2system incancers: stress response and anabolic metabolism Front Oncol,2012,2:200
    37Shibata T, T Ohta, KI Tong, et al. Cancer related mutations in NRF2impair its recognition by Keap1-Cul3E3ligase and promote malignancyProc Natl Acad Sci U S A,2008,105(36):13568-13573
    38Zhao J, N Kobori, J Aronowski, et al. Sulforaphane reduces infarct volumefollowing focal cerebral ischemia in rodents Neurosci Lett,2006,393(2-3):108-112
    39Farombi EO, S Shrotriya, HK Na, et al. Curcumin attenuatesdimethylnitrosamine-induced liver injury in rats through Nrf2-mediatedinduction of heme oxygenase-1Food Chem Toxicol,2008,46(4):1279-1287
    40Kang ES, IS Woo, HJ Kim, et al. Up-regulation of aldose reductaseexpression mediated by phosphatidylinositol3-kinase/Akt and Nrf2isinvolved in the protective effect of curcumin against oxidative damageFree Radic Biol Med,2007,43(4):535-545
    41Shah ZA, RC Li, RK Thimmulappa, et al. Role of reactive oxygen speciesin modulation of Nrf2following ischemic reperfusion injury Neuroscience,2007,147(1):53-59
    42Tulsulkar J, ZA Shah. Ginkgo biloba prevents transient globalischemia-induced delayed hippocampal neuronal death throughantioxidant and anti-inflammatory mechanism Neurochem Int,2013,62(2):189-197
    43Sinha, K, J Das, PB Pal, et al. Oxidative stress: themitochondria-dependent and mitochondria-independent pathways ofapoptosis Arch Toxicol,2013
    44Rodrigo R, R Fernandez-Gajardo, R Gutierrez, et al. Oxidative Stress andPathophysiology of Ischemic Stroke: Novel Therapeutic OpportunitiesCNS Neurol Disord Drug Targets,2013
    45Hugyecz M, E Mracsko, P Hertelendy, et al. Hydrogen supplemented airinhalation reduces changes of prooxidant enzyme and gap junction proteinlevels after transient global cerebral ischemia in the rat hippocampus BrainRes,2011,1404:31-38
    46Raz L, QG Zhang, CF Zhou, et al. Role of Rac1GTPase in NADPHoxidase activation and cognitive impairment following cerebral ischemiain the rat PLoS One,2010,5(9): e12606
    47Li, CT, WP Zhang, YB Lu, et al. Oxygen-glucose deprivation activates5-lipoxygenase mediated by oxidative stress through the p38mitogen-activated protein kinase pathway in PC12cells J Neurosci Res,2009,87(4):991-1001
    48Shim SY and HS Kim, Oxidative stress and the antioxidant enzymesystem in the developing brain Korean J Pediatr,2013,56(3):107-111
    49Karpinska A, G Gromadzka, Oxidative stress and natural antioxidantmechanisms: the role in neurodegeneration From molecular mechanismsto therapeutic strategies Postepy Hig Med Dosw (Online),2013,67(0):43-53
    50Ceprnja M, L Derek, A Unic, et al. Oxidative stress markers in patientswith post-traumatic stress disorder Coll Antropol,2011,35(4):1155-1160
    51Choi CH, K Chen, X Du, et al. Effects of delayed and extendedantioxidant treatment on acute acoustic trauma Free Radic Res,2011,45(10):1162-1172
    1Kesner RP. Behavioral functions of the CA3subregion of thehippocampus Learn Mem,2007,14(11):771-781
    2Florian C, P Roullet. Hippocampal CA3-region is crucial for acquisitionand memory consolidation in Morris water maze task in mice Behav BrainRes,2004,154(2):365-374
    3Hagberg HA, Lehmann, M Sandberg, et al. Ischemia-induced shift ofinhibitory and excitatory amino acids from intra-to extracellularcompartments J Cereb Blood Flow Metab,1985,5(3):413-419
    4Benveniste H, MB Jorgensen, M Sandberg, et al. Ischemic damage inhippocampal CA1is dependent on glutamate release and intact innervationfrom CA3J Cereb Blood Flow Metab,1989,9(5):629-639
    5Benveniste H, MB Jorgensen, NH Diemer, et al. Calcium accumulation byglutamate receptor activation is involved in hippocampal cell damage afterischemia Acta Neurol Scand,1988,78(6):529-536
    6Mahura. IS [Cerebral ischemia-hypoxia and biophysical mechanisms ofneurodegeneration and neuroprotection effects] Fiziol Zh,2003,49(2):7-12
    7Wang RM, QG Zhang, J Li, et al. The ERK5-MEF2C transcription factorpathway contributes to anti-apoptotic effect of cerebral ischemiapreconditioning in the hippocampal CA1region of rats Brain Res,2009,1255:32-41
    8Rattka M, C Brandt, and W Loscher, The intrahippocampal kainate modelof temporal lobe epilepsy revisited: epileptogenesis, behavioral andcognitive alterations, pharmacological response, and hippoccampaldamage in epileptic rats Epilepsy Res,2013,103(2-3):135-152
    9Raz L, QG Zhang, CF Zhou, et al. Role of Rac1GTPase in NADPHoxidase activation and cognitive impairment following cerebral ischemiain the rat PLoS One,2010,5(9): e12606
    10Shih AY, P Li, TH Murphy. A small-molecule-inducible Nrf2-mediatedantioxidant response provides effective prophylaxis against cerebralischemia in vivo J Neurosci,2005,25(44):10321-10335
    11Chen HH, YT Chen, YW Huang, et al.4-Ketopinoresinol, a novelnaturally occurring ARE activator, induces the Nrf2/HO-1axis andprotects against oxidative stress-induced cell injury via activation ofPI3K/AKT signaling Free Radic Biol Med,2012,52(6):1054-1066
    12Tsai PY, SM Ka, JM Chang, et al. Epigallocatechin-3-gallate preventslupus nephritis development in mice via enhancing the Nrf2antioxidantpathway and inhibiting NLRP3inflammasome activation Free Radic BiolMed,2011,51(3):744-754
    13Du Y, X Zhang, H Ji, et al. Probucol and atorvastatin in combinationprotect rat brains in MCAO model: upregulating Peroxiredoxin2, Foxo3aand Nrf2expression Neurosci Lett,2012,509(2):110-115
    14Guerrero-Beltran CE, M Calderon-Oliver, J Pedraza-Chaverri, et al.Protective effect of sulforaphane against oxidative stress: recent advancesExp Toxicol Pathol,2012,64(5):503-508
    15Kensler TW, N Wakabayashi. Nrf2: friend or foe for chemoprevention?Carcinogenesis,2010,31(1):90-99
    16Saatman KE, J Creed, R Raghupathi. Calpain as a therapeutic target intraumatic brain injury Neurotherapeutics,2010,7(1):31-42
    17Ray SK, NL Banik. Calpain and its involvement in the pathophysiology ofCNS injuries and diseases: therapeutic potential of calpain inhibitors forprevention of neurodegeneration Curr Drug Targets CNS Neurol Disord,2003,2(3):173-189
    18Cuerrier D, T Moldoveanu, PL Davies. Determination of peptide substratespecificity for mu-calpain by a peptide library-based approach: theimportance of primed side interactions J Biol Chem,2005,280(49):40632-40641
    19Green M, PM Loewenstein. Autonomous functional domains ofchemically synthesized human immunodeficiency virus tat trans-activatorprotein Cell,1988,55(6):1179-1188
    20Hirtzlin J, PM Farber, RM Franklin. Isolation of a novel Plasmodiumfalciparum gene encoding a protein homologous to the Tat-binding proteinfamily Eur J Biochem,1994,226(2):673-680
    21Lee H, J Ryu, KA Kim, et al. Transduction of yeast cytosine deaminasemediated by HIV-1Tat basic domain into tumor cells induceschemosensitivity to5-fluorocytosine Exp Mol Med,2004,36(1):43-51
    22Pulsinelli WA, JB Brierley, and F Plum, Temporal profile of neuronaldamage in a model of transient forebrain ischemia Ann Neurol,1982,11(5):491-498
    23Alfieri A, S Srivastava, RC Siow, et al. Targeting the Nrf2-Keap1antioxidant defence pathway for neurovascular protection in stroke JPhysiol,2011,589(Pt17):4125-4136
    24Scapagnini G, S Vasto, NG Abraham, et al. Modulation of Nrf2/AREpathway by food polyphenols: a nutritional neuroprotective strategy forcognitive and neurodegenerative disorders Mol Neurobiol,2011,44(2):192-201
    25Dash PK, J Zhao, SA Orsi, et al. Sulforaphane improves cognitive functionadministered following traumatic brain injury Neurosci Lett,2009,460(2):103-107
    26Li XH, CY Li, JM Lu, et al. Allicin ameliorates cognitive deficitsageing-induced learning and memory deficits through enhancing of Nrf2antioxidant signaling pathways Neurosci Lett,2012,514(1):46-50
    27Skucas VA, AM Duffy, LC Harte-Hargrove, et al. Testosterone depletionin adult male rats increases mossy fiber transmission, LTP, and sproutingin area CA3of hippocampus J Neurosci,2013,33(6):2338-2355
    28Ohta H, S Sakai, S Ito, et al. Paired stimulation between CA3and CA1alters excitability of CA3in the rat hippocampus Neurosci Lett,2013,534:182-187
    29Stepan J, J Dine, T Fenzl, et al. Entorhinal theta-frequency input to thedentate gyrus trisynaptically evokes hippocampal CA1LTP Front NeuralCircuits,2012,6:64
    30Han JY, SY Ahn, CS Kim, et al. Protection of apigenin againstkainate-induced excitotoxicity by anti-oxidative effects Biol Pharm Bull,2012,35(9):1440-1446
    31Park D, SS Joo, TK Kim, et al. Human neural stem cells overexpressingcholine acetyltransferase restore cognitive function of kainic acid-inducedlearning and memory deficit animals Cell Transplant,2012,21(1):365-371
    32Shetty AK, B Hattiangady. Restoration of calbindin after fetalhippocampal CA3cell grafting into the injured hippocampus in a ratmodel of temporal lobe epilepsy Hippocampus,2007,17(10):943-956
    33Shetty AK, DA Turner. Glutamic acid decarboxylase-67-positivehippocampal interneurons undergo a permanent reduction in numberfollowing kainic acid-induced degeneration of ca3pyramidal neurons ExpNeurol,2001,169(2):276-297
    34Shetty AK, DA Turner. Fetal hippocampal grafts containing CA3cellsrestore host hippocampal glutamate decarboxylase-positive interneuronnumbers in a rat model of temporal lobe epilepsy J Neurosci,2000,20(23):8788-8801
    35Friedman LK, B Goldstein, A Rafiuddin, et al. Lack of resveratrolneuroprotection in developing rats treated with kainic acid Neuroscience,2013,230:39-49
    1Abbott NJ, AA Patabendige, DE Dolman, et al. Structure and function ofthe blood-brain barrier Neurobiol Dis,2010,37(1):13-25
    2Attwell D, AM Buchan, S Charpak, et al. Glial and neuronal control ofbrain blood flow Nature,2010,468(7321):232-243
    3Dawson K, BJ Gordon, and A Guend, Progress in reducing strokemortality in Wisconsin,1984-1998WMJ,2002,101(3):32-36,48
    4Iadecola C, Neurovascular regulation in the normal brain and inAlzheimer's disease Nat Rev Neurosci,2004,5(5):347-360
    5Niizuma K, H Endo, PH Chan. Oxidative stress and mitochondrialdysfunction as determinants of ischemic neuronal death and survival JNeurochem,2009,109Suppl1:133-138
    6Siow RC, GE Mann, Dietary isoflavones and vascular protection:activation of cellular antioxidant defenses by SERMs or hormesis? MolAspects Med,2010,31(6):468-477
    7Rizzo MT, HA Leaver. Brain endothelial cell death: modes, signalingpathways, and relevance to neural development, homeostasis, and diseaseMol Neurobiol,2010,42(1):52-63
    8Gursoy-Ozdemir, YA Can, T Dalkara. Reperfusion-inducedoxidative/nitrative injury to neurovascular unit after focal cerebralischemia Stroke,2004,35(6):1449-1453
    9Vargas MR, JA Johnson. The Nrf2-ARE cytoprotective pathway inastrocytes Expert Rev Mol Med,2009,11: e17
    10Halliwell B. Role of free radicals in the neurodegenerative diseases:therapeutic implications for antioxidant treatment Drugs Aging,2001,18(9):685-716
    11Swanson RA, W Ying, TM Kauppinen. Astrocyte influences on ischemicneuronal death Curr Mol Med,2004,4(2):193-205
    12Lee BJ, Y Egi, K van Leyen, et al. Edaravone, a free radical scavenger,protects components of the neurovascular unit against oxidative stress invitro Brain Res,2010,1307:22-27
    13Guo S, WJ Kim, J Lok, et al. Neuroprotection via matrix-trophic couplingbetween cerebral endothelial cells and neurons Proc Natl Acad Sci U S A,2008,105(21):7582-7587
    14Sukumari-Ramesh S, MD Laird, N Singh, et al. Astrocyte-derivedglutathione attenuates hemin-induced apoptosis in cerebral microvascularcells Glia,2010,58(15):1858-1870
    15Schroeter ML, K Mertsch, H Giese, et al. Astrocytes enhance radicaldefence in capillary endothelial cells constituting the blood-brain barrierFEBS Lett,1999,449(2-3):241-244
    16Shah ZA, RC Li, AS Ahmad, et al. The flavanol (-)-epicatechin preventsstroke damage through the Nrf2/HO1pathway J Cereb Blood Flow Metab,2010,30(12):1951-1961
    17Shah ZA, RC Li, RK Thimmulappa, et al. Role of reactive oxygen speciesin modulation of Nrf2following ischemic reperfusion injury Neuroscience,2007,147(1):53-59
    18Liverman CS, L Cui, C Yong, et al. Response of the brain to oligemia:gene expression, c-Fos, and Nrf2localization Brain Res Mol Brain Res,2004,126(1):57-66
    19Shih AY, P Li, TH Murphy. A small-molecule-inducible Nrf2-mediatedantioxidant response provides effective prophylaxis against cerebralischemia in vivo J Neurosci,2005,25(44):10321-10335
    20Chen HH, YT Chen, YW Huang, et al.4-Ketopinoresinol, a novelnaturally occurring ARE activator, induces the Nrf2/HO-1axis andprotects against oxidative stress-induced cell injury via activation ofPI3K/AKT signaling Free Radic Biol Med,2012,52(6):1054-1066
    21Du Y, X Zhang, H Ji, et al. Probucol and atorvastatin in combinationprotect rat brains in MCAO model: upregulating Peroxiredoxin2, Foxo3aand Nrf2expression Neurosci Lett,2012,509(2):110-115
    22Guerrero-Beltran CE, M Calderon-Oliver, J Pedraza-Chaverri, et al.Protective effect of sulforaphane against oxidative stress: recent advancesExp Toxicol Pathol,2012,64(5):503-508
    23Yang C, X Zhang, H Fan, et al. Curcumin upregulates transcription factorNrf2, HO-1expression and protects rat brains against focal ischemia BrainRes,2009,1282:133-141
    24Satoh T, K Kosaka, K Itoh, et al. Carnosic acid, a catechol-typeelectrophilic compound, protects neurons both in vitro and in vivo throughactivation of the Keap1/Nrf2pathway via S-alkylation of targetedcysteines on Keap1J Neurochem,2008,104(4):1116-1131
    25Tulsulkar J, ZA Shah, Ginkgo biloba prevents transient globalischemia-induced delayed hippocampal neuronal death throughantioxidant and anti-inflammatory mechanism Neurochem Int,2013,62(2):189-197
    26Gan L, MR Vargas, DA Johnson, et al. Astrocyte-specific overexpressionof Nrf2delays motor pathology and synuclein aggregation throughout theCNS in the alpha-synuclein mutant (A53T) mouse model J Neurosci,2012,32(49):17775-17787
    27Gupta K, S Chandran, and GE Hardingham, Human stem cell-derivedastrocytes and their application to studying Nrf2-mediated neuroprotectivepathways and therapeutics in neurodegeneration Br J Clin Pharmacol,2013,75(4):907-918
    28Shih AY, DA Johnson, G Wong, et al. Coordinate regulation ofglutathione biosynthesis and release by Nrf2-expressing glia potentlyprotects neurons from oxidative stress J Neurosci,2003,23(8):3394-3406
    29Kraft AD, DA Johnson, and JA Johnson, Nuclear factor E2-related factor2-dependent antioxidant response element activation bytert-butylhydroquinone and sulforaphane occurring preferentially inastrocytes conditions neurons against oxidative insult J Neurosci,2004,24(5):1101-1112
    30Bell KF, JH Fowler, B Al-Mubarak, et al. Activation of Nrf2-regulatedglutathione pathway genes by ischemic preconditioning Oxid Med CellLongev,2011,2011:689524
    31Chen PC, MR Vargas, AK Pani, et al. Nrf2-mediated neuroprotection inthe MPTP mouse model of Parkinson's disease: Critical role for theastrocyte Proc Natl Acad Sci U S A,2009,106(8):2933-2938
    32Vargas MR, DA Johnson, DW Sirkis, et al. Nrf2activation in astrocytesprotects against neurodegeneration in mouse models of familialamyotrophic lateral sclerosis J Neurosci,2008,28(50):13574-13581
    33Messina M, C Nagata, and AH Wu, Estimated Asian adult soy protein andisoflavone intakes Nutr Cancer,2006,55(1):1-12
    34Si H, D Liu. Phytochemical genistein in the regulation of vascularfunction: new insights Curr Med Chem,2007,14(24):2581-2589
    35Perabo FG, EC Von Low, J Ellinger, et al. Soy isoflavone genistein inprevention and treatment of prostate cancer Prostate Cancer Prostatic Dis,2008,11(1):6-12
    36Duffy C, K Perez, A Partridge. Implications of phytoestrogen intake forbreast cancer CA Cancer J Clin,2007,57(5):260-277
    37Rimbach G, C Boesch-Saadatmandi, J Frank, et al. Dietary isoflavones inthe prevention of cardiovascular disease--a molecular perspective FoodChem Toxicol,2008,46(4):1308-1319
    38Yamaguchi M, Regulatory mechanism of food factors in bone metabolismand prevention of osteoporosis Yakugaku Zasshi,2006,126(11):1117-1137
    39Hulem R, RM Blair. Soy isoflavones for postmenopausal symptoms Anexamination of evidence Adv Nurse Pract,2006,14(5):32-38; quiz39
    40Jiang F, GT Jones, AJ Husband, et al. Cardiovascular protective effects ofsynthetic isoflavone derivatives in apolipoprotein e-deficient mice J VascRes,2003,40(3):276-284
    41Szkudelska K, L Nogowski. Genistein--a dietary compound inducinghormonal and metabolic changes J Steroid Biochem Mol Biol,2007,105(1-5):37-45
    42Klein CB, AA King. Genistein genotoxicity: critical considerations of invitro exposure dose Toxicol Appl Pharmacol,2007,224(1):1-11
    43Linford NJ, DM Dorsa.17beta-Estradiol and the phytoestrogen genisteinattenuate neuronal apoptosis induced by the endoplasmic reticulumcalcium-ATPase inhibitor thapsigargin Steroids,2002,67(13-14):1029-1040
    44Bang OY, HS Hong, DH Kim, et al. Neuroprotective effect of genisteinagainst beta amyloid-induced neurotoxicity Neurobiol Dis,2004,16(1):21-28
    45Qian Y, T Guan, M Huang, et al. Neuroprotection by the soy isoflavone,genistein, via inhibition of mitochondria-dependent apoptosis pathwaysand reactive oxygen induced-NF-kappaB activation in a cerebral ischemiamouse model Neurochem Int,2012,60(8):759-767
    46Ma Y, JC Sullivan, and DA Schreihofer, Dietary genistein and equol (4',7isoflavandiol) reduce oxidative stress and protect rats against focalcerebral ischemia Am J Physiol Regul Integr Comp Physiol,2010,299(3):R871-877
    47Liang HW, SF Qiu, J Shen, et al. Genistein attenuates oxidative stress andneuronal damage following transient global cerebral ischemia in rathippocampus Neurosci Lett,2008,438(1):116-120
    48Matsumura A, A Ghosh, GS Pope, et al. Comparative study of oestrogenicproperties of eight phytoestrogens in MCF7human breast cancer cells JSteroid Biochem Mol Biol,2005,94(5):431-443
    49Shi DH, ZQ Yan, LN Zhang, et al. A novel7-O-modified genisteinderivative with acetylcholinesterase inhibitory effect, estrogenic activityand neuroprotective effect Arch Pharm Res,2012,35(9):1645-1654
    50Adams SM, MV Aksenova, MY Aksenov, et al. Soy isoflavones genisteinand daidzein exert anti-apoptotic actions via a selective ER-mediatedmechanism in neurons following HIV-1Tat(1-86) exposure PLoS One,2012,7(5): e37540
    51Bagheri M, M Roghani, MT Joghataei, et al. Genistein inhibitsaggregation of exogenous amyloid-beta(1)(-)(4)(0) and alleviatesastrogliosis in the hippocampus of rats Brain Res,2012,1429:145-154
    52Dixon RA, D Ferreira. Genistein Phytochemistry,2002,60(3):205-211
    53Raz L, QG Zhang, CF Zhou, et al. Role of Rac1GTPase in NADPHoxidase activation and cognitive impairment following cerebral ischemiain the rat PLoS One,2010,5(9): e12606
    54Wang J, PS Green, JW Simpkins. Estradiol protects against ATP depletion,mitochondrial membrane potential decline and the generation of reactiveoxygen species induced by3-nitroproprionic acid in SK-N-SH humanneuroblastoma cells J Neurochem,2001,77(3):804-811
    55Zhang QG, MD Laird, D Han, et al. Critical role of NADPH oxidase inneuronal oxidative damage and microglia activation following traumaticbrain injury PLoS One,2012,7(4): e34504
    56Zhang QG, L Raz, R Wang, et al. Estrogen attenuates ischemic oxidativedamage via an estrogen receptor alpha-mediated inhibition of NADPHoxidase activation J Neurosci,2009,29(44):13823-13836
    57Castello-Ruiz M, G Torregrosa, MC Burguete, et al. Soy-derivedphytoestrogens as preventive and acute neuroprotectors in experimentalischemic stroke: influence of rat strain Phytomedicine,2011,18(6):513-515
    58Donzelli A, D Braida, A Finardi, et al. Neuroprotective effects of genisteinin Mongolian gerbils: estrogen receptor-beta involvement J Pharmacol Sci,2010,114(2):158-167
    59Xi YD, HL Yu, J Ding, et al. Flavonoids protect cerebrovascularendothelial cells through Nrf2and PI3K from beta-amyloidpeptide-induced oxidative damage Curr Neurovasc Res,2012,9(1):32-41
    60Ma W, L Yuan, H Yu, et al. Genistein as a neuroprotective antioxidantattenuates redox imbalance induced by beta-amyloid peptides25-35inPC12cells Int J Dev Neurosci,2010,28(4):289-295
    61Zeng H, Q Chen, and B Zhao, Genistein ameliorates beta-amyloid peptide(25-35)-induced hippocampal neuronal apoptosis Free Radic Biol Med,2004,36(2):180-188
    62Xu J, J Zhu, C Shi, et al. Effects of genistein on hippocampalneurodegeneration of ovariectomized rats J Mol Neurosci,2007,31(2):101-112
    63Zhu JL, GL Yang, and YM Huang,[Effect of soybean isoflavone on thecognitive function in ovariectomized mice] Zhong Nan Da Xue Xue BaoYi Xue Ban,2004,29(1):81-83
    64Kim YS, HK Chang, JW Lee, et al. Protective effect of gabapentin onN-methyl-D-aspartate-induced excitotoxicity in rat hippocampal CA1neurons J Pharmacol Sci,2009,109(1):144-147
    65Wang RM, QG Zhang, GY Zhang. Activation of ERK5is mediated byN-methyl-D-aspartate receptor and L-type voltage-gated calcium channelvia Src involving oxidative stress after cerebral ischemia in rathippocampus Neurosci Lett,2004,357(1):13-16
    66Kajta M, H Domin, G Grynkiewicz, et al. Genistein inhibitsglutamate-induced apoptotic processes in primary neuronal cell cultures:an involvement of aryl hydrocarbon receptor and estrogenreceptor/glycogen synthase kinase-3beta intracellular signaling pathwayNeuroscience,2007,145(2):592-604
    67Schreihofer DA, Y Ma. Estrogen receptors and ischemic neuroprotection:Who, what, where and when? Brain Res,2013
    68Shin JA, SJ Yang, SI Jeong, et al. Activation of estrogen receptor betareduces blood-brain barrier breakdown following ischemic injuryNeuroscience,2013,235:165-173
    69Shao H, JC Breitner, RA Whitmer, et al. Hormone therapy and Alzheimerdisease dementia: new findings from the Cache County Study Neurology,2012,79(18):1846-1852
    70Seppen J. A diet containing the soy phytoestrogen genistein causesinfertility in female rats partially deficient in UDP glucuronyltransferaseToxicol Appl Pharmacol,2012,264(3):335-342
    71Li RP, He, J Cui, et al. Brain Endogenous Estrogen Levels DetermineResponses to Estrogen Replacement Therapy via Regulation of BACE1and NEP in Female Alzheimer's Transgenic Mice Mol Neurobiol,2012
    72Scott EL, QG Zhang, D Han, et al. Long-term estrogen deprivation leadsto elevation of Dickkopf-1and dysregulation of Wnt/beta-Cateninsignaling in hippocampal CA1neurons Steroids,2012
    73Henderson VW, WA Rocca. Estrogens and Alzheimer disease risk: isthere a window of opportunity? Neurology,2012,79(18):1840-1841
    74Nelson HD, M Walker, B Zakher, et al. Menopausal hormone therapy forthe primary prevention of chronic conditions: a systematic review toupdate the US Preventive Services Task Force recommendations AnnIntern Med,2012,157(2):104-113
    75Rossouw JE, JE Manson, AM Kaunitz, et al. Lessons learned from theWomen's Health Initiative trials of menopausal hormone therapy ObstetGynecol,2013,121(1):172-176
    76Brann D, L Raz, R Wang, et al. Oestrogen signalling and neuroprotectionin cerebral ischaemia J Neuroendocrinol,2012,24(1):34-47
    77Henderson VW, RA Lobo. Hormone therapy and the risk of stroke:perspectives10years after the Women's Health Initiative trials Climacteric,2012,15(3):229-234
    78Setchell KD. A Cassidy, Dietary isoflavones: biological effects andrelevance to human health J Nutr,1999,129(3):758S-767S
    79Casini ML, G Marelli, E Papaleo, et al. Psychological assessment of theeffects of treatment with phytoestrogens on postmenopausal women: arandomized, double-blind, crossover, placebo-controlled study Fertil Steril,2006,85(4):972-978
    80File SE, N Jarrett, E Fluck, et al. Eating soya improves human memoryPsychopharmacology (Berl),2001,157(4):430-436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700