基于水下小平台的被动声探测定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下小型武器平台具有无人控制自主工作的特点,具有对水面舰船和水下目标两种目标自主探测、定位的能力,战场无人化的发展趋势要求水下作战平台进一步提高对目标的定位距离、定位精度和打击效能。
     论文针对水下小型武器平台对目标探测定位这一需求进行了理论和试验研究。论文首先阐述了研究背景,分析了小型武器平台的发展需求,对水下目标定位跟踪方法做了回顾和比较,对水下小型武器平台的工作环境和工作特点进行了分析。
     由于探测系统工作在水下小型平台上,平台的结构和尺度限制了声学基阵的阵形和孔径,进而限制了声学探测系统的工作方式和性能。本论文在对现有的小平台声学探测基阵进行分析的基础上提出了适用于小平台的平面三元等边阵、平面三元直角阵和立体正三棱锥阵三种阵形,推导了定位解算公式,分析了影响解算精度的因素,仿真研究了对水面目标的定位精度,给出了三种阵形能达到的定位精度和最佳定位区域,在水下平台实际应用条件下分析了探测系统达到的定位精度,为水下小平台探测系统的声学基阵设计拓宽了思路并提供了理论参考。
     水下小平台探测包括对水下目标的方位、距离和深度的测量。为了解决静止不动、单点独立的水下小平台对水下目标的定位问题,本论文充分利用了水下目标声信号在水声信道传播中的多途信息,利用倒谱技术实现了多途时延的提取,提出了一种利用超短基阵定向与多途时延估计相结合的水下目标定位方法,湖上试验数据证明了方法的有效性和可行性。
     本论文将矢量水听器技术应用于水下小平台探测,提出了基于矢量水听器极性信号处理的目标检测方法,推导了解算公式,分析了处理增益,并进行了仿真验证;结合移相网络实现了超低功耗的目标检测系统设计,突破了水下小平台对低功耗和小尺度要求的瓶颈。湖上试验证明了该方法的有效性和可靠性。
     论文结合水下小型武器平台的发展需求,通过系统研究,完成了探测系统布阵形式、信号处理方法的理论分析和技术实现,形成了完整的小型水下主动攻击武器平台目标探测的方案体系,提出的定位方法解决了水下小型平台对水面和水下目标探测、定位的难题,对研制新型水下武器的探测系统具有很大的研究意义和应用价值。
The underwater operation platform has the characteristics of unmanned control andautonomous working, and also has the capabilities of autonomous detection and localizationfor surface ship and underwater target. The trend of unmanned battlefield requires longerrange, higher positioning accuracy and better hit efficiency of the underwater operationplatform.
     The theory and test research of the target detection and localization by underwater smallweapon platform were performed in this paper. The research background was described firstly.Then the development needs of the small weapon platform were analyzed. The localizationand tracking methods for underwater targets were reviewed and compared. The workingenvironment and the characteristics of the underwater platform were also analyzed.
     Detection systems working on the small underwater platform, thereby the formation andaperture of acoustic arrays are limited by the structure and size. So the working pattern andperformance of the acoustic detection system are limited too. Based on the analysis of theexisting small platform acoustic detection array, three kind of arrays were proposed whichwere suitable for the small platform. They were the plane three-sensor equilateral array, theplane three-sensor right angle array, and the cubic triangular pyramid array. The theoreticalpositioning formula was deduced. The impact factors of calculating accuracy were analyzed.The localization accuracy of surface target was studied by simulation. The positioningaccuracy and optimal positioning area of the three arrays were provided, which broads thedesign idea and provides a theoretical reference for underwater acoustic detection system onsmall platform.
     Small underwater platform detection includes the measurement of the position, range anddepth of underwater target. In order to solve the problem of underwater target positioning onthe stationary, single-point independent small underwater platform, the information ofmultipath propagation was fully utilized. The extraction of multipath delay was realized bythe cepstrum analysis. A novel underwater target positioning method was proposed whichcombined ultra short base-line direction finding and multipath delay estimation. Theeffectiveness and feasibility of the new method were verified by lake test data.
     The vector hydrophone technology was applied to underwater small platform detectionin this paper. A novel target detection method was proposed based on vector hydrophonepolarity signal processing. The calculating formula was deduced, the processing gain was analyzed, and it was validated by simulations. The design of ultra-low power consumptiontarget detection system was achieved by combining with the phase shift network. Thebottleneck of low power consumption and small-size of small underwater platform wasbroken. The validity and reliability were proved by lake test.
     Combining with the development requirement of underwater small weapon platform,three contributions were achieved with the system analysis. They were the arrangement ofdetection system, the theory analysis of signal processing method and technologyimplementation. A complete target detection scheme system was formed on the smallunderwater active attack weapon platform. The problem of the surface or underwater targetdetection and positioning on the small platform was resolved by the proposed positioningmethod. Simulations were performed to review the influence of the factors such as positioningaccuracy on the attack efficiency of the new active attack weapon platform. All the aboveworks are of great research significance and application value on developing the detectionsystem for new type mine weapons.
引文
[1]张云海,佘湖清,水雷技术的发展对未来战争的影响,水中兵器,2008年第1期
    [2]张云海,海洋强国的召唤,水中兵器,2007年增刊
    [3]王德印,张云海,未来海战对水雷技术发展需求的分析,水雷战与舰船防护,2007年第4期
    [4]佘湖清,段桂林,孙朴.,水雷总体技术.国防工业出版社,2009年第1版P7
    [5]刘建强.发展反水雷直升机问题研究.水雷战与舰船防护,2007年第1期
    [6]张云海,佘湖清.信息战水雷发展思路.水中兵器,200年增刊
    [7]张歆,夏庆升.水雷网络的概念及其相关技术.水中兵器,2007年第1期
    [8]刘红梅,陈雄洲,朱宝春.水雷组网的发展前景.水中兵器,2008年第1期
    [9]蔡昆等.水雷引信技术.国防工业出版社2012年7月第1版P1
    [10]韩鹏,李玉才.水中兵器概论(水雷分册).西北工业大学出版社2007年第1版P3
    [11]任奕译.“死亡角”—主要的不对称威胁之一.水雷战与舰船防护.2012年2月第20卷第2期
    [12]林春生,龚沈光.舰船物理场.兵器工业出版社2007年10月第2版P1
    [13]刘孟庵,连立民.水声工程,浙江科学出版,2002年10月第1版P335
    [14]陈川.水雷引信的远程被动定位技术及其发展.水雷战与舰船防护.2012年2月第20卷第1期
    [15]陈川,田荣艳.水雷远程目标探测及定位技术研究.水中兵器,2008年第1期
    [16]孙贵青,李启虎.声矢量传感器研究进展.声学学报,2004年11月第29卷第6期
    [17]孙贵青,李启虎.声矢量传感器信号处理.声学学报,2004年11月第29卷第6期
    [18] A.B.Baggeroer,W.A.Kuperma,at a1.IEEE Journal of Oceanic Engineering.1993,18:425-427P
    [19]马远良.匹配场处理——水声物理学与信号处理的结合.电子科技导报.1996(4)
    [20] B.M.Abrahma. Low-cost dipole hydrophone for use in towed arrays.189-201P
    [21] N.Lagakos and J.A.Bucaro. Planar fiber optic acoustic velocity sensor. J.Acoust.Soc.Am,1980,67(6):1988-1996P
    [22] M. Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and Capon directionestimation. in Proc. Int. Conf. Acoust., Speech, Signal Process.(ICASSP), Detroit, MI,1995:1673–1676P
    [23] G. L. D’Spain, W. S. Hodgkiss, and G. L. Edmonds.Energetics of the deep ocean’sinfrasonic sound field. J. Acoust. Soc. Amer.,1991,89(3):1134–1158P
    [24] G. L. D’Spain et al. Initial analysis of the data from the vertical DIFAR array. in Proc.Mast. Oceans Tech.(Oceans’92), Newport, RI,1992:346–351P
    [25] V. A. Shchurov, V. I. Ilyichev, and V. P. Kuleshov. The ambient noise energy motion inthe near-surface layer in the ocean. J. Physique,1994,4(5):1273–1276P
    [26] A. Nehorai and E. Paldi. Acoustic vector-sensor array processing. in Proc.26thAsilomar Conf. Signals, Syst., Comput., Pacific Grove, CA,1992:192–198P
    [27] A. Nehorai and E. Paldi. Acoustic vector sensor array processing. IEEE Trans. SignalProcessing,1994,42:2481–2491P
    [28] M. Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and Capon directionestimation. in Proc. Int. Conf. Acoust., Speech, Signal Process.(ICASSP), Detroit, MI,1995:1673–1676P
    [29] K.T.Wong, M.D.Zoltowski. Closed-Form Underwater Acoustic Direction-Finding withArbitrarily Spaced Vector Hydrophones at Unknown Locations. IEEE Journal ofOceanic Engineering,1997,22(3):566-575P
    [30] K.T.Wong and M.D.Zoltowski. Extended-aperture underwater acoustic multisourceazimuth/elevation direction-finding using uniformly but sparsely-spaced vectorhydrophones. IEEE, J.Oceanic Eng,1997,22(4):659-672P
    [31] K.T.Wong and M.D.Zoltowski. Self-Initiating MUSIC-Based Direction Finding inUnderwater Acoustic Particle Velocity-Field Beamspace. IEEE Intl. Symposium onCircuits&Systems,1997,4:2553-2556P
    [32] K.T.Wong, M.D.Zoltowski. Root-MUSIC-based azimuth-elevation angle-of-arrivalestimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEETrans.Signal Processing,1999,47:3250-3260P
    [33] K.T.Wong and M.D.Zoltowski. Self-Initiating MUSIC-Based Direction Finding inUnderwater Acoustic Particle Velocity-Field Beamspace. IEEE J.of OceanicEngineering,2000,25(2):262-273P
    [34]惠俊英,刘宏,余华兵,范敏毅.声压振速联合信息处理及其物理基础初探.声学学报,2000,25(4):303-307页
    [35]孙贵青,杨德森,张揽月,时胜国.基于矢量水听器的最大似然比检测和最大似然方位估计.声学学报,2003(1):66-72页
    [36]时胜国,杨德森.矢量水听器的源定向理论及其定向误差分析.哈尔滨工程大学学报.24(2):132-135页
    [37]陈新华,蔡平,惠俊英等.声矢量阵指向性.声学学报,2003,28(2):141-144页
    [38]宋新见,殷东梅,惠俊英.基于矢量信号处理的水声定位系统.海洋工程,2003,21(3):110-114页
    [39]何心怡,蒋兴舟,李启虎.矢量水听器线列阵的被动合成孔径技术.武汉理工大学学报(交通科学与工程版),2003,27(6):799-803页
    [40]陈川.声矢量接收技术在水雷中的应用.水雷战与舰船防护,2003,4:39-43页
    [41]陈川,陈韶华,李琪.基于自适应Notch滤波器的矢量阵多目标分辨研究兵工学报,第32卷第9期2011年9月
    [42]杨宝杰,冀邦杰.基于矢量传感器的鱼雷低频被动声自导关键技术研究框架.鱼雷技术,2003年9月第11卷第3期
    [43]陈华伟,赵俊渭等.基于声压振速联合信息处理的测向方法研究.声学与电子工程,2002,3:13-17页
    [44]陈川、王大宇.矢量水听器在水声通信系统中的应用.《声学技术》第29卷第4期2012年8月
    [45]陈川.低频矢量水听器目标绝对方位估计海上试验研究.传感器与微系统,2012,vol.31(7)58-60
    [46]杨娟,惠俊英等.低频矢量声场建模及其应用研究.声学技术2006年2月,第25卷第1期
    [47]惠俊英,孙国仓,赵安邦. Pekeris波导中简正波声强流及其互谱信号处理.声学学报2008年7月,第33卷第4期
    [48]毛卫宁.水下被动定位方法回顾与展望.东南大学学报(自然科学版).2001,11
    [49] Prosperi, Serge. New passive tracking algorithms using power infor-mation withapplication to passive sonar. IEEE International Conference on Acoustics, Speechand Signal Processing.1991,2:1437-1440P
    [50] Chan,Y.T.,Niezgoda,G.H.Passive sonar detection and localization by matchedvelocity filtering. IEEE J. Ocean. Eng.1995,20(3):179-189P
    [51]李启虎.水声信号处理领域若干专题研究进展.应用声学.2001, Vol.20(1):1-5页
    [52]李启虎.声纳信号处理引论.北京:海洋出版社,1985:371-377页
    [53] Smith J O,Abel J S.Closed-form least-square source location estimation from range-difference measurements.IEEE transASSP,1981:35P
    [54] Passerienux J M,Pillon D. et al. Target motion analysis with bearings andfrequentcies measurements. Proceedings of the22nd Asilomar Conference,1988:458-462P
    [55] Marandda B H, Fawcett J A. Detection and localization of weak targets by space-time integration. IEEE Journal of Oceanic Engineering,1991,16(2):189-194P
    [56]刘健,刘忠,玄兆林.方位时延的TMA算法及其可观测性研究.声学技术.第26卷第3期,2007年6月
    [57]孙仲康,周一宇,何黎星.单多基地有源无源定位技术.北京:国防工业出版社,1996:196-225页
    [58] Jauffret C,Pillon D.Observalility in passive target motion analysis.IEEE Transactionon Aerospace and Electronic Systems.1996,32(4):1290-1300P
    [59] Lindgren A G, Gong K F. Position and velocity estimateion via bearingobservation. IEEE Transactions on Aerospace and Electronic Systems,1978,14(4):564-577P
    [60]杜选民,姚蓝.多基阵联合的无源纯方位目标运动分析研究.声学学报.1999,24(6):604-610页
    [61] Becker K. A general approach to TMA observability from angle and frequentcymeasurements. IEEE Transactions on Acoustics, Speech and Signal Processing,1996,32(1):487-496P
    [62]胡友峰,孙进才.多平台基于方位时延差的目标运动分析.系统工程与电子技术.2002,24(11):28-30页
    [63]王燕,梁国龙.基于目标方位及时延差的双基阵目标运动分析.声学技术.2001,20(5):60-62页
    [64]高伟,陈川.基于辐射噪声强度和线谱多普勒的目标运动参数估计.声学技术.第29卷第4期.2010年8月
    [65]王静等.水声信号处理中匹配场处理技术研究的现状和展望[J].声学技术.2000,19(1)
    [66]黄益旺.浅海远距离匹配场声源定位研究.哈尔滨工程大学博士论文.2005年5月
    [67]张利,高伟。基站偏移对垂直双站几何交叉定位精度的影响,水雷战与舰船防护,2010年第4期
    [68]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,2000年3月第1版P5
    [69] Vincent Ricordel,Sebastien Paris,Trajectory estimation for Ultrashort Baseline AcousticPositioning System,IEEE Proceedings,2001,14(4):1791-1796
    [70]刘丽,惠俊英.一种改进的三点内插时延估计算法.应用声学.1999年第18卷6期。
    [71]李耀彬,曾祥斌,沈铖武.基于抛物线插值的正弦波拟合算法.计算机工程与设计,2009,30(11):2793-2795页
    [72]张光法,胡红洲,陈川.小尺度基阵测向原理及误差分析.水雷战与舰船防护2008年第6期
    [73]王燕麟.几种时延估值算法的频域自适应实现及比较.声学与电子工程.1987年第3期
    [74]吴喜录,陈庆生,张元,程翔.目标声定位时延估计的对比研究.现代引信,1996年,(4):7-10页
    [75]刘伯胜,雷家煜.水声学原理.哈尔滨工程大学出版社,1997年3月
    [76]惠俊英.水下声信道.国防工业出版社,1992年4月
    [77]楼如云,袁耀初.1995与1996年复季琉球群岛两侧海流.海洋学报,2004年5月Vol.26(3)
    [78]袁耀初,王惠群等.2002年春季吕宋海峡海流观测及其谱分析.海洋学报,2005年75月Vol.27(4)
    [79]张仁和.应用声学.2006年11月第25卷第6期
    [80] Williams Burdic.Underwater acoustic system analysis. Prentice-Hall Inc EnglewoodCliffs,NJ07632,1984:426-429
    [81][3-3]J.C.hassab.Passive Tacking of a Moving Source by a Single Obesever in ShallowWater.Journal of sound and vibration
    [82]陈励军.采用双阵元多途定位算法对距离深度联合估计.东南大学学报,1998年1月第28卷第1期]
    [83]生雪莉,陈晓忠等.多途环境中的运动目标距离深度联合估计.哈尔滨工程大学学报,2002年10月第23卷第5期
    [84]陈励军.声学技术1998年第17卷第4期
    [85]江磊,惠俊英等.干涉谱法测量水下竖直运动目标轨迹.海洋工程,2006年11月第24卷第4期]
    [86] CHEN chuan,GAO wei,Estimating Parameter Uncertainties Using Hybrid MonteCarlo-Least Squares Suport Vector Machine Method,20102nd International AsiaConference on Informatics in Control, Automatiion and Robotics
    [87]杨坤德,马远良.利用海底反射信号进行地声参数反演的方法.物理学报,2009年3月,第58卷第3期
    [88]王光旭,彭朝晖等.空气中声源激发的浅海水下声场传播实验研究.声学学报,2011年11月第36卷第6期
    [89]李风华,孙梅.由矢量水听器阵反演海底地声参数.哈尔滨工程大学学报,2010年7月,第31卷第7期
    [90]张忠兵,马远良等.浅海中沉积层参数对多途到达时差反演声速剖面的影响.应用声学,2002年8月第21卷第3期
    [91]杨娟.水下动目标被动跟踪关键技术研究.哈尔滨工程大学博士论文.2007年9月
    [92]凌青,生雪莉等.运动目标低频矢量宽带干涉结构及其应用研究.声学技术,2012年8月,第31卷第4期
    [93]杨娟.基于干涉谱分析的单水听器被动定位技术研究.哈尔滨工程大学硕士学位论文.2006
    [94] Donald G. Childers.The Cepstrum a Guide to Processing.Processing of the IEEE, Vol.65, No10, Oct.1977;
    [95] R.C.KEMERAIT.Signal Detection and Extraction by Cepstrum Techniques.IEEETransaction on Information Theory, VoL IT-18, No.6, Nov.,1972
    [96]满令斌,陈川.基于倒谱的水下目标被动定位方法.水雷战与舰船防护.2010(1):49-52
    [97]徐东,彭圆,孔艳霞,李雪耀.倒谱在水中目标分类中的应用.应用科技.2002Vol.29No.11
    [98]田杰,张春华,刘维,黄海宁,薛山花.基于倒谱分析的被动水声目标分类.系统工程与电子技术,2005Vol.27No.10
    [99] W.S.Hodgkiss,H.C.Song,W.A.Kuperman,T.Akal,C.Feria,D.R.Jackson.Long rangeand variable focus phase conjugation experiment in shallow water.J.Acoust.Soc.Am.,1999,105:1597一1604P
    [100] G.Q.WU.Estimation of range and depth of a submerged moving object by using noisecepstrum.Journal of Sound and Vibration,(2001)245(5)
    [101] J.C.Hassab.Passive tracking of a moving source by a single observer in shallowwater. Journal of Sound and Vibration,1976;44(1)
    [102] Fjell.P.O.Use of the cepstrum method for arrival times extraction of overlapping signalsdue to multipath conditions in shallow water.JASA V59(1).209-211
    [103]白兴宇.基于联合信息处理的声矢量阵测向技术.哈尔滨工程大学博士论文.2006年3月
    [104]姚直象.单矢量水听器信号处理研究.哈尔滨工程大学硕士论文,2005:12-17
    [105]纪鸣.声频信号定向传播技术研究.西北工业大学硕士论文.2005年3月
    [106]孙贵青.矢量水听器检测技术研究.工学博士学位论文,哈尔滨工程大学,2001
    [107]陈新华.矢量阵信号处理技术研究.哈尔滨工程大学博士论文.2004年1月
    [108]劳力云等.应用极性相关方法快速计算标准化互相关函数.浙江大学学报Vol.33(6)
    [109]郑兆林,向大威.水声信号被动检测与参数估计理论.科学出版社。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700